You are currently browsing the tag archive for the ‘skew-Schur functions’ tag.

Fix a non-negative integer ${k}$. Define an (weak) integer partition of length ${k}$ to be a tuple ${\lambda = (\lambda_1,\dots,\lambda_k)}$ of non-increasing non-negative integers ${\lambda_1 \geq \dots \geq \lambda_k \geq 0}$. (Here our partitions are “weak” in the sense that we allow some parts of the partition to be zero. Henceforth we will omit the modifier “weak”, as we will not need to consider the more usual notion of “strong” partitions.) To each such partition ${\lambda}$, one can associate a Young diagram consisting of ${k}$ left-justified rows of boxes, with the ${i^{th}}$ row containing ${\lambda_i}$ boxes. A semi-standard Young tableau (or Young tableau for short) ${T}$ of shape ${\lambda}$ is a filling of these boxes by integers in ${\{1,\dots,k\}}$ that is weakly increasing along rows (moving rightwards) and strictly increasing along columns (moving downwards). The collection of such tableaux will be denoted ${{\mathcal T}_\lambda}$. The weight ${|T|}$ of a tableau ${T}$ is the tuple ${(n_1,\dots,n_k)}$, where ${n_i}$ is the number of occurrences of the integer ${i}$ in the tableau. For instance, if ${k=3}$ and ${\lambda = (6,4,2)}$, an example of a Young tableau of shape ${\lambda}$ would be

$\displaystyle \begin{tabular}{|c|c|c|c|c|c|} \hline 1 & 1 & 1 & 2 & 3 & 3 \\ \cline{1-6} 2 & 2 & 2 &3\\ \cline{1-4} 3 & 3\\ \cline{1-2} \end{tabular}$

The weight here would be ${|T| = (3,4,5)}$.

To each partition ${\lambda}$ one can associate the Schur polynomial ${s_\lambda(u_1,\dots,u_k)}$ on ${k}$ variables ${u = (u_1,\dots,u_k)}$, which we will define as

$\displaystyle s_\lambda(u) := \sum_{T \in {\mathcal T}_\lambda} u^{|T|}$

using the multinomial convention

$\displaystyle (u_1,\dots,u_k)^{(n_1,\dots,n_k)} := u_1^{n_1} \dots u_k^{n_k}.$

Thus for instance the Young tableau ${T}$ given above would contribute a term ${u_1^3 u_2^4 u_3^5}$ to the Schur polynomial ${s_{(6,4,2)}(u_1,u_2,u_3)}$. In the case of partitions of the form ${(n,0,\dots,0)}$, the Schur polynomial ${s_{(n,0,\dots,0)}}$ is just the complete homogeneous symmetric polynomial ${h_n}$ of degree ${n}$ on ${k}$ variables:

$\displaystyle s_{(n,0,\dots,0)}(u_1,\dots,u_k) := \sum_{n_1,\dots,n_k \geq 0: n_1+\dots+n_k = n} u_1^{n_1} \dots u_k^{n_k},$

thus for instance

$\displaystyle s_{(3,0)}(u_1,u_2) = u_1^3 + u_1^2 u_2 + u_1 u_2^2 + u_2^3.$

Schur polyomials are ubiquitous in the algebraic combinatorics of “type ${A}$ objects” such as the symmetric group ${S_k}$, the general linear group ${GL_k}$, or the unitary group ${U_k}$. For instance, one can view ${s_\lambda}$ as the character of an irreducible polynomial representation of ${GL_k({\bf C})}$ associated with the partition ${\lambda}$. However, we will not focus on these interpretations of Schur polynomials in this post.

