You are currently browsing the tag archive for the ‘Riemannian geometry’ tag.

I have just uploaded to the arXiv my paper “On the universality of the incompressible Euler equation on compact manifolds, II. Non-rigidity of Euler flows“, submitted to Pure and Applied Functional Analysis. This paper continues my attempts to establish “universality” properties of the Euler equations on Riemannian manifolds ${(M,g)}$, as I conjecture that the freedom to set the metric ${g}$ ought to allow one to “program” such Euler flows to exhibit a wide range of behaviour, and in particular to achieve finite time blowup (if the dimension is sufficiently large, at least).

In coordinates, the Euler equations read

$\displaystyle \partial_t u^k + u^j \nabla_j u^k = - \nabla^k p \ \ \ \ \ (1)$

$\displaystyle \nabla_k u^k = 0$

where ${p: [0,T] \rightarrow C^\infty(M)}$ is the pressure field and ${u: [0,T] \rightarrow \Gamma(TM)}$ is the velocity field, and ${\nabla}$ denotes the Levi-Civita connection with the usual Penrose abstract index notation conventions; we restrict attention here to the case where ${u,p}$ are smooth and ${M}$ is compact, smooth, orientable, connected, and without boundary. Let’s call ${u}$ an Euler flow on ${M}$ (for the time interval ${[0,T]}$) if it solves the above system of equations for some pressure ${p}$, and an incompressible flow if it just obeys the divergence-free relation ${\nabla_k u^k=0}$. Thus every Euler flow is an incompressible flow, but the converse is certainly not true; for instance the various conservation laws of the Euler equation, such as conservation of energy, will already block most incompressible flows from being an Euler flow, or even being approximated in a reasonably strong topology by such Euler flows.

However, one can ask if an incompressible flow can be extended to an Euler flow by adding some additional dimensions to ${M}$. In my paper, I formalise this by considering warped products ${\tilde M}$ of ${M}$ which (as a smooth manifold) are products ${\tilde M = M \times ({\bf R}/{\bf Z})^m}$ of ${M}$ with a torus, with a metric ${\tilde g}$ given by

$\displaystyle d \tilde g^2 = g_{ij}(x) dx^i dx^j + \sum_{s=1}^m \tilde g_{ss}(x) (d\theta^s)^2$

for ${(x,\theta) \in \tilde M}$, where ${\theta^1,\dots,\theta^m}$ are the coordinates of the torus ${({\bf R}/{\bf Z})^m}$, and ${\tilde g_{ss}: M \rightarrow {\bf R}^+}$ are smooth positive coefficients for ${s=1,\dots,m}$; in order to preserve the incompressibility condition, we also require the volume preservation property

$\displaystyle \prod_{s=1}^m \tilde g_{ss}(x) = 1 \ \ \ \ \ (2)$

though in practice we can quickly dispose of this condition by adding one further “dummy” dimension to the torus ${({\bf R}/{\bf Z})^m}$. We say that an incompressible flow ${u}$ is extendible to an Euler flow if there exists a warped product ${\tilde M}$ extending ${M}$, and an Euler flow ${\tilde u}$ on ${\tilde M}$ of the form

$\displaystyle \tilde u(t,(x,\theta)) = u^i(t,x) \frac{d}{dx^i} + \sum_{s=1}^m \tilde u^s(t,x) \frac{d}{d\theta^s}$

for some “swirl” fields ${\tilde u^s: [0,T] \times M \rightarrow {\bf R}}$. The situation here is motivated by the familiar situation of studying axisymmetric Euler flows ${\tilde u}$ on ${{\bf R}^3}$, which in cylindrical coordinates take the form

$\displaystyle \tilde u(t,(r,z,\theta)) = u^r(t,r,z) \frac{d}{dr} + u^z(t,r,z) \frac{d}{dz} + \tilde u^\theta(t,r,z) \frac{d}{d\theta}.$

The base component

$\displaystyle u^r(t,r,z) \frac{d}{dr} + u^z(t,r,z) \frac{d}{dz}$

of this flow is then a flow on the two-dimensional ${r,z}$ plane which is not quite incompressible (due to the failure of the volume preservation condition (2) in this case) but still satisfies a system of equations (coupled with a passive scalar field ${\rho}$ that is basically the square of the swirl ${\tilde u^\rho}$) that is reminiscent of the Boussinesq equations.

