You are currently browsing the tag archive for the ‘polynomials’ tag.

Jean-Pierre Serre (whose papers are, of course, always worth reading) recently posted a lovely lecture on the arXiv entitled “How to use finite fields for problems concerning infinite fields”. In it, he describes several ways in which algebraic statements over fields of zero characteristic, such as , can be deduced from their positive characteristic counterparts such as , despite the fact that there is no non-trivial field homomorphism between the two types of fields. In particular finitary tools, including such basic concepts as cardinality, can now be deployed to establish infinitary results. This leads to some simple and elegant proofs of non-trivial algebraic results which are not easy to establish by other means.

One deduction of this type is based on the idea that positive characteristic fields can partially *model* zero characteristic fields, and proceeds like this: if a certain algebraic statement failed over (say) , then there should be a “finitary algebraic” obstruction that “witnesses” this failure over . Because this obstruction is both finitary and algebraic, it must also be definable in some (large) finite characteristic, thus leading to a comparable failure over a finite characteristic field. Taking contrapositives, one obtains the claim.

Algebra is definitely not my own field of expertise, but it is interesting to note that similar themes have also come up in my own area of additive combinatorics (and more generally arithmetic combinatorics), because the combinatorics of addition and multiplication on finite sets is definitely of a “finitary algebraic” nature. For instance, a recent paper of Vu, Wood, and Wood establishes a finitary “Freiman-type” homomorphism from (finite subsets of) the complex numbers to large finite fields that allows them to pull back many results in arithmetic combinatorics in finite fields (e.g. the sum-product theorem) to the complex plane. (Van Vu and I also used a similar trick to control the singularity property of random sign matrices by first mapping them into finite fields in which cardinality arguments became available.) And I have a particular fondness for correspondences between finitary and infinitary mathematics; the correspondence Serre discusses is slightly different from the one I discuss for instance in here or here, although there seems to be a common theme of “compactness” (or of model theory) tying these correspondences together.

As one of his examples, Serre cites one of my own favourite results in algebra, discovered independently by Ax and by Grothendieck (and then rediscovered many times since). Here is a special case of that theorem:

Theorem 1 (Ax-Grothendieck theorem, special case)Let be a polynomial map from a complex vector space to itself. If is injective, then is bijective.

The full version of the theorem allows one to replace by an algebraic variety over any algebraically closed field, and for to be an morphism from the algebraic variety to itself, but for simplicity I will just discuss the above special case. This theorem is not at all obvious; it is not too difficult (see Lemma 4 below) to show that the Jacobian of is non-degenerate, but this does not come close to solving the problem since one would then be faced with the notorious Jacobian conjecture. Also, the claim fails if “polynomial” is replaced by “holomorphic”, due to the existence of Fatou-Bieberbach domains.

In this post I would like to give the proof of Theorem 1 based on finite fields as mentioned by Serre, as well as another elegant proof of Rudin that combines algebra with some elementary complex variable methods. (There are several other proofs of this theorem and its generalisations, for instance a topological proof by Borel, which I will not discuss here.)

*Update, March 8: Some corrections to the finite field proof. Thanks to Matthias Aschenbrenner also for clarifying the relationship with Tarski’s theorem and some further references.*

Vitaly Bergelson, Tamar Ziegler, and I have just uploaded to the arXiv our paper “An inverse theorem for the uniformity seminorms associated with the action of “. This paper establishes the ergodic inverse theorems that are needed in our other recent paper to establish the inverse conjecture for the Gowers norms over finite fields in high characteristic (and to establish a partial result in low characteristic), as follows:

Theorem.Let be a finite field of characteristic p. Suppose that is a probability space with an ergodic measure-preserving action of . Let be such that the Gowers-Host-Kra seminorm (defined in a previous post) is non-zero.

- In the high-characteristic case , there exists a phase polynomial g of degree <k (as defined in the previous post) such that .
- In general characteristic, there exists a phase polynomial of degree <C(k) for some C(k) depending only on k such that .

This theorem is closely analogous to a similar theorem of Host and Kra on ergodic actions of , in which the role of phase polynomials is played by functions that arise from nilsystem factors of X. Indeed, our arguments rely heavily on the machinery of Host and Kra.

The paper is rather technical (60+ pages!) and difficult to describe in detail here, but I will try to sketch out (in very broad brush strokes) what the key steps in the proof of part 2 of the theorem are. (Part 1 is similar but requires a more delicate analysis at various stages, keeping more careful track of the degrees of various polynomials.)