This definition of Schur polynomials allows for a way to describe the polynomials recursively. If ${k > 1}$ and ${T}$ is a Young tableau of shape ${\lambda = (\lambda_1,\dots,\lambda_k)}$, taking values in ${\{1,\dots,k\}}$, one can form a sub-tableau ${T'}$ of some shape ${\lambda' = (\lambda'_1,\dots,\lambda'_{k-1})}$ by removing all the appearances of ${k}$ (which, among other things, necessarily deletes the ${k^{th}}$ row). For instance, with ${T}$ as in the previous example, the sub-tableau ${T'}$ would be

$\displaystyle \begin{tabular}{|c|c|c|c|} \hline 1 & 1 & 1 & 2 \\ \cline{1-4} 2 & 2 & 2 \\ \cline{1-3} \end{tabular}$

and the reduced partition ${\lambda'}$ in this case is ${(4,3)}$. As Young tableaux are required to be strictly increasing down columns, we can see that the reduced partition ${\lambda'}$ must intersperse the original partition ${\lambda}$ in the sense that

$\displaystyle \lambda_{i+1} \leq \lambda'_i \leq \lambda_i \ \ \ \ \ (1)$

for all ${1 \leq i \leq k-1}$; we denote this interspersion relation as ${\lambda' \prec \lambda}$ (though we caution that this is not intended to be a partial ordering). In the converse direction, if ${\lambda' \prec \lambda}$ and ${T'}$ is a Young tableau with shape ${\lambda'}$ with entries in ${\{1,\dots,k-1\}}$, one can form a Young tableau ${T}$ with shape ${\lambda}$ and entries in ${\{1,\dots,k\}}$ by appending to ${T'}$ an entry of ${k}$ in all the boxes that appear in the ${\lambda}$ shape but not the ${\lambda'}$ shape. This one-to-one correspondence leads to the recursion

$\displaystyle s_\lambda(u) = \sum_{\lambda' \prec \lambda} s_{\lambda'}(u') u_k^{|\lambda| - |\lambda'|} \ \ \ \ \ (2)$

where ${u = (u_1,\dots,u_k)}$, ${u' = (u_1,\dots,u_{k-1})}$, and the size ${|\lambda|}$ of a partition ${\lambda = (\lambda_1,\dots,\lambda_k)}$ is defined as ${|\lambda| := \lambda_1 + \dots + \lambda_k}$.

One can use this recursion (2) to prove some further standard identities for Schur polynomials, such as the determinant identity

$\displaystyle s_\lambda(u) V(u) = \det( u_i^{\lambda_j+k-j} )_{1 \leq i,j \leq k} \ \ \ \ \ (3)$

for ${u=(u_1,\dots,u_k)}$, where ${V(u)}$ denotes the Vandermonde determinant

$\displaystyle V(u) := \prod_{1 \leq i < j \leq k} (u_i - u_j), \ \ \ \ \ (4)$

or the Jacobi-Trudi identity

$\displaystyle s_\lambda(u) = \det( h_{\lambda_j - j + i}(u) )_{1 \leq i,j \leq k}, \ \ \ \ \ (5)$

with the convention that ${h_d(u) = 0}$ if ${d}$ is negative. Thus for instance

$\displaystyle s_{(1,1,0,\dots,0)}(u) = h_1^2(u) - h_0(u) h_2(u) = \sum_{1 \leq i < j \leq k} u_i u_j.$

We review the (standard) derivation of these identities via (2) below the fold. Among other things, these identities show that the Schur polynomials are symmetric, which is not immediately obvious from their definition.

One can also iterate (2) to write

$\displaystyle s_\lambda(u) = \sum_{() = \lambda^0 \prec \lambda^1 \prec \dots \prec \lambda^k = \lambda} \prod_{j=1}^k u_j^{|\lambda^j| - |\lambda^{j-1}|} \ \ \ \ \ (6)$

where the sum is over all tuples ${\lambda^1,\dots,\lambda^k}$, where each ${\lambda^j}$ is a partition of length ${j}$ that intersperses the next partition ${\lambda^{j+1}}$, with ${\lambda^k}$ set equal to ${\lambda}$. We will call such a tuple an integral Gelfand-Tsetlin pattern based at ${\lambda}$.

One can generalise (6) by introducing the skew Schur functions

$\displaystyle s_{\lambda/\mu}(u) := \sum_{\mu = \lambda^i \prec \dots \prec \lambda^k = \lambda} \prod_{j=i+1}^k u_j^{|\lambda^j| - |\lambda^{j-1}|} \ \ \ \ \ (7)$

for ${u = (u_{i+1},\dots,u_k)}$, whenever ${\lambda}$ is a partition of length ${k}$ and ${\mu}$ a partition of length ${i}$ for some ${0 \leq i \leq k}$, thus the Schur polynomial ${s_\lambda}$ is also the skew Schur polynomial ${s_{\lambda /()}}$ with ${i=0}$. (One could relabel the variables here to be something like ${(u_1,\dots,u_{k-i})}$ instead, but this labeling seems slightly more natural, particularly in view of identities such as (8) below.)

