You are currently browsing the tag archive for the ‘Shannon entropy’ tag.

A family of sets for some is a sunflower if there is a *core set* contained in each of the such that the *petal sets* are disjoint. If , let denote the smallest natural number with the property that any family of distinct sets of cardinality at most contains distinct elements that form a sunflower. The celebrated Erdös-Rado theorem asserts that is finite; in fact Erdös and Rado gave the bounds

*sunflower conjecture*asserts in fact that the upper bound can be improved to . This remains open at present despite much effort (including a Polymath project); after a long series of improvements to the upper bound, the best general bound known currently is for all , established in 2019 by Rao (building upon a recent breakthrough a month previously of Alweiss, Lovett, Wu, and Zhang). Here we remove the easy cases or in order to make the logarithmic factor a little cleaner.

Rao’s argument used the Shannon noiseless coding theorem. It turns out that the argument can be arranged in the very slightly different language of Shannon entropy, and I would like to present it here. The argument proceeds by locating the core and petals of the sunflower separately (this strategy is also followed in Alweiss-Lovett-Wu-Zhang). In both cases the following definition will be key. In this post all random variables, such as random sets, will be understood to be discrete random variables taking values in a finite range. We always use boldface symbols to denote random variables, and non-boldface for deterministic quantities.

Definition 1 (Spread set)Let . A random set is said to be -spread if one has for all sets . A family of sets is said to be -spread if is non-empty and the random variable is -spread, where is drawn uniformly from .

The core can then be selected greedily in such a way that the remainder of a family becomes spread:

Lemma 2 (Locating the core)Let be a family of subsets of a finite set , each of cardinality at most , and let . Then there exists a “core” set of cardinality at most such that the set has cardinality at least , and such that the family is -spread. Furthermore, if and the are distinct, then .

*Proof:* We may assume is non-empty, as the claim is trivial otherwise. For any , define the quantity

Let be the set (3). Since , is non-empty. It remains to check that the family is -spread. But for any and drawn uniformly at random from one has

Observe that , and the probability is only non-empty when are disjoint, so that . The claim follows.In view of the above lemma, the bound (2) will then follow from

Proposition 3 (Locating the petals)Let be natural numbers, and suppose that for a sufficiently large constant . Let be a finite family of subsets of a finite set , each of cardinality at most which is -spread. Then there exist such that is disjoint.

Indeed, to prove (2), we assume that is a family of sets of cardinality greater than for some ; by discarding redundant elements and sets we may assume that is finite and that all the are contained in a common finite set . Apply Lemma 2 to find a set of cardinality such that the family is -spread. By Proposition 3 we can find such that are disjoint; since these sets have cardinality , this implies that the are distinct. Hence form a sunflower as required.

Remark 4Proposition 3 is easy to prove if we strengthen the condition on to . In this case, we have for every , hence by the union bound we see that for any with there exists such that is disjoint from the set , which has cardinality at most . Iterating this, we obtain the conclusion of Proposition 3 in this case. This recovers a bound of the form , and by pursuing this idea a little further one can recover the original upper bound (1) of Erdös and Rado.

It remains to prove Proposition 3. In fact we can locate the petals one at a time, placing each petal inside a random set.

Proposition 5 (Locating a single petal)Let the notation and hypotheses be as in Proposition 3. Let be a random subset of , such that each lies in with an independent probability of . Then with probability greater than , contains one of the .

To see that Proposition 5 implies Proposition 3, we randomly partition into by placing each into one of the , chosen uniformly and independently at random. By Proposition 5 and the union bound, we see that with positive probability, it is simultaneously true for all that each contains one of the . Selecting one such for each , we obtain the required disjoint petals.

