You are currently browsing the tag archive for the ‘skew-Schur functions’ tag.

Fix a non-negative integer . Define an (weak) integer partition of length to be a tuple of non-increasing non-negative integers . (Here our partitions are “weak” in the sense that we allow some parts of the partition to be zero. Henceforth we will omit the modifier “weak”, as we will not need to consider the more usual notion of “strong” partitions.) To each such partition , one can associate a Young diagram consisting of left-justified rows of boxes, with the row containing boxes. A semi-standard Young tableau (or *Young tableau* for short) of shape is a filling of these boxes by integers in that is weakly increasing along rows (moving rightwards) and strictly increasing along columns (moving downwards). The collection of such tableaux will be denoted . The *weight* of a tableau is the tuple , where is the number of occurrences of the integer in the tableau. For instance, if and , an example of a Young tableau of shape would be

The weight here would be .

To each partition one can associate the Schur polynomial on variables , which we will define as

using the multinomial convention

Thus for instance the Young tableau given above would contribute a term to the Schur polynomial . In the case of partitions of the form , the Schur polynomial is just the complete homogeneous symmetric polynomial of degree on variables:

thus for instance

Schur polyomials are ubiquitous in the algebraic combinatorics of “type objects” such as the symmetric group , the general linear group , or the unitary group . For instance, one can view as the character of an irreducible polynomial representation of associated with the partition . However, we will not focus on these interpretations of Schur polynomials in this post.

This definition of Schur polynomials allows for a way to describe the polynomials recursively. If and is a Young tableau of shape , taking values in , one can form a sub-tableau of some shape by removing all the appearances of (which, among other things, necessarily deletes the row). For instance, with as in the previous example, the sub-tableau would be

and the reduced partition in this case is . As Young tableaux are required to be strictly increasing down columns, we can see that the reduced partition must *intersperse* the original partition in the sense that

for all ; we denote this interspersion relation as (though we caution that this is *not* intended to be a partial ordering). In the converse direction, if and is a Young tableau with shape with entries in , one can form a Young tableau with shape and entries in by appending to an entry of in all the boxes that appear in the shape but not the shape. This one-to-one correspondence leads to the recursion

where , , and the size of a partition is defined as .

One can use this recursion (2) to prove some further standard identities for Schur polynomials, such as the determinant identity

for , where denotes the Vandermonde determinant

with the convention that if is negative. Thus for instance

We review the (standard) derivation of these identities via (2) below the fold. Among other things, these identities show that the Schur polynomials are symmetric, which is not immediately obvious from their definition.

One can also iterate (2) to write

where the sum is over all tuples , where each is a partition of length that intersperses the next partition , with set equal to . We will call such a tuple an *integral Gelfand-Tsetlin pattern* based at .

One can generalise (6) by introducing the skew Schur functions

for , whenever is a partition of length and a partition of length for some , thus the Schur polynomial is also the skew Schur polynomial with . (One could relabel the variables here to be something like instead, but this labeling seems slightly more natural, particularly in view of identities such as (8) below.)

By construction, we have the decomposition

whenever , and are partitions of lengths respectively. This gives another recursive way to understand Schur polynomials and skew Schur polynomials. For instance, one can use it to establish the generalised Jacobi-Trudi identity

with the convention that for larger than the length of ; we do this below the fold.

The Schur polynomials (and skew Schur polynomials) are “discretised” (or “quantised”) in the sense that their parameters are required to be integer-valued, and their definition similarly involves summation over a discrete set. It turns out that there are “continuous” (or “classical”) analogues of these functions, in which the parameters now take real values rather than integers, and are defined via integration rather than summation. One can view these continuous analogues as a “semiclassical limit” of their discrete counterparts, in a manner that can be made precise using the machinery of geometric quantisation, but we will not do so here.

The continuous analogues can be defined as follows. Define a *real partition* of length to be a tuple where are now real numbers. We can define the relation of interspersion between a length real partition and a length real partition precisely as before, by requiring that the inequalities (1) hold for all . We can then define the continuous Schur functions for recursively by defining

for and of length , where and the integral is with respect to -dimensional Lebesgue measure, and as before. Thus for instance

and

More generally, we can define the continuous skew Schur functions for of length , of length , and recursively by defining

and

for . Thus for instance

and

By expanding out the recursion, one obtains the analogue

of (6), and more generally one has

We will call the tuples in the first integral *real Gelfand-Tsetlin patterns* based at . The analogue of (8) is then

where the integral is over all real partitions of length , with Lebesgue measure.

By approximating various integrals by their Riemann sums, one can relate the continuous Schur functions to their discrete counterparts by the limiting formula

as for any length real partition and any , where

and

More generally, one has

as for any length real partition , any length real partition with , and any .

As a consequence of these limiting formulae, one expects all of the discrete identities above to have continuous counterparts. This is indeed the case; below the fold we shall prove the discrete and continuous identities in parallel. These are not new results by any means, but I was not able to locate a good place in the literature where they are explicitly written down, so I thought I would try to do so here (primarily for my own internal reference, but perhaps the calculations will be worthwhile to some others also).

## Recent Comments