You are currently browsing the tag archive for the ‘Vinogradov’s theorem’ tag.

We have seen in previous notes that the operation of forming a Dirichlet series

or twisted Dirichlet series

is an incredibly useful tool for questions in multiplicative number theory. Such series can be viewed as a multiplicative Fourier transform, since the functions and are multiplicative characters.

Similarly, it turns out that the operation of forming an *additive* Fourier series

where lies on the (additive) unit circle and is the standard additive character, is an incredibly useful tool for *additive* number theory, particularly when studying additive problems involving three or more variables taking values in sets such as the primes; the deployment of this tool is generally known as the *Hardy-Littlewood circle method*. (In the analytic number theory literature, the minus sign in the phase is traditionally omitted, and what is denoted by here would be referred to instead by , or just .) We list some of the most classical problems in this area:

- (Even Goldbach conjecture) Is it true that every even natural number greater than two can be expressed as the sum of two primes?
- (Odd Goldbach conjecture) Is it true that every odd natural number greater than five can be expressed as the sum of three primes?
- (Waring problem) For each natural number , what is the least natural number such that every natural number can be expressed as the sum of or fewer powers?
- (Asymptotic Waring problem) For each natural number , what is the least natural number such that every
*sufficiently large*natural number can be expressed as the sum of or fewer powers? - (Partition function problem) For any natural number , let denote the number of representations of of the form where and are natural numbers. What is the asymptotic behaviour of as ?

The Waring problem and its asymptotic version will not be discussed further here, save to note that the Vinogradov mean value theorem (Theorem 13 from Notes 5) and its variants are particularly useful for getting good bounds on ; see for instance the ICM article of Wooley for recent progress on these problems. Similarly, the partition function problem was the original motivation of Hardy and Littlewood in introducing the circle method, but we will not discuss it further here; see e.g. Chapter 20 of Iwaniec-Kowalski for a treatment.

Instead, we will focus our attention on the odd Goldbach conjecture as our model problem. (The even Goldbach conjecture, which involves only two variables instead of three, is unfortunately not amenable to a circle method approach for a variety of reasons, unless the statement is replaced with something weaker, such as an averaged statement; see this previous blog post for further discussion. On the other hand, the methods here can obtain weaker versions of the even Goldbach conjecture, such as showing that “almost all” even numbers are the sum of two primes; see Exercise 34 below.) In particular, we will establish the following celebrated theorem of Vinogradov:

Theorem 1 (Vinogradov’s theorem)Every sufficiently large odd number is expressible as the sum of three primes.

Recently, the restriction that be sufficiently large was replaced by Helfgott with , thus establishing the odd Goldbach conjecture in full. This argument followed the same basic approach as Vinogradov (based on the circle method), but with various estimates replaced by “log-free” versions (analogous to the log-free zero-density theorems in Notes 7), combined with careful numerical optimisation of constants and also some numerical work on the even Goldbach problem and on the generalised Riemann hypothesis. We refer the reader to Helfgott’s text for details.

We will in fact show the more precise statement:

Theorem 2 (Quantitative Vinogradov theorem)Let be an natural number. Then

We dropped the hypothesis that is odd in Theorem 2, but note that vanishes when is even. For odd , we have

Unfortunately, due to the ineffectivity of the constants in Theorem 2 (a consequence of the reliance on the Siegel-Walfisz theorem in the proof of that theorem), one cannot quantify explicitly what “sufficiently large” means in Theorem 1 directly from Theorem 2. However, there is a modification of this theorem which gives effective bounds; see Exercise 32 below.

Exercise 4Obtain a heuristic derivation of the main term using the modified Cramér model (Section 1 of Supplement 4).

To prove Theorem 2, we consider the more general problem of estimating sums of the form

for various integers and functions , which we will take to be finitely supported to avoid issues of convergence.

Suppose that are supported on ; for simplicity, let us first assume the pointwise bound for all . (This simple case will not cover the case in Theorem 2, when are truncated versions of the von Mangoldt function , but will serve as a warmup to that case.) Then we have the trivial upper bound

A basic observation is that this upper bound is attainable if all “pretend” to behave like the same additive character for some . For instance, if , then we have when , and then it is not difficult to show that

as .

The key to the success of the circle method lies in the converse of the above statement: the *only* way that the trivial upper bound (2) comes close to being sharp is when all correlate with the same character , or in other words are simultaneously large. This converse is largely captured by the following two identities:

Exercise 5Let be finitely supported functions. Then for any natural number , show that

The traditional approach to using the circle method to compute sums such as proceeds by invoking (3) to express this sum as an integral over the unit circle, then dividing the unit circle into “major arcs” where are large but computable with high precision, and “minor arcs” where one has estimates to ensure that are small in both and senses. For functions of number-theoretic significance, such as truncated von Mangoldt functions, the “major arcs” typically consist of those that are close to a rational number with not too large, and the “minor arcs” consist of the remaining portions of the circle. One then obtains lower bounds on the contributions of the major arcs, and upper bounds on the contribution of the minor arcs, in order to get good lower bounds on .