We will prove Proposition 5 by gradually increasing the density of the random set and arranging the sets to get quickly absorbed by this random set. The key iteration step is

Proposition 6 (Refinement inequality)Let and . Let be a random subset of a finite set which is -spread, and let be a random subset of independent of , such that each lies in with an independent probability of . Then there exists another -spread random subset of whose support is contained in the support of , such that and

Note that a direct application of the first moment method gives only the bound

but the point is that by switching from to an equivalent we can replace the factor by a quantity significantly smaller than .One can iterate the above proposition, repeatedly replacing with (noting that this preserves the -spread nature of ) to conclude

Corollary 7 (Iterated refinement inequality)Let , , and . Let be a random subset of a finite set which is -spread, and let be a random subset of independent of , such that each lies in with an independent probability of . Then there exists another random subset of with support contained in the support of , such that

Now we can prove Proposition 5. Let be chosen shortly. Applying Corollary 7 with drawn uniformly at random from the , and setting , or equivalently , we have

In particular, if we set , so that , then by choice of we have , hence In particular with probability at least , there must exist such that , giving the proposition.It remains to establish Proposition 6. This is the difficult step, and requires a clever way to find the variant of that has better containment properties in than does. The main trick is to make a conditional copy of that is conditionally independent of subject to the constraint . The point here is that this constrant implies the inclusions

and Because of the -spread hypothesis, it is hard for to contain any fixed large set. If we could apply this observation in the contrapositive to we could hope to get a good upper bound on the size of and hence on thanks to (4). One can also hope to improve such an upper bound by also employing (5), since it is also hard for the random set to contain a fixed large set. There are however difficulties with implementing this approach due to the fact that the random sets are coupled with in a moderately complicated fashion. In Rao’s argument a somewhat complicated encoding scheme was created to give information-theoretic control on these random variables; below the fold we accomplish a similar effect by using Shannon entropy inequalities in place of explicit encoding. A certain amount of information-theoretic sleight of hand is required to decouple certain random variables to the extent that the Shannon inequalities can be effectively applied. The argument bears some resemblance to the “entropy compression method” discussed in this previous blog post; there may be a way to more explicitly express the argument below in terms of that method. (There is also some kinship with the method of dependent random choice, which is used for instance to establish the Balog-Szemerédi-Gowers lemma, and was also translated into information theoretic language in these unpublished notes of Van Vu and myself.)In these notes we presume familiarity with the basic concepts of probability theory, such as random variables (which could take values in the reals, vectors, or other measurable spaces), probability, and expectation. Much of this theory is in turn based on measure theory, which we will also presume familiarity with. See for instance this previous set of lecture notes for a brief review.

The basic objects of study in analytic number theory are deterministic; there is nothing inherently random about the set of prime numbers, for instance. Despite this, one can still interpret many of the averages encountered in analytic number theory in probabilistic terms, by introducing random variables into the subject. Consider for instance the form

of the prime number theorem (where we take the limit ). One can interpret this estimate probabilistically as

where is a random variable drawn uniformly from the natural numbers up to , and denotes the expectation. (In this set of notes we will use boldface symbols to denote random variables, and non-boldface symbols for deterministic objects.) By itself, such an interpretation is little more than a change of notation. However, the power of this interpretation becomes more apparent when one then imports concepts from probability theory (together with all their attendant intuitions and tools), such as independence, conditioning, stationarity, total variation distance, and entropy. For instance, suppose we want to use the prime number theorem (1) to make a prediction for the sum

After dividing by , this is essentially

With probabilistic intuition, one may expect the random variables to be approximately independent (there is no obvious relationship between the number of prime factors of , and of ), and so the above average would be expected to be approximately equal to

which by (2) is equal to . Thus we are led to the prediction

The asymptotic (3) is widely believed (it is a special case of the *Chowla conjecture*, which we will discuss in later notes; while there has been recent progress towards establishing it rigorously, it remains open for now.

