You are currently browsing the tag archive for the ‘zero density theorems’ tag.

A useful rule of thumb in complex analysis is that holomorphic functions ${f(z)}$ behave like large degree polynomials ${P(z)}$. This can be evidenced for instance at a “local” level by the Taylor series expansion for a complex analytic function in the disk, or at a “global” level by factorisation theorems such as the Weierstrass factorisation theorem (or the closely related Hadamard factorisation theorem). One can truncate these theorems in a variety of ways (e.g., Taylor’s theorem with remainder) to be able to approximate a holomorphic function by a polynomial on various domains.

In some cases it can be convenient instead to work with polynomials ${P(Z)}$ of another variable ${Z}$ such as ${Z = e^{2\pi i z}}$ (or more generally ${Z=e^{2\pi i z/N}}$ for a scaling parameter ${N}$). In the case of the Riemann zeta function, defined by meromorphic continuation of the formula

$\displaystyle \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s} \ \ \ \ \ (1)$

one ends up having the following heuristic approximation in the neighbourhood of a point ${\frac{1}{2}+it}$ on the critical line:

Heuristic 1 (Polynomial approximation) Let ${T \ggg 1}$ be a height, let ${t}$ be a “typical” element of ${[T,2T]}$, and let ${1 \lll N \ll \log T}$ be an integer. Let ${\phi_t = \phi_{t,T}: {\bf C} \rightarrow {\bf C}}$ be the linear change of variables

$\displaystyle \phi_t(z) := \frac{1}{2} + it - \frac{2\pi i z}{\log T}.$

Then one has an approximation

$\displaystyle \zeta( \phi_t(z) ) \approx P_t( e^{2\pi i z/N} ) \ \ \ \ \ (2)$

for ${z = o(N)}$ and some polynomial ${P_t = P_{t,T}}$ of degree ${N}$.

The requirement ${z=o(N)}$ is necessary since the right-hand side is periodic with period ${N}$ in the ${z}$ variable (or period ${\frac{2\pi i N}{\log T}}$ in the ${s = \phi_t(z)}$ variable), whereas the zeta function is not expected to have any such periodicity, even approximately.

Let us give two non-rigorous justifications of this heuristic. Firstly, it is standard that inside the critical strip (with ${\mathrm{Im}(s) = O(T)}$) we have an approximate form

$\displaystyle \zeta(s) \approx \sum_{n \leq T} \frac{1}{n^s}$

of (11). If we group the integers ${n}$ from ${1}$ to ${T}$ into ${N}$ bins depending on what powers of ${T^{1/N}}$ they lie between, we thus have

$\displaystyle \zeta(s) \approx \sum_{j=0}^N \sum_{T^{j/N} \leq n < T^{(j+1)/N}} \frac{1}{n^s}$

For ${s = \phi_t(z)}$ with ${z = o(N)}$ and ${T^{j/N} \leq n < T^{(j+1)/N}}$ we heuristically have

$\displaystyle \frac{1}{n^s} \approx \frac{1}{n^{\frac{1}{2}+it}} e^{2\pi i j z / N}$

and so

$\displaystyle \zeta(s) \approx \sum_{j=0}^N a_j(t) (e^{2\pi i z/N})^j$

where ${a_j(t)}$ are the partial Dirichlet series

$\displaystyle a_j(t) \approx \sum_{T^{j/N} \leq n < T^{(j+1)/N}} \frac{1}{n^{\frac{1}{2}+it}}. \ \ \ \ \ (3)$

This gives the desired polynomial approximation.

A second non-rigorous justification is as follows. From factorisation theorems such as the Hadamard factorisation theorem we expect to have

$\displaystyle \zeta(s) \propto \prod_\rho (s-\rho) \times \dots$

where ${\rho}$ runs over the non-trivial zeroes of ${\zeta}$, and there are some additional factors arising from the trivial zeroes and poles of ${\zeta}$ which we will ignore here; we will also completely ignore the issue of how to renormalise the product to make it converge properly. In the region ${s = \frac{1}{2} + it + o( N / \log T) = \phi_t( \{ z: z = o(N) \})}$, the dominant contribution to this product (besides multiplicative constants) should arise from zeroes ${\rho}$ that are also in this region. The Riemann-von Mangoldt formula suggests that for “typical” ${t}$ one should have about ${N}$ such zeroes. If one lets ${\rho_1,\dots,\rho_N}$ be any enumeration of ${N}$ zeroes closest to ${\frac{1}{2}+it}$, and then repeats this set of zeroes periodically by period ${\frac{2\pi i N}{\log T}}$, one then expects to have an approximation of the form

$\displaystyle \zeta(s) \propto \prod_{j=1}^N \prod_{k \in {\bf Z}} (s-(\rho_j+\frac{2\pi i kN}{\log T}) )$

again ignoring all issues of convergence. If one writes ${s = \phi_t(z)}$ and ${\rho_j = \phi_t(\lambda_j)}$, then Euler’s famous product formula for sine basically gives

$\displaystyle \prod_{k \in {\bf Z}} (s-(\rho_j+\frac{2\pi i kN}{\log T}) ) \propto \prod_{k \in {\bf Z}} (z - (\lambda_j+2\pi k N) )$

$\displaystyle \propto (e^{2\pi i z/N} - e^{2\pi i \lambda j/N})$

(here we are glossing over some technical issues regarding renormalisation of the infinite products, which can be dealt with by studying the asymptotics as ${\mathrm{Im}(z) \rightarrow \infty}$) and hence we expect

$\displaystyle \zeta(s) \propto \prod_{j=1}^N (e^{2\pi i z/N} - e^{2\pi i \lambda j/N}).$

This again gives the desired polynomial approximation.

