You are currently browsing the tag archive for the ‘Schramm-Loewner evolution’ tag.

Previous set of notes: Notes 3.
Important note: As this is not a course in probability, we will try to avoid developing the general theory of stochastic calculus (which includes such concepts as filtrations, martingales, and Ito calculus). This will unfortunately limit what we can actually prove rigorously, and so at some places the arguments will be somewhat informal in nature. A rigorous treatment of many of the topics here can be found for instance in Lawler’s Conformally Invariant Processes in the Plane, from which much of the material here is drawn.
In these notes, random variables will be denoted in boldface.

Definition 1 A real random variable ${\mathbf{X}}$ is said to be normally distributed with mean ${x_0 \in {\bf R}}$ and variance ${\sigma^2 > 0}$ if one has

$\displaystyle \mathop{\bf E} F(\mathbf{X}) = \frac{1}{\sqrt{2\pi} \sigma} \int_{\bf R} e^{-(x-x_0)^2/2\sigma^2} F(x)\ dx$

for all test functions ${F \in C_c({\bf R})}$. Similarly, a complex random variable ${\mathbf{Z}}$ is said to be normally distributed with mean ${z_0 \in {\bf R}}$ and variance ${\sigma^2>0}$ if one has

$\displaystyle \mathop{\bf E} F(\mathbf{Z}) = \frac{1}{\pi \sigma^2} \int_{\bf C} e^{-|z-x_0|^2/\sigma^2} F(z)\ dx dy$

for all test functions ${F \in C_c({\bf C})}$, where ${dx dy}$ is the area element on ${{\bf C}}$.
A real Brownian motion with base point ${x_0 \in {\bf R}}$ is a random, almost surely continuous function ${\mathbf{B}^{x_0}: [0,+\infty) \rightarrow {\bf R}}$ (using the locally uniform topology on continuous functions) with the property that (almost surely) ${\mathbf{B}^{x_0}(0) = x_0}$, and for any sequence of times ${0 \leq t_0 < t_1 < t_2 < \dots < t_n}$, the increments ${\mathbf{B}^{x_0}(t_i) - \mathbf{B}^{x_0}(t_{i-1})}$ for ${i=1,\dots,n}$ are independent real random variables that are normally distributed with mean zero and variance ${t_i - t_{i-1}}$. Similarly, a complex Brownian motion with base point ${z_0 \in {\bf R}}$ is a random, almost surely continuous function ${\mathbf{B}^{z_0}: [0,+\infty) \rightarrow {\bf R}}$ with the property that ${\mathbf{B}^{z_0}(0) = z_0}$ and for any sequence of times ${0 \leq t_0 < t_1 < t_2 < \dots < t_n}$, the increments ${\mathbf{B}^{z_0}(t_i) - \mathbf{B}^{z_0}(t_{i-1})}$ for ${i=1,\dots,n}$ are independent complex random variables that are normally distributed with mean zero and variance ${t_i - t_{i-1}}$.

Remark 2 Thanks to the central limit theorem, the hypothesis that the increments ${\mathbf{B}^{x_0}(t_i) - \mathbf{B}^{x_0}(t_{i-1})}$ be normally distributed can be dropped from the definition of a Brownian motion, so long as one retains the independence and the normalisation of the mean and variance (technically one also needs some uniform integrability on the increments beyond the second moment, but we will not detail this here). A similar statement is also true for the complex Brownian motion (where now we need to normalise the variances and covariances of the real and imaginary parts of the increments).

Real and complex Brownian motions exist from any base point ${x_0}$ or ${z_0}$; see e.g. this previous blog post for a construction. We have the following simple invariances:

Exercise 3

• (i) (Translation invariance) If ${\mathbf{B}^{x_0}}$ is a real Brownian motion with base point ${x_0 \in {\bf R}}$, and ${h \in {\bf R}}$, show that ${\mathbf{B}^{x_0}+h}$ is a real Brownian motion with base point ${x_0+h}$. Similarly, if ${\mathbf{B}^{z_0}}$ is a complex Brownian motion with base point ${z_0 \in {\bf R}}$, and ${h \in {\bf C}}$, show that ${\mathbf{B}^{z_0}+c}$ is a complex Brownian motion with base point ${z_0+h}$.
• (ii) (Dilation invariance) If ${\mathbf{B}^{0}}$ is a real Brownian motion with base point ${0}$, and ${\lambda \in {\bf R}}$ is non-zero, show that ${t \mapsto \lambda \mathbf{B}^0(t / |\lambda|^{1/2})}$ is also a real Brownian motion with base point ${0}$. Similarly, if ${\mathbf{B}^0}$ is a complex Brownian motion with base point ${0}$, and ${\lambda \in {\bf C}}$ is non-zero, show that ${t \mapsto \lambda \mathbf{B}^0(t / |\lambda|^{1/2})}$ is also a complex Brownian motion with base point ${0}$.
• (iii) (Real and imaginary parts) If ${\mathbf{B}^0}$ is a complex Brownian motion with base point ${0}$, show that ${\sqrt{2} \mathrm{Re} \mathbf{B}^0}$ and ${\sqrt{2} \mathrm{Im} \mathbf{B}^0}$ are independent real Brownian motions with base point ${0}$. Conversely, if ${\mathbf{B}^0_1, \mathbf{B}^0_2}$ are independent real Brownian motions of base point ${0}$, show that ${\frac{1}{\sqrt{2}} (\mathbf{B}^0_1 + i \mathbf{B}^0_2)}$ is a complex Brownian motion with base point ${0}$.

The next lemma is a special case of the optional stopping theorem.