How would one try to make these probabilistic intuitions more rigorous? The first thing one needs to do is find a more quantitative measurement of what it means for two random variables to be “approximately” independent. There are several candidates for such measurements, but we will focus in these notes on two particularly convenient measures of approximate independence: the “” measure of independence known as covariance, and the “” measure of independence known as mutual information (actually we will usually need the more general notion of conditional mutual information that measures conditional independence). The use of type methods in analytic number theory is well established, though it is usually not described in probabilistic terms, being referred to instead by such names as the “second moment method”, the “large sieve” or the “method of bilinear sums”. The use of methods (or “entropy methods”) is much more recent, and has been able to control certain types of averages in analytic number theory that were out of reach of previous methods such as methods. For instance, in later notes we will use entropy methods to establish the logarithmically averaged version

of (3), which is implied by (3) but strictly weaker (much as the prime number theorem (1) implies the bound , but the latter bound is much easier to establish than the former).

As with many other situations in analytic number theory, we can exploit the fact that certain assertions (such as approximate independence) can become significantly easier to prove if one only seeks to establish them *on average*, rather than uniformly. For instance, given two random variables and of number-theoretic origin (such as the random variables and mentioned previously), it can often be extremely difficult to determine the extent to which behave “independently” (or “conditionally independently”). However, thanks to second moment tools or entropy based tools, it is often possible to assert results of the following flavour: if are a large collection of “independent” random variables, and is a further random variable that is “not too large” in some sense, then must necessarily be nearly independent (or conditionally independent) to many of the , even if one cannot pinpoint precisely which of the the variable is independent with. In the case of the second moment method, this allows us to compute correlations such as for “most” . The entropy method gives bounds that are significantly weaker quantitatively than the second moment method (and in particular, in its current incarnation at least it is only able to say non-trivial assertions involving interactions with residue classes at small primes), but can control significantly more general quantities for “most” thanks to tools such as the Pinsker inequality.

Given a random variable that takes on only finitely many values, we can define its Shannon entropy by the formula

with the convention that . (In some texts, one uses the logarithm to base rather than the natural logarithm, but the choice of base will not be relevant for this discussion.) This is clearly a nonnegative quantity. Given two random variables taking on finitely many values, the joint variable is also a random variable taking on finitely many values, and also has an entropy . It obeys the *Shannon inequalities*

so we can define some further nonnegative quantities, the mutual information

and the conditional entropies

More generally, given three random variables , one can define the conditional mutual information

and the final of the Shannon entropy inequalities asserts that this quantity is also non-negative.

The mutual information is a measure of the extent to which and fail to be independent; indeed, it is not difficult to show that vanishes if and only if and are independent. Similarly, vanishes if and only if and are *conditionally* independent relative to . At the other extreme, is a measure of the extent to which fails to depend on ; indeed, it is not difficult to show that if and only if is determined by in the sense that there is a deterministic function such that . In a related vein, if and are equivalent in the sense that there are deterministic functional relationships , between the two variables, then is interchangeable with for the purposes of computing the above quantities, thus for instance , , , , etc..

One can get some initial intuition for these information-theoretic quantities by specialising to a simple situation in which all the random variables being considered come from restricting a single random (and uniformly distributed) boolean function on a given finite domain to some subset of :

In this case, has the law of a random uniformly distributed boolean function from to , and the entropy here can be easily computed to be , where denotes the cardinality of . If is the restriction of to , and is the restriction of to , then the joint variable is equivalent to the restriction of to . If one discards the normalisation factor , one then obtains the following dictionary between entropy and the combinatorics of finite sets:

Random variables | Finite sets |

Entropy | Cardinality |

Joint variable | Union |

Mutual information | Intersection cardinality |

Conditional entropy | Set difference cardinality |

Conditional mutual information | |

independent | disjoint |

determined by | a subset of |

conditionally independent relative to |

Every (linear) inequality or identity about entropy (and related quantities, such as mutual information) then specialises to a combinatorial inequality or identity about finite sets that is easily verified. For instance, the Shannon inequality becomes the union bound , and the definition of mutual information becomes the inclusion-exclusion formula

For a more advanced example, consider the data processing inequality that asserts that if are conditionally independent relative to , then . Specialising to sets, this now says that if are disjoint outside of , then ; this can be made apparent by considering the corresponding Venn diagram. This dictionary also suggests how to *prove* the data processing inequality using the existing Shannon inequalities. Firstly, if and are not necessarily disjoint outside of , then a consideration of Venn diagrams gives the more general inequality

and a further inspection of the diagram then reveals the more precise identity

Using the dictionary in the reverse direction, one is then led to conjecture the identity

which (together with non-negativity of conditional mutual information) implies the data processing inequality, and this identity is in turn easily established from the definition of mutual information.