On a fixed ${d}$-dimensional manifold ${(M,g)}$, let ${{\mathcal F}}$ denote the space of incompressible flows ${u: [0,T] \rightarrow \Gamma(TM)}$, equipped with the smooth topology (in spacetime), and let ${{\mathcal E} \subset {\mathcal F}}$ denote the space of such flows that are extendible to Euler flows. Our main theorem is

Theorem 1

• (i) (Generic inextendibility) Assume ${d \geq 3}$. Then ${{\mathcal E}}$ is of the first category in ${{\mathcal F}}$ (the countable union of nowhere dense sets in ${{\mathcal F}}$).
• (ii) (Non-rigidity) Assume ${M = ({\bf R}/{\bf Z})^d}$ (with an arbitrary metric ${g}$). Then ${{\mathcal E}}$ is somewhere dense in ${{\mathcal F}}$ (that is, the closure of ${{\mathcal E}}$ has non-empty interior).

More informally, starting with an incompressible flow ${u}$, one usually cannot extend it to an Euler flow just by extending the manifold, warping the metric, and adding swirl coefficients, even if one is allowed to select the dimension of the extension, as well as the metric and coefficients, arbitrarily. However, many such flows can be perturbed to be extendible in such a manner (though different perturbations will require different extensions, in particular the dimension of the extension will not be fixed). Among other things, this means that conservation laws such as energy (or momentum, helicity, or circulation) no longer present an obstruction when one is allowed to perform an extension (basically this is because the swirl components of the extension can exchange energy (or momentum, etc.) with the base components in a basically arbitrary fashion.

These results fall short of my hopes to use the ability to extend the manifold to create universal behaviour in Euler flows, because of the fact that each flow requires a different extension in order to achieve the desired dynamics. Still it does seem to provide a little bit of support to the idea that high-dimensional Euler flows are quite “flexible” in their behaviour, though not completely so due to the generic inextendibility phenomenon. This flexibility reminds me a little bit of the flexibility of weak solutions to equations such as the Euler equations provided by the “${h}$-principle” of Gromov and its variants (as discussed in these recent notes), although in this case the flexibility comes from adding additional dimensions, rather than by repeatedly adding high-frequency corrections to the solution.

The proof of part (i) of the theorem basically proceeds by a dimension counting argument (similar to that in the proof of Proposition 9 of these recent lecture notes of mine). Heuristically, the point is that an arbitrary incompressible flow ${u}$ is essentially determined by ${d-1}$ independent functions of space and time, whereas the warping factors ${\tilde g_{ss}}$ are functions of space only, the pressure field is one function of space and time, and the swirl fields ${u^s}$ are technically functions of both space and time, but have the same number of degrees of freedom as a function just of space, because they solve an evolution equation. When ${d>2}$, this means that there are fewer unknown functions of space and time than prescribed functions of space and time, which is the source of the generic inextendibility. This simple argument breaks down when ${d=2}$, but we do not know whether the claim is actually false in this case.

The proof of part (ii) proceeds by direct calculation of the effect of the warping factors and swirl velocities, which effectively create a forcing term (of Boussinesq type) in the first equation of (1) that is a combination of functions of the Eulerian spatial coordinates ${x^i}$ (coming from the warping factors) and the Lagrangian spatial coordinates ${a^\beta}$ (which arise from the swirl velocities, which are passively transported by the flow). In a non-empty open subset of ${{\mathcal F}}$, the combination of these coordinates becomes a non-degenerate set of coordinates for spacetime, and one can then use the Stone-Weierstrass theorem to conclude. The requirement that ${M}$ be topologically a torus is a technical hypothesis in order to avoid topological obstructions such as the hairy ball theorem, but it may be that the hypothesis can be dropped (and it may in fact be true, in the ${M = ({\bf R}/{\bf Z})^d}$ case at least, that ${{\mathcal E}}$ is dense in all of ${{\mathcal F}}$, not just in a non-empty open subset).

