You are currently browsing the tag archive for the ‘random sampling’ tag.

Let {G} be a finite set of order {N}; in applications {G} will be typically something like a finite abelian group, such as the cyclic group {{\bf Z}/N{\bf Z}}. Let us define a {1}-bounded function to be a function {f: G \rightarrow {\bf C}} such that {|f(n)| \leq 1} for all {n \in G}. There are many seminorms {\| \|} of interest that one places on functions {f: G \rightarrow {\bf C}} that are bounded by {1} on {1}-bounded functions, such as the Gowers uniformity seminorms {\| \|_k} for {k \geq 1} (which are genuine norms for {k \geq 2}). All seminorms in this post will be implicitly assumed to obey this property.

In additive combinatorics, a significant role is played by inverse theorems, which abstractly take the following form for certain choices of seminorm {\| \|}, some parameters {\eta, \varepsilon>0}, and some class {{\mathcal F}} of {1}-bounded functions:

Theorem 1 (Inverse theorem template) If {f} is a {1}-bounded function with {\|f\| \geq \eta}, then there exists {F \in {\mathcal F}} such that {|\langle f, F \rangle| \geq \varepsilon}, where {\langle,\rangle} denotes the usual inner product

\displaystyle  \langle f, F \rangle := {\bf E}_{n \in G} f(n) \overline{F(n)}.

Informally, one should think of {\eta} as being somewhat small but fixed independently of {N}, {\varepsilon} as being somewhat smaller but depending only on {\eta} (and on the seminorm), and {{\mathcal F}} as representing the “structured functions” for these choices of parameters. There is some flexibility in exactly how to choose the class {{\mathcal F}} of structured functions, but intuitively an inverse theorem should become more powerful when this class is small. Accordingly, let us define the {(\eta,\varepsilon)}-entropy of the seminorm {\| \|} to be the least cardinality of {{\mathcal F}} for which such an inverse theorem holds. Seminorms with low entropy are ones for which inverse theorems can be expected to be a useful tool. This concept arose in some discussions I had with Ben Green many years ago, but never appeared in print, so I decided to record some observations we had on this concept here on this blog.

Lebesgue norms {\| f\|_{L^p} := ({\bf E}_{n \in G} |f(n)|^p)^{1/p}} for {1 < p < \infty} have exponentially large entropy (and so inverse theorems are not expected to be useful in this case):

Proposition 2 ({L^p} norm has exponentially large inverse entropy) Let {1 < p < \infty} and {0 < \eta < 1}. Then the {(\eta,\eta^p/4)}-entropy of {\| \|_{L^p}} is at most {(1+8/\eta^p)^N}. Conversely, for any {\varepsilon>0}, the {(\eta,\varepsilon)}-entropy of {\| \|_{L^p}} is at least {\exp( c \varepsilon^2 N)} for some absolute constant {c>0}.

Proof: If {f} is {1}-bounded with {\|f\|_{L^p} \geq \eta}, then we have

\displaystyle  |\langle f, |f|^{p-2} f \rangle| \geq \eta^p

and hence by the triangle inequality we have

\displaystyle  |\langle f, F \rangle| \geq \eta^p/2

where {F} is either the real or imaginary part of {|f|^{p-2} f}, which takes values in {[-1,1]}. If we let {\tilde F} be {F} rounded to the nearest multiple of {\eta^p/4}, then by the triangle inequality again we have

\displaystyle  |\langle f, \tilde F \rangle| \geq \eta^p/4.

There are only at most {1+8/\eta^p} possible values for each value {\tilde F(n)} of {\tilde F}, and hence at most {(1+8/\eta^p)^N} possible choices for {\tilde F}. This gives the first claim.

Now suppose that there is an {(\eta,\varepsilon)}-inverse theorem for some {{\mathcal F}} of cardinality {M}. If we let {f} be a random sign function (so the {f(n)} are independent random variables taking values in {-1,+1} with equal probability), then there is a random {F \in {\mathcal F}} such that

\displaystyle  |\langle f, F \rangle| \geq \varepsilon

and hence by the pigeonhole principle there is a deterministic {F \in {\mathcal F}} such that

\displaystyle  {\bf P}( |\langle f, F \rangle| \geq \varepsilon ) \geq 1/M.

