You are currently browsing the tag archive for the ‘polynomial maps’ tag.

In Notes 5, we saw that the Gowers uniformity norms on vector spaces {{\bf F}^n} in high characteristic were controlled by classical polynomial phases {e(\phi)}.

Now we study the analogous situation on cyclic groups {{\bf Z}/N{\bf Z}}. Here, there is an unexpected surprise: the polynomial phases (classical or otherwise) are no longer sufficient to control the Gowers norms {U^{s+1}({\bf Z}/N{\bf Z})} once {s} exceeds {1}. To resolve this problem, one must enlarge the space of polynomials to a larger class. It turns out that there are at least three closely related options for this class: the local polynomials, the bracket polynomials, and the nilsequences. Each of the three classes has its own strengths and weaknesses, but in my opinion the nilsequences seem to be the most natural class, due to the rich algebraic and dynamical structure coming from the nilpotent Lie group undergirding such sequences. For reasons of space we shall focus primarily on the nilsequence viewpoint here.

Traditionally, nilsequences have been defined in terms of linear orbits {n \mapsto g^n x} on nilmanifolds {G/\Gamma}; however, in recent years it has been realised that it is convenient for technical reasons (particularly for the quantitative “single-scale” theory) to generalise this setup to that of polynomial orbits {n \mapsto g(n) \Gamma}, and this is the perspective we will take here.

A polynomial phase {n \mapsto e(\phi(n))} on a finite abelian group {H} is formed by starting with a polynomial {\phi: H \rightarrow {\bf R}/{\bf Z}} to the unit circle, and then composing it with the exponential function {e: {\bf R}/{\bf Z} \rightarrow {\bf C}}. To create a nilsequence {n \mapsto F(g(n) \Gamma)}, we generalise this construction by starting with a polynomial {g \Gamma: H \rightarrow G/\Gamma} into a nilmanifold {G/\Gamma}, and then composing this with a Lipschitz function {F: G/\Gamma \rightarrow {\bf C}}. (The Lipschitz regularity class is convenient for minor technical reasons, but one could also use other regularity classes here if desired.) These classes of sequences certainly include the polynomial phases, but are somewhat more general; for instance, they almost include bracket polynomial phases such as {n \mapsto e( \lfloor \alpha n \rfloor \beta n )}. (The “almost” here is because the relevant functions {F: G/\Gamma \rightarrow {\bf C}} involved are only piecewise Lipschitz rather than Lipschitz, but this is primarily a technical issue and one should view bracket polynomial phases as “morally” being nilsequences.)

In these notes we set out the basic theory for these nilsequences, including their equidistribution theory (which generalises the equidistribution theory of polynomial flows on tori from Notes 1) and show that they are indeed obstructions to the Gowers norm being small. This leads to the inverse conjecture for the Gowers norms that shows that the Gowers norms on cyclic groups are indeed controlled by these sequences.

Read the rest of this entry »