You are currently browsing the tag archive for the ‘topological vector spaces’ tag.
Recall that a (real) topological vector space is a real vector space equipped with a topology
that makes the vector space operations
and
continuous. One often restricts attention to Hausdorff topological vector spaces; in practice, this is not a severe restriction because it turns out that any topological vector space can be made Hausdorff by quotienting out the closure
of the origin
. One can also discuss complex topological vector spaces, and the theory is not significantly different; but for sake of exposition we shall restrict attention here to the real case.
An obvious example of a topological vector space is a finite-dimensional vector space such as with the usual topology. Of course, there are plenty of infinite-dimensional topological vector spaces also, such as infinite-dimensional normed vector spaces (with the strong, weak, or weak-* topologies) or Frechet spaces.
One way to distinguish the finite and infinite dimensional topological vector spaces is via local compactness. Recall that a topological space is locally compact if every point in that space has a compact neighbourhood. From the Heine-Borel theorem, all finite-dimensional vector spaces (with the usual topology) are locally compact. In infinite dimensions, one can trivially make a vector space locally compact by giving it a trivial topology, but once one restricts to the Hausdorff case, it seems impossible to make a space locally compact. For instance, in an infinite-dimensional normed vector space with the strong topology, an iteration of the Riesz lemma shows that the closed unit ball
in that space contains an infinite sequence with no convergent subsequence, which (by the Heine-Borel theorem) implies that
cannot be locally compact. If one gives
the weak-* topology instead, then
is now compact by the Banach-Alaoglu theorem, but is no longer a neighbourhood of the identity in this topology. In fact, we have the following result:
Theorem 1 Every locally compact Hausdorff topological vector space is finite-dimensional.
The first proof of this theorem that I am aware of is by André Weil. There is also a related result:
Theorem 2 Every finite-dimensional Hausdorff topological vector space has the usual topology.
As a corollary, every locally compact Hausdorff topological vector space is in fact isomorphic to with the usual topology for some
. This can be viewed as a very special case of the theorem of Gleason, which is a key component of the solution to Hilbert’s fifth problem, that a locally compact group
with no small subgroups (in the sense that there is a neighbourhood of the identity that contains no non-trivial subgroups) is necessarily isomorphic to a Lie group. Indeed, Theorem 1 is in fact used in the proof of Gleason’s theorem (the rough idea being to first locate a “tangent space” to
at the origin, with the tangent vectors described by “one-parameter subgroups” of
, and show that this space is a locally compact Hausdorff topological space, and hence finite dimensional by Theorem 1).
Theorem 2 may seem devoid of content, but it does contain some subtleties, as it hinges crucially on the joint continuity of the vector space operations and
, and not just on the separate continuity in each coordinate. Consider for instance the one-dimensional vector space
with the co-compact topology (a non-empty set is open iff its complement is compact in the usual topology). In this topology, the space is
(though not Hausdorff), the scalar multiplication map
is jointly continuous as long as the scalar is not zero, and the addition map
is continuous in each coordinate (i.e. translations are continuous), but not jointly continuous; for instance, the set
does not contain a non-trivial Cartesian product of two sets that are open in the co-compact topology. So this is not a counterexample to Theorem 2. Similarly for the cocountable or cofinite topologies on
(the latter topology, incidentally, is the same as the Zariski topology on
).
Another near-counterexample comes from the topology of inherited by pulling back the usual topology on the unit circle
. Admittedly, this pullback topology is not quite Hausdorff, but the addition map
is jointly continuous. On the other hand, the scalar multiplication map
is not continuous at all. A slight variant of this topology comes from pulling back the usual topology on the torus
under the map
for some irrational
; this restores the Hausdorff property, and addition is still jointly continuous, but multiplication remains discontinuous.
As some final examples, consider with the discrete topology; here, the topology is Hausdorff, addition is jointly continuous, and every dilation is continuous, but multiplication is not jointly continuous. If one instead gives
the half-open topology, then again the topology is Hausdorff and addition is jointly continuous, but scalar multiplication is only jointly continuous once one restricts the scalar to be non-negative.
Below the fold, I record the textbook proof of Theorem 2 and Theorem 1. There is nothing particularly original in this presentation, but I wanted to record it here for my own future reference, and perhaps these results will also be of interest to some other readers.
Recent Comments