On the other hand, from the Hoeffding inequality one has

\displaystyle  {\bf P}( |\langle f, F \rangle| \geq \varepsilon ) \ll \exp( - c \varepsilon^2 N )

for some absolute constant {c}, hence

\displaystyle  M \geq \exp( c \varepsilon^2 N )

as claimed. \Box

Most seminorms of interest in additive combinatorics, such as the Gowers uniformity norms, are bounded by some finite {L^p} norm thanks to Hölder’s inequality, so from the above proposition and the obvious monotonicity properties of entropy, we conclude that all Gowers norms on finite abelian groups {G} have at most exponential inverse theorem entropy. But we can do significantly better than this:

  • For the {U^1} seminorm {\|f\|_{U^1(G)} := |{\bf E}_{n \in G} f(n)|}, one can simply take {{\mathcal F} = \{1\}} to consist of the constant function {1}, and the {(\eta,\eta)}-entropy is clearly equal to {1} for any {0 < \eta < 1}.
  • For the {U^2} norm, the standard Fourier-analytic inverse theorem asserts that if {\|f\|_{U^2(G)} \geq \eta} then {|\langle f, e(\xi \cdot) \rangle| \geq \eta^2} for some Fourier character {\xi \in \hat G}. Thus the {(\eta,\eta^2)}-entropy is at most {N}.
  • For the {U^k({\bf Z}/N{\bf Z})} norm on cyclic groups for {k > 2}, the inverse theorem proved by Green, Ziegler, and myself gives an {(\eta,\varepsilon)}-inverse theorem for some {\varepsilon \gg_{k,\eta} 1} and {{\mathcal F}} consisting of nilsequences {n \mapsto F(g(n) \Gamma)} for some filtered nilmanifold {G/\Gamma} of degree {k-1} in a finite collection of cardinality {O_{\eta,k}(1)}, some polynomial sequence {g: {\bf Z} \rightarrow G} (which was subsequently observed by Candela-Sisask (see also Manners) that one can choose to be {N}-periodic), and some Lipschitz function {F: G/\Gamma \rightarrow {\bf C}} of Lipschitz norm {O_{\eta,k}(1)}. By the Arzela-Ascoli theorem, the number of possible {F} (up to uniform errors of size at most {\varepsilon/2}, say) is {O_{\eta,k}(1)}. By standard arguments one can also ensure that the coefficients of the polynomial {g} are {O_{\eta,k}(1)}, and then by periodicity there are only {O(N^{O_{\eta,k}(1)}} such polynomials. As a consequence, the {(\eta,\varepsilon)}-entropy is of polynomial size {O_{\eta,k}( N^{O_{\eta,k}(1)} )} (a fact that seems to have first been implicitly observed in Lemma 6.2 of this paper of Frantzikinakis; thanks to Ben Green for this reference). One can obtain more precise dependence on {\eta,k} using the quantitative version of this inverse theorem due to Manners; back of the envelope calculations using Section 5 of that paper suggest to me that one can take {\varepsilon = \eta^{O_k(1)}} to be polynomial in {\eta} and the entropy to be of the order {O_k( N^{\exp(\exp(\eta^{-O_k(1)}))} )}, or alternatively one can reduce the entropy to {O_k( \exp(\exp(\eta^{-O_k(1)})) N^{\eta^{-O_k(1)}})} at the cost of degrading {\varepsilon} to {1/\exp\exp( O(\eta^{-O(1)}))}.
  • If one replaces the cyclic group {{\bf Z}/N{\bf Z}} by a vector space {{\bf F}_p^n} over some fixed finite field {{\bf F}_p} of prime order (so that {N=p^n}), then the inverse theorem of Ziegler and myself (available in both high and low characteristic) allows one to obtain an {(\eta,\varepsilon)}-inverse theorem for some {\varepsilon \gg_{k,\eta} 1} and {{\mathcal F}} the collection of non-classical degree {k-1} polynomial phases from {{\bf F}_p^n} to {S^1}, which one can normalize to equal {1} at the origin, and then by the classification of such polynomials one can calculate that the {(\eta,\varepsilon)} entropy is of quasipolynomial size {\exp( O_{p,k}(n^{k-1}) ) = \exp( O_{p,k}( \log^{k-1} N ) )} in {N}. By using the recent work of Gowers and Milicevic, one can make the dependence on {p,k} here more precise, but we will not perform these calcualtions here.
  • For the {U^3(G)} norm on an arbitrary finite abelian group, the recent inverse theorem of Jamneshan and myself gives (after some calculations) a bound of the polynomial form {O( q^{O(n^2)} N^{\exp(\eta^{-O(1)})})} on the {(\eta,\varepsilon)}-entropy for some {\varepsilon \gg \eta^{O(1)}}, which one can improve slightly to {O( q^{O(n^2)} N^{\eta^{-O(1)}})} if one degrades {\varepsilon} to {1/\exp(\eta^{-O(1)})}, where {q} is the maximal order of an element of {G}, and {n} is the rank (the number of elements needed to generate {G}). This bound is polynomial in {N} in the cyclic group case and quasipolynomial in general.

