You are currently browsing the tag archive for the ‘variation formulae’ tag.

Having completed a heuristic derivation of the monotonicity of Perelman reduced volume (Conjecture 1 from the previous lecture), we now turn to a rigorous proof. Whereas in the previous lecture we derived this monotonicity by converting a parabolic spacetime to a high-dimensional Riemannian manifold, and then formally applying tools such as the Bishop-Gromov inequality to that setting, our approach here shall take the opposite tack, finding parabolic analogues of the *proof* of the elliptic Bishop-Gromov inequality, in particular obtaining analogues of the classical first and second variation formulae for geodesics, in which the notion of length is replaced by the notion of -length introduced in the previous lecture.

The material here is primarily based on Perelman’s first paper and Müller’s book, but detailed treatments also appear in the paper of Ye, the notes of Kleiner-Lott, the book of Morgan-Tian, and the paper of Cao-Zhu.

In the first lecture, we introduce *flows* on Riemannian manifolds , which are recipes for describing smooth deformations of such manifolds over time, and derive the basic *first variation formulae* for how various structures on such manifolds (e.g. curvature, length, volume) change by such flows. (One can view these formulae as describing the relationship between two “infinitesimally close” Riemannian manifolds.) We then specialise to the case of Ricci flow (together with some close relatives of this flow, such as renormalised Ricci flow, or Ricci flow composed with a diffeomorphism flow). We also discuss the “de Turck trick” that modifies the Ricci flow into a nonlinear parabolic equation, for the purposes of establishing local existence and uniqueness of that flow.

## Recent Comments