The Boussinesq equations for inviscid, incompressible two-dimensional fluid flow in the presence of gravity are given by

$\displaystyle (\partial_t + u_x \partial_x+ u_y \partial_y) u_x = -\partial_x p \ \ \ \ \ (1)$

$\displaystyle (\partial_t + u_x \partial_x+ u_y \partial_y) u_y = \rho - \partial_y p \ \ \ \ \ (2)$

$\displaystyle (\partial_t + u_x \partial_x+ u_y \partial_y) \rho = 0 \ \ \ \ \ (3)$

$\displaystyle \partial_x u_x + \partial_y u_y = 0 \ \ \ \ \ (4)$

where ${u: {\bf R} \times {\bf R}^2 \rightarrow {\bf R}^2}$ is the velocity field, ${p: {\bf R} \times {\bf R}^2 \rightarrow {\bf R}}$ is the pressure field, and ${\rho: {\bf R} \times {\bf R}^2 \rightarrow {\bf R}}$ is the density field (or, in some physical interpretations, the temperature field). In this post we shall restrict ourselves to formal manipulations, assuming implicitly that all fields are regular enough (or sufficiently decaying at spatial infinity) that the manipulations are justified. Using the material derivative ${D_t := \partial_t + u_x \partial_x + u_y \partial_y}$, one can abbreviate these equations as

$\displaystyle D_t u_x = -\partial_x p$

$\displaystyle D_t u_y = \rho - \partial_y p$

$\displaystyle D_t \rho = 0$

$\displaystyle \partial_x u_x + \partial_y u_y = 0.$

One can eliminate the role of the pressure ${p}$ by working with the vorticity ${\omega := \partial_x u_y - \partial_y u_x}$. A standard calculation then leads us to the equivalent “vorticity-stream” formulation

$\displaystyle D_t \omega = \partial_x \rho$

$\displaystyle D_t \rho = 0$

$\displaystyle \omega = \partial_x u_y - \partial_y u_x$

$\displaystyle \partial_x u_y + \partial_y u_y = 0$

of the Boussinesq equations. The latter two equations can be used to recover the velocity field ${u}$ from the vorticity ${\omega}$ by the Biot-Savart law

$\displaystyle u_x := -\partial_y \Delta^{-1} \omega; \quad u_y = \partial_x \Delta^{-1} \omega.$

It has long been observed (see e.g. Section 5.4.1 of Bertozzi-Majda) that the Boussinesq equations are very similar, though not quite identical, to the three-dimensional inviscid incompressible Euler equations under the hypothesis of axial symmetry (with swirl). The Euler equations are

$\displaystyle \partial_t u + (u \cdot \nabla) u = - \nabla p$

$\displaystyle \nabla \cdot u = 0$

where now the velocity field ${u: {\bf R} \times {\bf R}^3 \rightarrow {\bf R}^3}$ and pressure field ${p: {\bf R} \times {\bf R}^3 \rightarrow {\bf R}}$ are over the three-dimensional domain ${{\bf R}^3}$. If one expresses ${{\bf R}^3}$ in polar coordinates ${(z,r,\theta)}$ then one can write the velocity vector field ${u}$ in these coordinates as

$\displaystyle u = u^z \frac{d}{dz} + u^r \frac{d}{dr} + u^\theta \frac{d}{d\theta}.$

If we make the axial symmetry assumption that these components, as well as ${p}$, do not depend on the ${\theta}$ variable, thus

$\displaystyle \partial_\theta u^z, \partial_\theta u^r, \partial_\theta u^\theta, \partial_\theta p = 0,$

then after some calculation (which we give below the fold) one can eventually reduce the Euler equations to the system

$\displaystyle \tilde D_t \omega = \frac{1}{r^4} \partial_z \rho \ \ \ \ \ (5)$

$\displaystyle \tilde D_t \rho = 0 \ \ \ \ \ (6)$

$\displaystyle \omega = \frac{1}{r} (\partial_z u^r - \partial_r u^z) \ \ \ \ \ (7)$

$\displaystyle \partial_z(ru^z) + \partial_r(ru^r) = 0 \ \ \ \ \ (8)$

where ${\tilde D_t := \partial_t + u^z \partial_z + u^r \partial_r}$ is the modified material derivative, and ${\rho}$ is the field ${\rho := (r u^\theta)^2}$. This is almost identical with the Boussinesq equations except for some additional powers of ${r}$; thus, the intuition is that the Boussinesq equations are a simplified model for axially symmetric Euler flows when one stays away from the axis ${r=0}$ and also does not wander off to ${r=\infty}$.