For general finite abelian groups {G}, we do not yet have an inverse theorem of comparable power to the ones mentioned above that give polynomial or quasipolynomial upper bounds on the entropy. However, there is a cheap argument that at least gives some subexponential bounds:

Proposition 3 (Cheap subexponential bound) Let {k \geq 2} and {0 < \eta < 1/2}, and suppose that {G} is a finite abelian group of order {N \geq \eta^{-C_k}} for some sufficiently large {C_k}. Then the {(\eta,c_k \eta^{O_k(1)})}-complexity of {\| \|_{U^k(G)}} is at most {O( \exp( \eta^{-O_k(1)} N^{1 - \frac{k+1}{2^k-1}} ))}.

Proof: (Sketch) We use a standard random sampling argument, of the type used for instance by Croot-Sisask or Briet-Gopi (thanks to Ben Green for this latter reference). We can assume that {N \geq \eta^{-C_k}} for some sufficiently large {C_k>0}, since otherwise the claim follows from Proposition 2.

Let {A} be a random subset of {{\bf Z}/N{\bf Z}} with the events {n \in A} being iid with probability {0 < p < 1} to be chosen later, conditioned to the event {|A| \leq 2pN}. Let {f} be a {1}-bounded function. By a standard second moment calculation, we see that with probability at least {1/2}, we have

\displaystyle  \|f\|_{U^k(G)}^{2^k} = {\bf E}_{n, h_1,\dots,h_k \in G} f(n) \prod_{\omega \in \{0,1\}^k \backslash \{0\}} {\mathcal C}^{|\omega|} \frac{1}{p} 1_A f(n + \omega \cdot h)

\displaystyle + O((\frac{1}{N^{k+1} p^{2^k-1}})^{1/2}).

Thus, by the triangle inequality, if we choose {p := C \eta^{-2^{k+1}/(2^k-1)} / N^{\frac{k+1}{2^k-1}}} for some sufficiently large {C = C_k > 0}, then for any {1}-bounded {f} with {\|f\|_{U^k(G)} \geq \eta/2}, one has with probability at least {1/2} that

\displaystyle  |{\bf E}_{n, h_1,\dots,h_k \i2^n G} f(n) \prod_{\omega \in \{0,1\}^k \backslash \{0\}} {\mathcal C}^{|\omega|} \frac{1}{p} 1_A f(n + \omega \cdot h)|

\displaystyle \geq \eta^{2^k}/2^{2^k+1}.

We can write the left-hand side as {|\langle f, F \rangle|} where {F} is the randomly sampled dual function

\displaystyle  F(n) := {\bf E}_{n, h_1,\dots,h_k \in G} f(n) \prod_{\omega \in \{0,1\}^k \backslash \{0\}} {\mathcal C}^{|\omega|+1} \frac{1}{p} 1_A f(n + \omega \cdot h).

Unfortunately, {F} is not {1}-bounded in general, but we have

\displaystyle  \|F\|_{L^2(G)}^2 \leq {\bf E}_{n, h_1,\dots,h_k ,h'_1,\dots,h'_k \in G}

\displaystyle  \prod_{\omega \in \{0,1\}^k \backslash \{0\}} \frac{1}{p} 1_A(n + \omega \cdot h) \frac{1}{p} 1_A(n + \omega \cdot h')

and the right-hand side can be shown to be {1+o(1)} on the average, so we can condition on the event that the right-hand side is {O(1)} without significant loss in falure probability.

