You are currently browsing the tag archive for the ‘sorites paradox’ tag.

This is the third in a series of posts on the “no self-defeating object” argument in mathematics – a powerful and useful argument based on formalising the observation that any object or structure that is so powerful that it can “defeat” even itself, cannot actually exist. This argument is used to establish many basic impossibility results in mathematics, such as Gödel’s theorem that it is impossible for any sufficiently sophisticated formal axiom system to prove its own consistency, Turing’s theorem that it is impossible for any sufficiently sophisticated programming language to solve its own halting problem, or Cantor’s theorem that it is impossible for any set to enumerate its own power set (and as a corollary, the natural numbers cannot enumerate the real numbers).

As remarked in the previous posts, many people who encounter these theorems can feel uneasy about their conclusions, and their method of proof; this seems to be particularly the case with regard to Cantor’s result that the reals are uncountable. In the previous post in this series, I focused on one particular aspect of the standard proofs which one might be uncomfortable with, namely their counterfactual nature, and observed that many of these proofs can be largely (though not completely) converted to non-counterfactual form. However, this does not fully dispel the sense that the *conclusions* of these theorems – that the reals are not countable, that the class of all sets is not itself a set, that truth cannot be captured by a predicate, that consistency is not provable, etc. – are highly unintuitive, and even objectionable to “common sense” in some cases.

How can intuition lead one to doubt the conclusions of these mathematical results? I believe that one reason is because these results are sensitive to the amount of *vagueness* in one’s mental model of mathematics. In the formal mathematical world, where every statement is either absolutely true or absolutely false with no middle ground, and all concepts require a precise definition (or at least a precise axiomatisation) before they can be used, then one can rigorously state and prove Cantor’s theorem, Gödel’s theorem, and all the other results mentioned in the previous posts without difficulty. However, in the vague and fuzzy world of mathematical intuition, in which one’s impression of the truth or falsity of a statement may be influenced by recent mental reference points, definitions are malleable and blurry with no sharp dividing lines between what is and what is not covered by such definitions, and key mathematical objects may be incompletely specified and thus “moving targets” subject to interpretation, then one can argue with some degree of justification that the conclusions of the above results are incorrect; in the vague world, it seems quite plausible that one can always enumerate all the real numbers “that one needs to”, one can always justify the consistency of one’s reasoning system, one can reason using truth as if it were a predicate, and so forth. The impossibility results only kick in once one tries to clear away the fog of vagueness and nail down all the definitions and mathematical statements precisely. (To put it another way, the no-self-defeating object argument relies very much on the disconnected, definite, and absolute nature of the boolean truth space in the rigorous mathematical world.)

## Recent Comments