However, this heuristic is not rigorous; the above calculations do not actually give an embedding of the Boussinesq equations into Euler. (The equations do match on the cylinder ${r=1}$, but this is a measure zero subset of the domain, and so is not enough to give an embedding on any non-trivial region of space.) Recently, while playing around with trying to embed other equations into the Euler equations, I discovered that it is possible to make such an embedding into a four-dimensional Euler equation, albeit on a slightly curved manifold rather than in Euclidean space. More precisely, we use the Ebin-Marsden generalisation

$\displaystyle \partial_t u + \nabla_u u = - \mathrm{grad}_g p$

$\displaystyle \mathrm{div}_g u = 0$

of the Euler equations to an arbitrary Riemannian manifold ${(M,g)}$ (ignoring any issues of boundary conditions for this discussion), where ${u: {\bf R} \rightarrow \Gamma(TM)}$ is a time-dependent vector field, ${p: {\bf R} \rightarrow C^\infty(M)}$ is a time-dependent scalar field, and ${\nabla_u}$ is the covariant derivative along ${u}$ using the Levi-Civita connection ${\nabla}$. In Penrose abstract index notation (using the Levi-Civita connection ${\nabla}$, and raising and lowering indices using the metric ${g = g_{ij}}$), the equations of motion become

$\displaystyle \partial_t u^i + u^j \nabla_j u^i = - \nabla^i p \ \ \ \ \ (9)$

$\displaystyle \nabla_i u^i = 0;$

in coordinates, this becomes

$\displaystyle \partial_t u^i + u^j (\partial_j u^i + \Gamma^i_{jk} u^k) = - g^{ij} \partial_j p$

$\displaystyle \partial_i u^i + \Gamma^i_{ik} u^k = 0 \ \ \ \ \ (10)$

where the Christoffel symbols ${\Gamma^i_{jk}}$ are given by the formula

$\displaystyle \Gamma^i_{jk} := \frac{1}{2} g^{il} (\partial_j g_{lk} + \partial_k g_{lj} - \partial_l g_{jk}),$

where ${g^{il}}$ is the inverse to the metric tensor ${g_{il}}$. If the coordinates are chosen so that the volume form ${dg}$ is the Euclidean volume form ${dx}$, thus ${\mathrm{det}(g)=1}$, then on differentiating we have ${g^{ij} \partial_k g_{ij} = 0}$, and hence ${\Gamma^i_{ik} = 0}$, and so the divergence-free equation (10) simplifies in this case to ${\partial_i u^i = 0}$. The Ebin-Marsden Euler equations are the natural generalisation of the Euler equations to arbitrary manifolds; for instance, they (formally) conserve the kinetic energy

$\displaystyle \frac{1}{2} \int_M |u|_g^2\ dg = \frac{1}{2} \int_M g_{ij} u^i u^j\ dg$

and can be viewed as the formal geodesic flow equation on the infinite-dimensional manifold of volume-preserving diffeomorphisms on ${M}$ (see this previous post for a discussion of this in the flat space case).

The specific four-dimensional manifold in question is the space ${{\bf R} \times {\bf R}^+ \times {\bf R}/{\bf Z} \times {\bf R}/{\bf Z}}$ with metric

$\displaystyle dx^2 + dy^2 + y^{-1} dz^2 + y dw^2$

and solutions to the Boussinesq equation on ${{\bf R} \times {\bf R}^+}$ can be transformed into solutions to the Euler equations on this manifold. This is part of a more general family of embeddings into the Euler equations in which passive scalar fields (such as the field ${\rho}$ appearing in the Boussinesq equations) can be incorporated into the dynamics via fluctuations in the Riemannian metric ${g}$). I am writing the details below the fold (partly for my own benefit).

Throughout this post we shall always work in the smooth category, thus all manifolds, maps, coordinate charts, and functions are assumed to be smooth unless explicitly stated otherwise.