If we then let {\tilde f_A} be {1_A f} rounded to the nearest Gaussian integer multiple of {\eta^{2^k}/2^{2^{10k}}} in the unit disk, one has from the triangle inequality that

\displaystyle  |\langle f, \tilde F \rangle| \geq \eta^{2^k}/2^{2^k+2}

where {\tilde F} is the discretised randomly sampled dual function

\displaystyle  \tilde F(n) := {\bf E}_{n, h_1,\dots,h_k \in G} f(n) \prod_{\omega \in \{0,1\}^k \backslash \{0\}} {\mathcal C}^{|\omega|+1} \frac{1}{p} \tilde f_A(n + \omega \cdot h).

For any given {A}, there are at most {2np} places {n} where {\tilde f_A(n)} can be non-zero, and in those places there are {O_k( \eta^{-2^{k}})} possible values for {\tilde f_A(n)}. Thus, if we let {{\mathcal F}_A} be the collection of all possible {\tilde f_A} associated to a given {A}, the cardinality of this set is {O( \exp( \eta^{-O_k(1)} N^{1 - \frac{k+1}{2^k-1}} ) )}, and for any {f} with {\|f\|_{U^k(G)} \geq \eta/2}, we have

\displaystyle  \sup_{\tilde F \in {\mathcal F}_A} |\langle f, \tilde F \rangle| \geq \eta^{2^k}/2^{k+2}

with probability at least {1/2}.

Now we remove the failure probability by independent resampling. By rounding to the nearest Gaussian integer multiple of {c_k \eta^{2^k}} in the unit disk for a sufficiently small {c_k>0}, one can find a family {{\mathcal G}} of cardinality {O( \eta^{-O_k(N)})} consisting of {1}-bounded functions {\tilde f} of {U^k(G)} norm at least {\eta/2} such that for every {1}-bounded {f} with {\|f\|_{U^k(G)} \geq \eta} there exists {\tilde f \in {\mathcal G}} such that

\displaystyle  \|f-\tilde f\|_{L^\infty(G)} \leq \eta^{2^k}/2^{k+3}.

Now, let {A_1,\dots,A_M} be independent samples of {A} for some {M} to be chosen later. By the preceding discussion, we see that with probability at least {1 - 2^{-M}}, we have

\displaystyle  \sup_{\tilde F \in \bigcup_{j=1}^M {\mathcal F}_{A_j}} |\langle \tilde f, \tilde F \rangle| \geq \eta^{2^k}/2^{k+2}

for any given {\tilde f \in {\mathcal G}}, so by the union bound, if we choose {M = \lfloor C N \log \frac{1}{\eta} \rfloor} for a large enough {C = C_k}, we can find {A_1,\dots,A_M} such that

\displaystyle  \sup_{\tilde F \in \bigcup_{j=1}^M {\mathcal F}_{A_j}} |\langle \tilde f, \tilde F \rangle| \geq \eta^{2^k}/2^{k+2}

for all {\tilde f \in {\mathcal G}}, and hence y the triangle inequality

\displaystyle  \sup_{\tilde F \in \bigcup_{j=1}^M {\mathcal F}_{A_j}} |\langle f, \tilde F \rangle| \geq \eta^{2^k}/2^{k+3}.

Taking {{\mathcal F}} to be the union of the {{\mathcal F}_{A_j}} (applying some truncation and rescaling to these {L^2}-bounded functions to make them {L^\infty}-bounded, and then {1}-bounded), we obtain the claim. \Box

One way to obtain lower bounds on the inverse theorem entropy is to produce a collection of almost orthogonal functions with large norm. More precisely:

Proposition 4 Let {\| \|} be a seminorm, let {0 < \varepsilon \leq \eta < 1}, and suppose that one has a collection {f_1,\dots,f_M} of {1}-bounded functions such that for all {i=1,\dots,M}, {\|f_i\| \geq \eta} one has {|\langle f_i, f_j \rangle| \leq \varepsilon^2/2} for all but at most {L} choices of {j \in \{1,\dots,M\}} for all distinct {i,j \in \{1,\dots,M\}}. Then the {(\eta, \varepsilon)}-entropy of {\| \|} is at least {\varepsilon^2 M / 2L}.