On the other hand, not every assertion about cardinalities of sets generalises to entropies of random variables that are not arising from restricting random boolean functions to sets. For instance, a basic property of sets is that disjointness from a given set is preserved by unions:

Indeed, one has the union bound

Applying the dictionary in the reverse direction, one might now conjecture that if was independent of and was independent of , then should also be independent of , and furthermore that

but these statements are well known to be false (for reasons related to pairwise independence of random variables being strictly weaker than joint independence). For a concrete counterexample, one can take to be independent, uniformly distributed random elements of the finite field of two elements, and take to be the sum of these two field elements. One can easily check that each of and is separately independent of , but the joint variable determines and thus is not independent of .

From the inclusion-exclusion identities

one can check that (1) is equivalent to the trivial lower bound . The basic issue here is that in the dictionary between entropy and combinatorics, there is no satisfactory entropy analogue of the notion of a triple intersection . (Even the double intersection only exists information theoretically in a “virtual” sense; the mutual information allows one to “compute the entropy” of this “intersection”, but does not actually describe this intersection itself as a random variable.)

However, this issue only arises with three or more variables; it is not too difficult to show that the only linear equalities and inequalities that are necessarily obeyed by the information-theoretic quantities associated to just two variables are those that are also necessarily obeyed by their combinatorial analogues . (See for instance the Venn diagram at the Wikipedia page for mutual information for a pictorial summation of this statement.)

One can work with a larger class of special cases of Shannon entropy by working with random *linear* functions rather than random *boolean* functions. Namely, let be some finite-dimensional vector space over a finite field , and let be a random linear functional on , selected uniformly among all such functions. Every subspace of then gives rise to a random variable formed by restricting to . This random variable is also distributed uniformly amongst all linear functions on , and its entropy can be easily computed to be . Given two random variables formed by restricting to respectively, the joint random variable determines the random linear function on the union on the two spaces, and thus by linearity on the Minkowski sum as well; thus is equivalent to the restriction of to . In particular, . This implies that and also , where is the quotient map. After discarding the normalising constant , this leads to the following dictionary between information theoretic quantities and linear algebra quantities, analogous to the previous dictionary:

Random variables | Subspaces |

Entropy | Dimension |

Joint variable | Sum |

Mutual information | Dimension of intersection |

Conditional entropy | Dimension of projection |

Conditional mutual information | |

independent | transverse () |

determined by | a subspace of |

conditionally independent relative to | , transverse. |

The combinatorial dictionary can be regarded as a specialisation of the linear algebra dictionary, by taking to be the vector space over the finite field of two elements, and only considering those subspaces that are coordinate subspaces associated to various subsets of .

As before, every linear inequality or equality that is valid for the information-theoretic quantities discussed above, is automatically valid for the linear algebra counterparts for subspaces of a vector space over a finite field by applying the above specialisation (and dividing out by the normalising factor of ). In fact, the requirement that the field be finite can be removed by applying the compactness theorem from logic (or one of its relatives, such as Los’s theorem on ultraproducts, as done in this previous blog post).

The linear algebra model captures more of the features of Shannon entropy than the combinatorial model. For instance, in contrast to the combinatorial case, it is possible in the linear algebra setting to have subspaces such that and are separately transverse to , but their sum is not; for instance, in a two-dimensional vector space , one can take to be the one-dimensional subspaces spanned by , , and respectively. Note that this is essentially the same counterexample from before (which took to be the field of two elements). Indeed, one can show that any necessarily true linear inequality or equality involving the dimensions of three subspaces (as well as the various other quantities on the above table) will also be necessarily true when applied to the entropies of three discrete random variables (as well as the corresponding quantities on the above table).