By construction, we have the decomposition

$\displaystyle s_{\lambda/\nu}(u_{i+1},\dots,u_k) = \sum_\mu s_{\mu/\nu}(u_{i+1},\dots,u_j) s_{\lambda/\mu}(u_{j+1},\dots,u_k) \ \ \ \ \ (8)$

whenever ${0 \leq i \leq j \leq k}$, and ${\nu, \mu, \lambda}$ are partitions of lengths ${i,j,k}$ respectively. This gives another recursive way to understand Schur polynomials and skew Schur polynomials. For instance, one can use it to establish the generalised Jacobi-Trudi identity

$\displaystyle s_{\lambda/\mu}(u) = \det( h_{\lambda_j - j - \mu_i + i}(u) )_{1 \leq i,j \leq k}, \ \ \ \ \ (9)$

with the convention that ${\mu_i = 0}$ for ${i}$ larger than the length of ${\mu}$; we do this below the fold.

The Schur polynomials (and skew Schur polynomials) are “discretised” (or “quantised”) in the sense that their parameters ${\lambda, \mu}$ are required to be integer-valued, and their definition similarly involves summation over a discrete set. It turns out that there are “continuous” (or “classical”) analogues of these functions, in which the parameters ${\lambda,\mu}$ now take real values rather than integers, and are defined via integration rather than summation. One can view these continuous analogues as a “semiclassical limit” of their discrete counterparts, in a manner that can be made precise using the machinery of geometric quantisation, but we will not do so here.

The continuous analogues can be defined as follows. Define a real partition of length ${k}$ to be a tuple ${\lambda = (\lambda_1,\dots,\lambda_k)}$ where ${\lambda_1 \geq \dots \geq \lambda_k \geq 0}$ are now real numbers. We can define the relation ${\lambda' \prec \lambda}$ of interspersion between a length ${k-1}$ real partition ${\lambda' = (\lambda'_1,\dots,\lambda'_{k-1})}$ and a length ${k}$ real partition ${\lambda = (\lambda_1,\dots,\lambda_{k})}$ precisely as before, by requiring that the inequalities (1) hold for all ${1 \leq i \leq k-1}$. We can then define the continuous Schur functions ${S_\lambda(x)}$ for ${x = (x_1,\dots,x_k) \in {\bf R}^k}$ recursively by defining

$\displaystyle S_{()}() = 1$

and

$\displaystyle S_\lambda(x) = \int_{\lambda' \prec \lambda} S_{\lambda'}(x') \exp( (|\lambda| - |\lambda'|) x_k ) \ \ \ \ \ (10)$

for ${k \geq 1}$ and ${\lambda}$ of length ${k}$, where ${x' := (x_1,\dots,x_{k-1})}$ and the integral is with respect to ${k-1}$-dimensional Lebesgue measure, and ${|\lambda| = \lambda_1 + \dots + \lambda_k}$ as before. Thus for instance

$\displaystyle S_{(\lambda_1)}(x_1) = \exp( \lambda_1 x_1 )$

and

$\displaystyle S_{(\lambda_1,\lambda_2)}(x_1,x_2) = \int_{\lambda_2}^{\lambda_1} \exp( \lambda'_1 x_1 + (\lambda_1+\lambda_2-\lambda'_1) x_2 )\ d\lambda'_1.$

More generally, we can define the continuous skew Schur functions ${S_{\lambda/\mu}(x)}$ for ${\lambda}$ of length ${k}$, ${\mu}$ of length ${j \leq k}$, and ${x = (x_{j+1},\dots,x_k) \in {\bf R}^{k-j}}$ recursively by defining