Proof: Suppose we have an {(\eta,\varepsilon)}-inverse theorem with some family {{\mathcal F}}. Then for each {i=1,\dots,M} there is {F_i \in {\mathcal F}} such that {|\langle f_i, F_i \rangle| \geq \varepsilon}. By the pigeonhole principle, there is thus {F \in {\mathcal F}} such that {|\langle f_i, F \rangle| \geq \varepsilon} for all {i} in a subset {I} of {\{1,\dots,M\}} of cardinality at least {M/|{\mathcal F}|}:

\displaystyle  |I| \geq M / |{\mathcal F}|.

We can sum this to obtain

\displaystyle  |\sum_{i \in I} c_i \langle f_i, F \rangle| \geq |I| \varepsilon

for some complex numbers {c_i} of unit magnitude. By Cauchy-Schwarz, this implies

\displaystyle  \| \sum_{i \in I} c_i f_i \|_{L^2(G)}^2 \geq |I|^2 \varepsilon^2

and hence by the triangle inequality

\displaystyle  \sum_{i,j \in I} |\langle f_i, f_j \rangle| \geq |I|^2 \varepsilon^2.

On the other hand, by hypothesis we can bound the left-hand side by {|I| (L + \varepsilon^2 |I|/2)}. Rearranging, we conclude that

\displaystyle  |I| \leq 2 L / \varepsilon^2

and hence

\displaystyle  |{\mathcal F}| \geq \varepsilon^2 M / 2L

giving the claim. \Box

Thus for instance:

  • For the {U^2(G)} norm, one can take {f_1,\dots,f_M} to be the family of linear exponential phases {n \mapsto e(\xi \cdot n)} with {M = N} and {L=1}, and obtain a linear lower bound of {\varepsilon^2 N/2} for the {(\eta,\varepsilon)}-entropy, thus matching the upper bound of {N} up to constants when {\varepsilon} is fixed.
  • For the {U^k({\bf Z}/N{\bf Z})} norm, a similar calculation using polynomial phases of degree {k-1}, combined with the Weyl sum estimates, gives a lower bound of {\gg_{k,\varepsilon} N^{k-1}} for the {(\eta,\varepsilon)}-entropy for any fixed {\eta,\varepsilon}; by considering nilsequences as well, together with nilsequence equidistribution theory, one can replace the exponent {k-1} here by some quantity that goes to infinity as {\eta \rightarrow 0}, though I have not attempted to calculate the exact rate.
  • For the {U^k({\bf F}_p^n)} norm, another similar calculation using polynomial phases of degree {k-1} should give a lower bound of {\gg_{p,k,\eta,\varepsilon} \exp( c_{p,k,\eta,\varepsilon} n^{k-1} )} for the {(\eta,\varepsilon)}-entropy, though I have not fully performed the calculation.

We close with one final example. Suppose {G} is a product {G = A \times B} of two sets {A,B} of cardinality {\asymp \sqrt{N}}, and we consider the Gowers box norm

\displaystyle  \|f\|_{\Box^2(G)}^4 := {\bf E}_{a,a' \in A; b,b' \in B} f(a,b) \overline{f}(a,b') \overline{f}(a',b) f(a,b).

One possible choice of class {{\mathcal F}} here are the indicators {1_{U \times V}} of “rectangles” {U \times V} with {U \subset A}, {V \subset B} (cf. this previous blog post on cut norms). By standard calculations, one can use this class to show that the {(\eta, \eta^4/10)}-entropy of {\| \|_{\Box^2(G)}} is {O( \exp( O(\sqrt{N}) )}, and a variant of the proof of the second part of Proposition 2 shows that this is the correct order of growth in {N}. In contrast, a modification of Proposition 3 only gives an upper bound of the form {O( \exp( O( N^{2/3} ) ) )} (the bottleneck is ensuring that the randomly sampled dual functions stay bounded in {L^2}), which shows that while this cheap bound is not optimal, it can still broadly give the correct “type” of bound (specifically, intermediate growth between polynomial and exponential).

Archives