You are currently browsing the tag archive for the ‘product measure’ tag.

In the previous set of notes, we constructed the measure-theoretic notion of the Lebesgue integral, and used this to set up the probabilistic notion of expectation on a rigorous footing. In this set of notes, we will similarly construct the measure-theoretic concept of a product measure (restricting to the case of probability measures to avoid unnecessary techncialities), and use this to set up the probabilistic notion of independence on a rigorous footing. (To quote Durrett: “measure theory ends and probability theory begins with the definition of independence.”) We will be able to take virtually any collection of random variables (or probability distributions) and couple them together to be independent via the product measure construction, though for infinite products there is the slight technicality (a requirement of the Kolmogorov extension theorem) that the random variables need to range in standard Borel spaces. This is not the only way to couple together such random variables, but it is the simplest and the easiest to compute with in practice, as we shall see in the next few sets of notes.

Read the rest of this entry »

In this course so far, we have focused primarily on one specific example of a countably additive measure, namely Lebesgue measure. This measure was constructed from a more primitive concept of Lebesgue outer measure, which in turn was constructed from the even more primitive concept of elementary measure.

It turns out that both of these constructions can be abstracted. In this set of notes, we will give the Carathéodory lemma, which constructs a countably additive measure from any abstract outer measure; this generalises the construction of Lebesgue measure from Lebesgue outer measure. One can in turn construct outer measures from another concept known as a pre-measure, of which elementary measure is a typical example.

With these tools, one can start constructing many more measures, such as Lebesgue-Stieltjes measures, product measures, and Hausdorff measures. With a little more effort, one can also establish the Kolmogorov extension theorem, which allows one to construct a variety of measures on infinite-dimensional spaces, and is of particular importance in the foundations of probability theory, as it allows one to set up probability spaces associated to both discrete and continuous random processes, even if they have infinite length.

The most important result about product measure, beyond the fact that it exists, is that one can use it to evaluate iterated integrals, and to interchange their order, provided that the integrand is either unsigned or absolutely integrable. This fact is known as the Fubini-Tonelli theorem, and is an absolutely indispensable tool for computing integrals, and for deducing higher-dimensional results from lower-dimensional ones.

We remark that these notes omit a very important way to construct measures, namely the Riesz representation theorem, but we will defer discussion of this theorem to 245B.

This is the final set of notes in this sequence. If time permits, the course will then begin covering the 245B notes, starting with the material on signed measures and the Radon-Nikodym-Lebesgue theorem.

Read the rest of this entry »


RSS Google+ feed

  • An error has occurred; the feed is probably down. Try again later.

Get every new post delivered to your Inbox.

Join 5,398 other followers