However, the linear algebra model does not completely capture the subtleties of Shannon entropy once one works with *four* or more variables (or subspaces). This was first observed by Ingleton, who established the dimensional inequality

for any subspaces . This is easiest to see when the three terms on the right-hand side vanish; then are transverse, which implies that ; similarly . But and are transverse, and this clearly implies that and are themselves transverse. To prove the general case of Ingleton’s inequality, one can define and use (and similarly for instead of ) to reduce to establishing the inequality

which can be rearranged using (and similarly for instead of ) and as

but this is clear since .

Returning to the entropy setting, the analogue

of (3) is true (exercise!), but the analogue

of Ingleton’s inequality is false in general. Again, this is easiest to see when all the terms on the right-hand side vanish; then are conditionally independent relative to , and relative to , and and are independent, and the claim (4) would then be asserting that and are independent. While there is no linear counterexample to this statement, there are simple non-linear ones: for instance, one can take to be independent uniform variables from , and take and to be (say) and respectively (thus are the indicators of the events and respectively). Once one conditions on either or , one of has positive conditional entropy and the other has zero entropy, and so are conditionally independent relative to either or ; also, or are independent of each other. But and are not independent of each other (they cannot be simultaneously equal to ). Somehow, the feature of the linear algebra model that is not present in general is that in the linear algebra setting, every pair of subspaces has a well-defined intersection that is also a subspace, whereas for arbitrary random variables , there does not necessarily exist the analogue of an intersection, namely a “common information” random variable that has the entropy of and is determined either by or by .

I do not know if there is any simpler model of Shannon entropy that captures all the inequalities available for four variables. One significant complication is that there exist some information inequalities in this setting that are not of Shannon type, such as the Zhang-Yeung inequality

One can however still use these simpler models of Shannon entropy to be able to guess arguments that would work for general random variables. An example of this comes from my paper on the logarithmically averaged Chowla conjecture, in which I showed among other things that

whenever was sufficiently large depending on , where is the Liouville function. The information-theoretic part of the proof was as follows. Given some intermediate scale between and , one can form certain random variables . The random variable is a sign pattern of the form where is a random number chosen from to (with logarithmic weighting). The random variable was tuple of reductions of to primes comparable to . Roughly speaking, what was implicitly shown in the paper (after using the multiplicativity of , the circle method, and the Matomaki-Radziwill theorem on short averages of multiplicative functions) is that if the inequality (5) fails, then there was a lower bound

on the mutual information between and . From translation invariance, this also gives the more general lower bound

for any , where denotes the shifted sign pattern . On the other hand, one had the entropy bounds

and from concatenating sign patterns one could see that is equivalent to the joint random variable for any . Applying these facts and using an “entropy decrement” argument, I was able to obtain a contradiction once was allowed to become sufficiently large compared to , but the bound was quite weak (coming ultimately from the unboundedness of as the interval of values of under consideration becomes large), something of the order of ; the quantity needs at various junctures to be less than a small power of , so the relationship between and becomes essentially quadruple exponential in nature, . The basic strategy was to observe that the lower bound (6) causes some slowdown in the growth rate of the mean entropy, in that this quantity decreased by as increased from to , basically by dividing into components , and observing from (6) each of these shares a bit of common information with the same variable . This is relatively clear when one works in a set model, in which is modeled by a set of size , and is modeled by a set of the form

for various sets of size (also there is some translation symmetry that maps to a shift while preserving all of the ).

However, on considering the set model recently, I realised that one can be a little more efficient by exploiting the fact (basically the Chinese remainder theorem) that the random variables are basically jointly independent as ranges over dyadic values that are much smaller than , which in the set model corresponds to the all being disjoint. One can then establish a variant

of (6), which in the set model roughly speaking asserts that each claims a portion of the of cardinality that is not claimed by previous choices of . This leads to a more efficient contradiction (relying on the unboundedness of rather than ) that looks like it removes one order of exponential growth, thus the relationship between and is now . Returning to the entropy model, one can use (7) and Shannon inequalities to establish an inequality of the form

for a small constant , which on iterating and using the boundedness of gives the claim. (A modification of this analysis, at least on the level of the back of the envelope calculation, suggests that the Matomaki-Radziwill theorem is needed only for ranges greater than or so, although at this range the theorem is not significantly simpler than the general case).

