You are currently browsing the tag archive for the ‘vector fields’ tag.

I’ve just uploaded to the arXiv my paper “On the universality of potential well dynamics“, submitted to Dynamics of PDE. This is a spinoff from my previous paper on blowup of nonlinear wave equations, inspired by some conversations with Sungjin Oh. Here we focus mainly on the zero-dimensional case of such equations, namely the potential well equation

\displaystyle  \partial_{tt} u = - (\nabla F)(u) \ \ \ \ \ (1)

for a particle {u: {\bf R} \rightarrow {\bf R}^m} trapped in a potential well with potential {F: {\bf R}^m \rightarrow {\bf R}}, with {F(z) \rightarrow +\infty} as {z \rightarrow \infty}. This ODE always admits global solutions from arbitrary initial positions {u(0)} and initial velocities {\partial_t u(0)}, thanks to conservation of the Hamiltonian {\frac{1}{2} |\partial_t u|^2 + F(u)}. As this Hamiltonian is coercive (in that its level sets are compact), solutions to this equation are always almost periodic. On the other hand, as can already be seen using the harmonic oscillator {\partial_{tt} u = - k^2 u} (and direct sums of this system), this equation can generate periodic solutions, as well as quasiperiodic solutions.

All quasiperiodic motions are almost periodic. However, there are many examples of dynamical systems that admit solutions that are almost periodic but not quasiperiodic. So one can pose the question: are the dynamics of potential wells universal in the sense that they can capture all almost periodic solutions?

A precise question can be phrased as follows. Let {M} be a compact manifold, and let {X} be a smooth vector field on {M}; to avoid degeneracies, let us take {X} to be non-singular in the sense that it is everywhere non-vanishing. Then the trajectories of the first-order ODE

\displaystyle  \partial_t u = X(u) \ \ \ \ \ (2)

for {u: {\bf R} \rightarrow M} are always global and almost periodic. Can we then find a (coercive) potential {F: {\bf R}^m \rightarrow {\bf R}} for some {m}, as well as a smooth embedding {\phi: M \rightarrow {\bf R}^m}, such that every solution {u} to (2) pushes forward under {\phi} to a solution to (1)? (Actually, for technical reasons it is preferable to map into the phase space {{\bf R}^m \times {\bf R}^m}, rather than position space {{\bf R}^m}, but let us ignore this detail for this discussion.)

It turns out that the answer is no; there is a very specific obstruction. Given a pair {(M,X)} as above, define a strongly adapted {1}-form to be a {1}-form {\phi} on {M} such that {\phi(X)} is pointwise positive, and the Lie derivative {{\mathcal L}_X \phi} is an exact {1}-form. We then have

Theorem 1 A smooth compact non-singular dynamics {(M,X)} can be embedded smoothly in a potential well system if and only if it admits a strongly adapted {1}-form.

For the “only if” direction, the key point is that potential wells (viewed as a Hamiltonian flow on the phase space {{\bf R}^m \times {\bf R}^m}) admit a strongly adapted {1}-form, namely the canonical {1}-form {p dq}, whose Lie derivative is the derivative {dL} of the Lagrangian {L := \frac{1}{2} |\partial_t u|^2 - F(u)} and is thus exact. The converse “if” direction is mainly a consequence of the Nash embedding theorem, and follows the arguments used in my previous paper.

Interestingly, the same obstruction also works for potential wells in a more general Riemannian manifold than {{\bf R}^m}, or for nonlinear wave equations with a potential; combining the two, the obstruction is also present for wave maps with a potential.

It is then natural to ask whether this obstruction is non-trivial, in the sense that there are at least some examples of dynamics {(M,X)} that do not support strongly adapted {1}-forms (and hence cannot be modeled smoothly by the dynamics of a potential well, nonlinear wave equation, or wave maps). I posed this question on MathOverflow, and Robert Bryant provided a very nice construction, showing that the vector field {(\sin(2\pi x), \cos(2\pi x))} on the {2}-torus {({\bf R}/{\bf Z})^2} had no strongly adapted {1}-forms, and hence the dynamics of this vector field cannot be smoothly reproduced by a potential well, nonlinear wave equation, or wave map:

On the other hand, the suspension of any diffeomorphism does support a strongly adapted {1}-form (the derivative {dt} of the time coordinate), and using this and the previous theorem I was able to embed a universal Turing machine into a potential well. In particular, there are flows for an explicitly describable potential well whose trajectories have behavior that is undecidable using the usual ZFC axioms of set theory! So potential well dynamics are “effectively” universal, despite the presence of the aforementioned obstruction.

In my previous work on blowup for Navier-Stokes like equations, I speculated that if one could somehow replicate a universal Turing machine within the Euler equations, one could use this machine to create a “von Neumann machine” that replicated smaller versions of itself, which on iteration would lead to a finite time blowup. Now that such a mechanism is present in nonlinear wave equations, it is tempting to try to make this scheme work in that setting. Of course, in my previous paper I had already demonstrated finite time blowup, at least in a three-dimensional setting, but that was a relatively simple discretely self-similar blowup in which no computation occurred. This more complicated blowup scheme would be significantly more effort to set up, but would be proof-of-concept that the same scheme would in principle be possible for the Navier-Stokes equations, assuming somehow that one can embed a universal Turing machine into the Euler equations. (But I’m still hopelessly stuck on how to accomplish this latter task…)

Next week (starting on Wednesday, to be more precise), I will begin my class on Perelman’s proof of the Poincaré conjecture. As I only have ten weeks in which to give this proof, I will have to move rapidly through some of the more basic aspects of Riemannian geometry which will be needed throughout the course. In particular, in this preliminary lecture, I will quickly review the basic notions of infinitesimal (or microlocal) Riemannian geometry, and in particular defining the Riemann, Ricci, and scalar curvatures of a Riemannian manifold. (The more “global” aspects of Riemannian geometry, for instance concerning the relationship between distance, curvature, injectivity radius, and volume, will be discussed later in this course.) This is a review only, in particular omitting any leisurely discussion of examples or motivation for Riemannian geometry; it is impossible to compress this subject into a single lecture, and I will have to refer you to a textbook on the subject for a more complete treatment (I myself am using the text “Riemannian geometry” by my colleague here at UCLA, Peter Petersen).

Read the rest of this entry »