Let be an integer. The concept of a polynomial of one variable of degree (or ) can be defined in one of two equivalent ways:

- (Global definition) is a polynomial of degree iff it can be written in the form for some coefficients .
- (Local definition) is a polynomial of degree if it is k-times continuously differentiable and .

From single variable calculus we know that if P is a polynomial in the global sense, then it is a polynomial in the local sense; conversely, if P is a polynomial in the local sense, then from the Taylor series expansion

we see that P is a polynomial in the global sense. We make the trivial remark that we have no difficulty dividing by here, because the field is of characteristic zero.

The above equivalence carries over to higher dimensions:

- (Global definition) is a polynomial of degree iff it can be written in the form for some coefficients .
- (Local definition) is a polynomial of degree if it is k-times continuously differentiable and for all .

Again, it is not difficult to use several variable calculus to show that these two definitions of a polynomial are equivalent.

The purpose of this (somewhat technical) post here is to record some basic analogues of the above facts in finite characteristic, in which the underlying domain of the polynomial P is F or for some finite field F. In the “classical” case when the range of P is also the field F, it is a well-known fact (which we reproduce here) that the local and global definitions of polynomial are equivalent. But in the “non-classical” case, when P ranges in a more general group (and in particular in the unit circle ), the global definition needs to be corrected somewhat by adding some new monomials to the classical ones . Once one does this, one can recover the equivalence between the local and global definitions.

(The results here are derived from forthcoming work with Vitaly Bergelson and Tamar Ziegler.)

Ben Green and I have just uploaded our joint paper, “The distribution of polynomials over finite fields, with applications to the Gowers norms“, to the arXiv, and submitted to Contributions to Discrete Mathematics. This paper, which we first announced at the recent FOCS meeting, and then gave an update on two weeks ago on this blog, is now in final form. It is being made available simultaneously with a closely related paper of Lovett, Meshulam, and Samorodnitsky.

In the previous post on this topic, I focused on the negative results in the paper, and in particular the fact that the inverse conjecture for the Gowers norm fails for certain degrees in low characteristic. Today, I’d like to focus instead on the positive results, which assert that for polynomials in many variables over finite fields whose degree is less than the characteristic of the field, one has a satisfactory theory for the distribution of these polynomials. Very roughly speaking, the main technical results are:

- A
*regularity lemma*: Any polynomial can be expressed as a combination of a bounded number of other polynomials which are*regular*, in the sense that no non-trivial linear combination of these polynomials can be expressed efficiently in terms of lower degree polynomials. - A
*counting lemma*: A regular collection of polynomials behaves as if the polynomials were selected randomly. In particular, the polynomials are jointly equidistributed.

Recently, I had tentatively announced a forthcoming result with Ben Green establishing the “Gowers inverse conjecture” (or more accurately, the “inverse conjecture for the Gowers uniformity norm”) for vector spaces over a finite field , in the special case when p=2 and when the function for which the inverse conjecture is to be applied is assumed to be a polynomial phase of bounded degree (thus , where is a polynomial of some degree ). See my FOCS article for some further discussion of this conjecture, which has applications to both polynomiality testing and to various structural decompositions involving the Gowers norm.

This conjecture can be informally stated as follows. By iterating the obvious fact that the derivative of a polynomial of degree at most d is a polynomial of degree at most d-1, we see that a function is a polynomial of degree at most d if and only if

for all . From this one can deduce that a function bounded in magnitude by 1 is a polynomial phase of degree at most d if and only if the *Gowers norm*

is equal to its maximal value of 1. The inverse conjecture for the Gowers norm, in its usual formulation, says that, more generally, if a function bounded in magnitude by 1 has large Gowers norm (e.g. ) then f has some non-trivial correlation with some polynomial phase g (e.g. for some ). Informally, this conjecture asserts that if a function has biased derivatives, then one should be able to “integrate” this bias and conclude that the function is biased relative to a polynomial of degree d. The conjecture has already been proven for . There are analogues of this conjecture for cyclic groups which are of relevance to Szemerédi’s theorem and to counting linear patterns in primes, but I will not discuss those here.

At the time of the announcement, our paper had not quite been fully written up. This turned out to be a little unfortunate, because soon afterwards we discovered that our arguments at one point had to go through a version of Newton’s interpolation formula, which involves a factor of d! in the denominator and so is only valid when the characteristic p of the field exceeds the degree. So our arguments in fact are only valid in the range , and in particular are rather trivial in the important case ; my previous announcement should thus be amended accordingly.

## Recent Comments