You are currently browsing the tag archive for the ‘weak mixing’ tag.

Having studied compact extensions in the previous lecture, we now consider the opposite type of extension, namely that of a *weakly mixing extension*. Just as compact extensions are “relative” versions of compact systems, weakly mixing extensions are “relative” versions of weakly mixing systems, in which the underlying algebra of scalars is replaced by . As in the case of unconditionally weakly mixing systems, we will be able to use the van der Corput lemma to neglect “conditionally weakly mixing” functions, thus allowing us to lift the uniform multiple recurrence property (UMR) from a system to any weakly mixing extension of that system.

To finish the proof of the Furstenberg recurrence theorem requires two more steps. One is a relative version of the dichotomy between mixing and compactness: if a system is not weakly mixing relative to some factor, then that factor has a non-trivial compact extension. This will be accomplished using the theory of conditional Hilbert-Schmidt operators in this lecture. Finally, we need the (easy) result that the UMR property is preserved under limits of chains; this will be accomplished in the next lecture.

In the previous lecture, we studied the recurrence properties of compact systems, which are systems in which all measurable functions exhibit almost periodicity – they almost return completely to themselves after repeated shifting. Now, we consider the opposite extreme of *mixing systems* – those in which all measurable functions (of mean zero) exhibit *mixing* – they become orthogonal to themselves after repeated shifting. (Actually, there are two different types of mixing, *strong mixing* and *weak mixing*, depending on whether the orthogonality occurs individually or on the average; it is the latter concept which is of more importance to the task of establishing the Furstenberg recurrence theorem.)

We shall see that for weakly mixing systems, averages such as can be computed very explicitly (in fact, this average converges to the constant ). More generally, we shall see that weakly mixing components of a system tend to average themselves out and thus become irrelevant when studying many types of ergodic averages. Our main tool here will be the humble Cauchy-Schwarz inequality, and in particular a certain consequence of it, known as the *van der Corput lemma*.

As one application of this theory, we will be able to establish Roth’s theorem (the k=3 case of Szemerédi’s theorem).

In our final lecture on topological dynamics, we discuss a remarkable theorem of Furstenberg that classifies a major type of topological dynamical system – *distal* systems – in terms of highly structured (from an algebraic point of view) systems, namely towers of isometric extensions. This theorem is also a model for an important analogous result in ergodic theory, the *Furstenberg-Zimmer structure theorem*, which we will turn to in a few lectures. We will not be able to prove Furstenberg’s structure theorem for distal systems here in full, but we hope to illustrate some of the key points and ideas.

## Recent Comments