A (real) manifold ${M}$ can be defined in at least two ways. On one hand, one can define the manifold extrinsically, as a subset of some standard space such as a Euclidean space ${{\bf R}^d}$. On the other hand, one can define the manifold intrinsically, as a topological space equipped with an atlas of coordinate charts. The fundamental embedding theorems show that, under reasonable assumptions, the intrinsic and extrinsic approaches give the same classes of manifolds (up to isomorphism in various categories). For instance, we have the following (special case of) the Whitney embedding theorem:

Theorem 1 (Whitney embedding theorem) Let ${M}$ be a compact manifold. Then there exists an embedding ${u: M \rightarrow {\bf R}^d}$ from ${M}$ to a Euclidean space ${{\bf R}^d}$.

In fact, if ${M}$ is ${n}$-dimensional, one can take ${d}$ to equal ${2n}$, which is often best possible (easy examples include the circle ${{\bf R}/{\bf Z}}$ which embeds into ${{\bf R}^2}$ but not ${{\bf R}^1}$, or the Klein bottle that embeds into ${{\bf R}^4}$ but not ${{\bf R}^3}$). One can also relax the compactness hypothesis on ${M}$ to second countability, but we will not pursue this extension here. We give a “cheap” proof of this theorem below the fold which allows one to take ${d}$ equal to ${2n+1}$.

A significant strengthening of the Whitney embedding theorem is (a special case of) the Nash embedding theorem:

Theorem 2 (Nash embedding theorem) Let ${(M,g)}$ be a compact Riemannian manifold. Then there exists a isometric embedding ${u: M \rightarrow {\bf R}^d}$ from ${M}$ to a Euclidean space ${{\bf R}^d}$.

In order to obtain the isometric embedding, the dimension ${d}$ has to be a bit larger than what is needed for the Whitney embedding theorem; in this article of Gunther the bound

$\displaystyle d = \max( n(n+5)/2, n(n+3)/2 + 5) \ \ \ \ \ (1)$

is attained, which I believe is still the record for large ${n}$. (In the converse direction, one cannot do better than ${d = \frac{n(n+1)}{2}}$, basically because this is the number of degrees of freedom in the Riemannian metric ${g}$.) Nash’s original proof of theorem used what is now known as Nash-Moser inverse function theorem, but a subsequent simplification of Gunther allowed one to proceed using just the ordinary inverse function theorem (in Banach spaces).

I recently had the need to invoke the Nash embedding theorem to establish a blowup result for a nonlinear wave equation, which motivated me to go through the proof of the theorem more carefully. Below the fold I give a proof of the theorem that does not attempt to give an optimal value of ${d}$, but which hopefully isolates the main ideas of the argument (as simplified by Gunther). One advantage of not optimising in ${d}$ is that it allows one to freely exploit the very useful tool of pairing together two maps ${u_1: M \rightarrow {\bf R}^{d_1}}$, ${u_2: M \rightarrow {\bf R}^{d_2}}$ to form a combined map ${(u_1,u_2): M \rightarrow {\bf R}^{d_1+d_2}}$ that can be closer to an embedding or an isometric embedding than the original maps ${u_1,u_2}$. This lets one perform a “divide and conquer” strategy in which one first starts with the simpler problem of constructing some “partial” embeddings of ${M}$ and then pairs them together to form a “better” embedding.

In preparing these notes, I found the articles of Deane Yang and of Siyuan Lu to be helpful.

Next week (starting on Wednesday, to be more precise), I will begin my class on Perelman’s proof of the Poincaré conjecture. As I only have ten weeks in which to give this proof, I will have to move rapidly through some of the more basic aspects of Riemannian geometry which will be needed throughout the course. In particular, in this preliminary lecture, I will quickly review the basic notions of infinitesimal (or microlocal) Riemannian geometry, and in particular defining the Riemann, Ricci, and scalar curvatures of a Riemannian manifold. (The more “global” aspects of Riemannian geometry, for instance concerning the relationship between distance, curvature, injectivity radius, and volume, will be discussed later in this course.) This is a review only, in particular omitting any leisurely discussion of examples or motivation for Riemannian geometry; it is impossible to compress this subject into a single lecture, and I will have to refer you to a textbook on the subject for a more complete treatment (I myself am using the text “Riemannian geometry” by my colleague here at UCLA, Peter Petersen).