A handy inequality in additive combinatorics is the Plünnecke-Ruzsa inequality:

Theorem 1 (Plünnecke-Ruzsa inequality)Let be finite non-empty subsets of an additive group , such that for all and some scalars . Then there exists a subset of such that .

The proof uses graph-theoretic techniques. Setting , we obtain a useful corollary: if has small doubling in the sense that , then we have for all , where is the sum of copies of .

In a recent paper, I adapted a number of sum set estimates to the entropy setting, in which finite sets such as in are replaced with discrete random variables taking values in , and (the logarithm of) cardinality of a set is replaced by Shannon entropy of a random variable . (Throughout this note I assume all entropies to be finite.) However, at the time, I was unable to find an entropy analogue of the Plünnecke-Ruzsa inequality, because I did not know how to adapt the graph theory argument to the entropy setting.

I recently discovered, however, that buried in a classic paper of Kaimonovich and Vershik (implicitly in Proposition 1.3, to be precise) there was the following analogue of Theorem 1:

Theorem 2 (Entropy Plünnecke-Ruzsa inequality)Let be independent random variables of finite entropy taking values in an additive group , such that for all and some scalars . Then .

In fact Theorem 2 is a bit “better” than Theorem 1 in the sense that Theorem 1 needed to refine the original set to a subset , but no such refinement is needed in Theorem 2. One corollary of Theorem 2 is that if , then for all , where are independent copies of ; this improves slightly over the analogous combinatorial inequality. Indeed, the function is concave (this can be seen by using the version of Theorem 2 (or (2) below) to show that the quantity is decreasing in ).

Theorem 2 is actually a quick consequence of the *submodularity inequality*

in information theory, which is valid whenever are discrete random variables such that and each determine (i.e. is a function of , and also a function of ), and and jointly determine (i.e is a function of and ). To apply this, let be independent discrete random variables taking values in . Observe that the pairs and each determine , and jointly determine . Applying (1) we conclude that

which after using the independence of simplifies to the *sumset submodularity inequality*

(this inequality was also recently observed by Madiman; it is the case of Theorem 2). As a corollary of this inequality, we see that if , then

and Theorem 2 follows by telescoping series.

The proof of Theorem 2 seems to be genuinely different from the graph-theoretic proof of Theorem 1. It would be interesting to see if the above argument can be somehow adapted to give a stronger version of Theorem 1. Note also that both Theorem 1 and Theorem 2 have extensions to more general combinations of than ; see this paper and this paper respectively.

It turns out to be a favourable week or two for me to finally finish a number of papers that had been at a nearly completed stage for a while. I have just uploaded to the arXiv my article “Sumset and inverse sumset theorems for Shannon entropy“, submitted to Combinatorics, Probability, and Computing. This paper evolved from a “deleted scene” in my book with Van Vu entitled “Entropy sumset estimates“. In those notes, we developed analogues of the standard Plünnecke-Ruzsa sumset estimates (which relate quantities such as the cardinalities of the sum and difference sets of two finite sets in an additive group to each other), to the entropy setting, in which the finite sets are replaced instead with discrete random variables taking values in that group G, and the (logarithm of the) cardinality |A| is replaced with the Shannon entropy

This quantity measures the information content of X; for instance, if , then it will take k bits on the average to store the value of X (thus a string of n independent copies of X will require about nk bits of storage in the asymptotic limit ). The relationship between entropy and cardinality is that if X is the uniform distribution on a finite non-empty set A, then . If instead X is non-uniformly distributed on A, one has , thanks to Jensen’s inequality.