This traditional approach is covered in many places, such as this text of Vaughan. We will emphasise in this set of notes a slightly different perspective on the circle method, coming from recent developments in additive combinatorics; this approach does not quite give the sharpest quantitative estimates, but it allows for easier generalisation to more combinatorial contexts, for instance when replacing the primes by dense subsets of the primes, or replacing the equation with some other equation or system of equations.

From Exercise 5 and Hölder’s inequality, we immediately obtain

Corollary 6Let be finitely supported functions. Then for any natural number , we haveSimilarly for permutations of the .

In the case when are supported on and bounded by , this corollary tells us that we have is whenever one has uniformly in , and similarly for permutations of . From this and the triangle inequality, we obtain the following conclusion: if is supported on and bounded by , and is *Fourier-approximated* by another function supported on and bounded by in the sense that

Thus, one possible strategy for estimating the sum is, one can effectively replace (or “model”) by a simpler function which Fourier-approximates in the sense that the exponential sums agree up to error . For instance:

Exercise 7Let be a natural number, and let be a random subset of , chosen so that each has an independent probability of of lying in .

- (i) If and , show that with probability as , one has uniformly in . (
Hint:for any fixed , this can be accomplished with quite a good probability (e.g. ) using a concentration of measure inequality, such as Hoeffding’s inequality. To obtain the uniformity in , round to the nearest multiple of (say) and apply the union bound).- (ii) Show that with probability , one has representations of the form with (with treated as an ordered triple, rather than an unordered one).

In the case when is something like the truncated von Mangoldt function , the quantity is of size rather than . This costs us a logarithmic factor in the above analysis, however we can still conclude that we have the approximation (4) whenever is another sequence with such that one has the improved Fourier approximation

uniformly in . (Later on we will obtain a “log-free” version of this implication in which one does not need to gain a factor of in the error term.)

This suggests a strategy for proving Vinogradov’s theorem: find an approximant to some suitable truncation of the von Mangoldt function (e.g. or ) which obeys the Fourier approximation property (5), and such that the expression is easily computable. It turns out that there are a number of good options for such an approximant . One of the quickest ways to obtain such an approximation (which is used in Chapter 19 of Iwaniec and Kowalski) is to start with the standard identity , that is to say

and obtain an approximation by truncating to be less than some threshold (which, in practice, would be a small power of ):

Thus, for instance, if , the approximant would be taken to be

One could also use the slightly smoother approximation

The function is somewhat similar to the continuous Selberg sieve weights studied in Notes 4, with the main difference being that we did not square the divisor sum as we will not need to take to be non-negative. As long as is not too large, one can use some sieve-like computations to compute expressions like quite accurately. The approximation (5) can be justified by using a nice estimate of Davenport that exemplifies the Mobius pseudorandomness heuristic from Supplement 4:

Theorem 8 (Davenport’s estimate)For any and , we haveuniformly for all . The implied constants are ineffective.

This estimate will be proven by splitting into two cases. In the “major arc” case when is close to a rational with small (of size or so), this estimate will be a consequence of the Siegel-Walfisz theorem ( from Notes 2); it is the application of this theorem that is responsible for the ineffective constants. In the remaining “minor arc” case, one proceeds by using a combinatorial identity (such as Vaughan’s identity) to express the sum in terms of bilinear sums of the form , and use the Cauchy-Schwarz inequality and the minor arc nature of to obtain a gain in this case. This will all be done below the fold. We will also use (a rigorous version of) the approximation (6) (or (7)) to establish Vinogradov’s theorem.

A somewhat different looking approximation for the von Mangoldt function that also turns out to be quite useful is

for some that is not too large compared to . The methods used to establish Theorem 8 can also establish a Fourier approximation that makes (8) precise, and which can yield an alternate proof of Vinogradov’s theorem; this will be done below the fold.

The approximation (8) can be written in a way that makes it more similar to (7):

Exercise 9Show that the right-hand side of (8) can be rewritten aswhere

Then, show the inequalities

and conclude that

(

Hint:for the latter estimate, use Theorem 27 of Notes 1.)

The coefficients in the above exercise are quite similar to optimised Selberg sieve coefficients (see Section 2 of Notes 4).

Another approximation to , related to the modified Cramér random model (see Model 10 of Supplement 4) is

where and is a slowly growing function of (e.g. ); a closely related approximation is

for as above and coprime to . These approximations (closely related to a device known as the “-trick”) are not as quantitatively accurate as the previous approximations, but can still suffice to establish Vinogradov’s theorem, and also to count many other linear patterns in the primes or subsets of the primes (particularly if one injects some additional tools from additive combinatorics, and specifically the inverse conjecture for the Gowers uniformity norms); see this paper of Ben Green and myself for more discussion (and this more recent paper of Shao for an analysis of this approach in the context of Vinogradov-type theorems). The following exercise expresses the approximation (9) in a form similar to the previous approximation (8):

Exercise 10With as above, show thatfor all natural numbers .

## Recent Comments