Lemma 4 (Optional stopping identities)

• (i) (Real case) Let ${\mathbf{B}^{x_0}}$ be a real Brownian motion with base point ${x_0 \in {\bf R}}$. Let ${\mathbf{t}}$ be a bounded stopping time – a bounded random variable with the property that for any time ${t \geq 0}$, the event that ${\mathbf{t} \leq t}$ is determined by the values of the trajectory ${\mathbf{B}^{x_0}}$ for times up to ${t}$ (or more precisely, this event is measurable with respect to the ${\sigma}$ algebra generated by this proprtion of the trajectory). Then

$\displaystyle \mathop{\bf E} \mathbf{B}^{x_0}(\mathbf{t}) = x_0$

and

$\displaystyle \mathop{\bf E} (\mathbf{B}^{x_0}(\mathbf{t})-x_0)^2 - \mathbf{t} = 0$

and

$\displaystyle \mathop{\bf E} (\mathbf{B}^{x_0}(\mathbf{t})-x_0)^4 = O( \mathop{\bf E} \mathbf{t}^2 ).$

• (ii) (Complex case) Let ${\mathbf{B}^{z_0}}$ be a real Brownian motion with base point ${z_0 \in {\bf R}}$. Let ${\mathbf{t}}$ be a bounded stopping time – a bounded random variable with the property that for any time ${t \geq 0}$, the event that ${\mathbf{t} \leq t}$ is determined by the values of the trajectory ${\mathbf{B}^{x_0}}$ for times up to ${t}$. Then

$\displaystyle \mathop{\bf E} \mathbf{B}^{z_0}(\mathbf{t}) = z_0$

$\displaystyle \mathop{\bf E} (\mathrm{Re}(\mathbf{B}^{z_0}(\mathbf{t})-z_0))^2 - \frac{1}{2} \mathbf{t} = 0$

$\displaystyle \mathop{\bf E} (\mathrm{Im}(\mathbf{B}^{z_0}(\mathbf{t})-z_0))^2 - \frac{1}{2} \mathbf{t} = 0$

$\displaystyle \mathop{\bf E} \mathrm{Re}(\mathbf{B}^{z_0}(\mathbf{t})-z_0) \mathrm{Im}(\mathbf{B}^{z_0}(\mathbf{t})-z_0) = 0$

$\displaystyle \mathop{\bf E} |\mathbf{B}^{x_0}(\mathbf{t})-z_0|^4 = O( \mathop{\bf E} \mathbf{t}^2 ).$

Proof: (Slightly informal) We just prove (i) and leave (ii) as an exercise. By translation invariance we can take ${x_0=0}$. Let ${T}$ be an upper bound for ${\mathbf{t}}$. Since ${\mathbf{B}^0(T)}$ is a real normally distributed variable with mean zero and variance ${T}$, we have

$\displaystyle \mathop{\bf E} \mathbf{B}^0( T ) = 0$

and

$\displaystyle \mathop{\bf E} \mathbf{B}^0( T )^2 = T$

and

$\displaystyle \mathop{\bf E} \mathbf{B}^0( T )^4 = 3T^2.$

By the law of total expectation, we thus have

$\displaystyle \mathop{\bf E} \mathop{\bf E}(\mathbf{B}^0( T ) | \mathbf{t}, \mathbf{B}^{z_0}(\mathbf{t}) ) = 0$

and

$\displaystyle \mathop{\bf E} \mathop{\bf E}((\mathbf{B}^0( T ))^2 | \mathbf{t}, \mathbf{B}^{z_0}(\mathbf{t}) ) = T$

and

$\displaystyle \mathop{\bf E} \mathop{\bf E}((\mathbf{B}^0( T ))^4 | \mathbf{t}, \mathbf{B}^{z_0}(\mathbf{t}) ) = 3T^2$

where the inner conditional expectations are with respect to the event that ${\mathbf{t}, \mathbf{B}^{0}(\mathbf{t})}$ attains a particular point in ${S}$. However, from the independent increment nature of Brownian motion, once one conditions ${(\mathbf{t}, \mathbf{B}^{0}(\mathbf{t}))}$ to a fixed point ${(t, x)}$, the random variable ${\mathbf{B}^0(T)}$ becomes a real normally distributed variable with mean ${x}$ and variance ${T-t}$. Thus we have

$\displaystyle \mathop{\bf E}(\mathbf{B}^0( T ) | \mathbf{t}, \mathbf{B}^{z_0}(\mathbf{t}) ) = \mathbf{B}^{z_0}(\mathbf{t})$

and

$\displaystyle \mathop{\bf E}( (\mathbf{B}^0( T ))^2 | \mathbf{t}, \mathbf{B}^{z_0}(\mathbf{t}) ) = \mathbf{B}^{z_0}(\mathbf{t})^2 + T - \mathbf{t}$

and

$\displaystyle \mathop{\bf E}( (\mathbf{B}^0( T ))^4 | \mathbf{t}, \mathbf{B}^{z_0}(\mathbf{t}) ) = \mathbf{B}^{z_0}(\mathbf{t})^4 + 6(T - \mathbf{t}) \mathbf{B}^{z_0}(\mathbf{t})^2 + 3(T - \mathbf{t})^2$

which give the first two claims, and (after some algebra) the identity

$\displaystyle \mathop{\bf E} \mathbf{B}^{z_0}(\mathbf{t})^4 - 6 \mathbf{t} \mathbf{B}^{z_0}(\mathbf{t})^2 + 3 \mathbf{t}^2 = 0$

which then also gives the third claim. $\Box$

Exercise 5 Prove the second part of Lemma 4.