It turns out that many estimates on sumsets have entropy analogues, which resemble the “logarithm” of the sumset estimates. For instance, the trivial bounds

have the entropy analogue

whenever X, Y are independent discrete random variables in an additive group; this is not difficult to deduce from standard entropy inequalities. Slightly more non-trivially, the sum set estimate

established by Ruzsa, has an entropy analogue

,

and similarly for a number of other standard sumset inequalities in the literature (e.g. the Rusza triangle inequality, the Plünnecke-Rusza inequality, and the Balog-Szemeredi-Gowers theorem, though the entropy analogue of the latter requires a little bit of care to state). These inequalities can actually be deduced fairly easily from elementary arithmetic identities, together with standard entropy inequalities, most notably the *submodularity inequality*

whenever X,Y,Z,W are discrete random variables such that X and Y each determine W separately (thus for some deterministic functions f, g) and X and Y determine Z jointly (thus for some deterministic function f). For instance, if X,Y,Z are independent discrete random variables in an additive group G, then and each determine separately, and determine jointly, leading to the inequality

which soon leads to the *entropy Rusza triangle inequality*

which is an analogue of the combinatorial Ruzsa triangle inequality

All of this was already in the unpublished notes with Van, though I include it in this paper in order to place it in the literature. The main novelty of the paper, though, is to consider the entropy analogue of Freiman’s theorem, which classifies those sets A for which . Here, the analogous problem is to classify the random variables such that , where are independent copies of X. Let us say that X has *small doubling* if this is the case.

For instance, the uniform distribution U on a finite subgroup H of G has small doubling (in fact in this case). In a similar spirit, the uniform distribution on a (generalised) arithmetic progression P also has small doubling, as does the uniform distribution on a coset progression H+P. Also, if X has small doubling, and Y has bounded entropy, then X+Y also has small doubling, even if Y and X are not independent. The main theorem is that these are the only cases:

Theorem 1.(Informal statement) X has small doubling if and only if for some uniform distribution U on a coset progression (of bounded rank), and Y has bounded entropy.

For instance, suppose that X was the uniform distribution on a dense subset A of a finite group G. Then Theorem 1 asserts that X is close in a “transport metric” sense to the uniform distribution U on G, in the sense that it is possible to rearrange or transport the probability distribution of X to the probability distribution of U (or vice versa) by shifting each component of the mass of X by an amount Y which has bounded entropy (which basically means that it primarily ranges inside a set of bounded cardinality). The way one shows this is by randomly translating the mass of X around by a few random shifts to approximately uniformise the distribution, and then deal with the residual fluctuation in the distribution by hand. Theorem 1 as a whole is established by using the Freiman theorem in the combinatorial setting combined with various elementary convexity and entropy inequality arguments to reduce matters to the above model case when X is supported inside a finite group G and has near-maximal entropy.

I also show a variant of the above statement: if X, Y are independent and , then we have (i.e. X has the same distribution as Y+Z for some Z of bounded entropy (not necessarily independent of X or Y). Thus if two random variables are additively related to each other, then they can be additively transported to each other by using a bounded amount of entropy.

In the last part of the paper I relate these discrete entropies to their continuous counterparts

where X is now a continuous random variable on the real line with density function . There are a number of sum set inequalities known in this setting, for instance

,

for independent copies of a finite entropy random variable X, with equality if and only if X is a Gaussian. Using this inequality and Theorem 1, I show a discrete version, namely that

,

whenever and are independent copies of a random variable in (or any other torsion-free abelian group) whose entropy is sufficiently large depending on . This is somewhat analogous to the classical sumset inequality

though notice that we have a gain of just rather than here, the point being that there is a Gaussian counterexample in the entropy setting which does not have a combinatorial analogue (except perhaps in the high-dimensional limit). The main idea is to use Theorem 1 to trap most of X inside a coset progression, at which point one can use Fourier-analytic additive combinatorial tools to show that the distribution is “smooth” in some non-trivial direction r, which can then be used to approximate the discrete distribution by a continuous one.

I also conjecture more generally that the entropy monotonicity inequalities established by Artstein, Barthe, Ball, and Naor in the continuous case also hold in the above sense in the discrete case, though my method of proof breaks down because I no longer can assume small doubling.

## Recent Comments