$\displaystyle S_{\mu/\mu}() = 1$

and

$\displaystyle S_{\lambda/\mu}(x) = \int_{\lambda' \prec \lambda} S_{\lambda'/\mu}(x') \exp( (|\lambda| - |\lambda'|) x_k )$

for ${k > j}$. Thus for instance

$\displaystyle S_{(\lambda_1,\lambda_2,\lambda_3)/(\mu_1,\mu_2)}(x_3) = 1_{\lambda_3 \leq \mu_2 \leq \lambda_2 \leq \mu_1 \leq \lambda_1} \exp( x_3 (\lambda_1+\lambda_2+\lambda_3 - \mu_1 - \mu_2 ))$

and

$\displaystyle S_{(\lambda_1,\lambda_2,\lambda_3)/(\mu_1)}(x_2, x_3) = \int_{\lambda_2 \leq \lambda'_2 \leq \lambda_2, \mu_1} \int_{\mu_1, \lambda_2 \leq \lambda'_1 \leq \lambda_1}$

$\displaystyle \exp( x_2 (\lambda'_1+\lambda'_2 - \mu_1) + x_3 (\lambda_1+\lambda_2+\lambda_3 - \lambda'_1 - \lambda'_2))\ d\lambda'_1 d\lambda'_2.$

By expanding out the recursion, one obtains the analogue

$\displaystyle S_\lambda(x) = \int_{\lambda^1 \prec \dots \prec \lambda^k = \lambda} \exp( \sum_{j=1}^k x_j (|\lambda^j| - |\lambda^{j-1}|))\ d\lambda^1 \dots d\lambda^{k-1},$

of (6), and more generally one has

$\displaystyle S_{\lambda/\mu}(x) = \int_{\mu = \lambda^i \prec \dots \prec \lambda^k = \lambda} \exp( \sum_{j=i+1}^k x_j (|\lambda^j| - |\lambda^{j-1}|))\ d\lambda^{i+1} \dots d\lambda^{k-1}.$

We will call the tuples ${(\lambda^1,\dots,\lambda^k)}$ in the first integral real Gelfand-Tsetlin patterns based at ${\lambda}$. The analogue of (8) is then

$\displaystyle S_{\lambda/\nu}(x_{i+1},\dots,x_k) = \int S_{\mu/\nu}(x_{i+1},\dots,x_j) S_{\lambda/\mu}(x_{j+1},\dots,x_k)\ d\mu$

where the integral is over all real partitions ${\mu}$ of length ${j}$, with Lebesgue measure.

By approximating various integrals by their Riemann sums, one can relate the continuous Schur functions to their discrete counterparts by the limiting formula

$\displaystyle N^{-k(k-1)/2} s_{\lfloor N \lambda \rfloor}( \exp[ x/N ] ) \rightarrow S_\lambda(x) \ \ \ \ \ (11)$

as ${N \rightarrow \infty}$ for any length ${k}$ real partition ${\lambda = (\lambda_1,\dots,\lambda_k)}$ and any ${x = (x_1,\dots,x_k) \in {\bf R}^k}$, where

$\displaystyle \lfloor N \lambda \rfloor := ( \lfloor N \lambda_1 \rfloor, \dots, \lfloor N \lambda_k \rfloor )$

and

$\displaystyle \exp[x/N] := (\exp(x_1/N), \dots, \exp(x_k/N)).$

More generally, one has

$\displaystyle N^{j(j-1)/2-k(k-1)/2} s_{\lfloor N \lambda \rfloor / \lfloor N \mu \rfloor}( \exp[ x/N ] ) \rightarrow S_{\lambda/\mu}(x)$

as ${N \rightarrow \infty}$ for any length ${k}$ real partition ${\lambda}$, any length ${j}$ real partition ${\mu}$ with ${0 \leq j \leq k}$, and any ${x = (x_{j+1},\dots,x_k) \in {\bf R}^{k-j}}$.

As a consequence of these limiting formulae, one expects all of the discrete identities above to have continuous counterparts. This is indeed the case; below the fold we shall prove the discrete and continuous identities in parallel. These are not new results by any means, but I was not able to locate a good place in the literature where they are explicitly written down, so I thought I would try to do so here (primarily for my own internal reference, but perhaps the calculations will be worthwhile to some others also).