Below the fold we give a rigorous version of the second argument suitable for “microscale” analysis. More precisely, we will show

Theorem 2 Let ${N = N(T)}$ be an integer going sufficiently slowly to infinity. Let ${W_0 \ll N}$ go to zero sufficiently slowly depending on ${N}$. Let ${t}$ be drawn uniformly at random from ${[T,2T]}$. Then with probability ${1-o(1)}$ (in the limit ${T \rightarrow \infty}$), and possibly after adjusting ${N}$ by ${1}$, there exists a polynomial ${P_t(Z)}$ of degree ${N}$ and obeying the functional equation (9) below, such that

$\displaystyle \zeta( \phi_t(z) ) = (1+o(1)) P_t( e^{2\pi i z/N} ) \ \ \ \ \ (4)$

whenever ${|z| \leq W_0}$.

It should be possible to refine the arguments to extend this theorem to the mesoscale setting by letting ${N}$ be anything growing like ${o(\log T)}$, and ${W_0}$ anything growing like ${o(N)}$; also we should be able to delete the need to adjust ${N}$ by ${1}$. We have not attempted these optimisations here.

Many conjectures and arguments involving the Riemann zeta function can be heuristically translated into arguments involving the polynomials ${P_t(Z)}$, which one can view as random degree ${N}$ polynomials if ${t}$ is interpreted as a random variable drawn uniformly at random from ${[T,2T]}$. These can be viewed as providing a “toy model” for the theory of the Riemann zeta function, in which the complex analysis is simplified to the study of the zeroes and coefficients of this random polynomial (for instance, the role of the gamma function is now played by a monomial in ${Z}$). This model also makes the zeta function theory more closely resemble the function field analogues of this theory (in which the analogue of the zeta function is also a polynomial (or a rational function) in some variable ${Z}$, as per the Weil conjectures). The parameter ${N}$ is at our disposal to choose, and reflects the scale ${\approx N/\log T}$ at which one wishes to study the zeta function. For “macroscopic” questions, at which one wishes to understand the zeta function at unit scales, it is natural to take ${N \approx \log T}$ (or very slightly larger), while for “microscopic” questions one would take ${N}$ close to ${1}$ and only growing very slowly with ${T}$. For the intermediate “mesoscopic” scales one would take ${N}$ somewhere between ${1}$ and ${\log T}$. Unfortunately, the statistical properties of ${P_t}$ are only understood well at a conjectural level at present; even if one assumes the Riemann hypothesis, our understanding of ${P_t}$ is largely restricted to the computation of low moments (e.g., the second or fourth moments) of various linear statistics of ${P_t}$ and related functions (e.g., ${1/P_t}$, ${P'_t/P_t}$, or ${\log P_t}$).

Let’s now heuristically explore the polynomial analogues of this theory in a bit more detail. The Riemann hypothesis basically corresponds to the assertion that all the ${N}$ zeroes of the polynomial ${P_t(Z)}$ lie on the unit circle ${|Z|=1}$ (which, after the change of variables ${Z = e^{2\pi i z/N}}$, corresponds to ${z}$ being real); in a similar vein, the GUE hypothesis corresponds to ${P_t(Z)}$ having the asymptotic law of a random scalar ${a_N(t)}$ times the characteristic polynomial of a random unitary ${N \times N}$ matrix. Next, we consider what happens to the functional equation

$\displaystyle \zeta(s) = \chi(s) \zeta(1-s) \ \ \ \ \ (5)$

where

$\displaystyle \chi(s) := 2^s \pi^{s-1} \sin(\frac{\pi s}{2}) \Gamma(1-s).$

A routine calculation involving Stirling’s formula reveals that

$\displaystyle \chi(\frac{1}{2}+it) = (1+o(1)) e^{-2\pi i L(t)} \ \ \ \ \ (6)$

with ${L(t) := \frac{t}{2\pi} \log \frac{t}{2\pi} - \frac{t}{2\pi} + \frac{7}{8}}$; one also has the closely related approximation

$\displaystyle \frac{\chi'}{\chi}(s) = -\log T + O(1) \ \ \ \ \ (7)$

and hence

$\displaystyle \chi(\phi_t(z)) = (1+o(1)) e^{-2\pi i \theta(t)} e^{2\pi i z} \ \ \ \ \ (8)$

when ${z = o(\log T)}$. Since ${\zeta(1-s) = \overline{\zeta(\overline{1-s})}}$, applying (5) with ${s = \phi_t(z)}$ and using the approximation (2) suggests a functional equation for ${P_t}$:

$\displaystyle P_t(e^{2\pi i z/N}) = e^{-2\pi i L(t)} e^{2\pi i z} \overline{P_t(e^{2\pi i \overline{z}/N})}$

or in terms of ${Z := e^{2\pi i z/N}}$,

$\displaystyle P_t(Z) = e^{-2\pi i L(t)} Z^N \overline{P_t}(1/Z) \ \ \ \ \ (9)$

where ${\overline{P_t}(Z) := \overline{P_t(\overline{Z})}}$ is the polynomial ${P_t}$ with all the coefficients replaced by their complex conjugate. Thus if we write

$\displaystyle P_t(Z) = \sum_{j=0}^N a_j Z^j$

then the functional equation can be written as

$\displaystyle a_j(t) = e^{-2\pi i L(t)} \overline{a_{N-j}(t)}.$

We remark that if we use the heuristic (3) (interpreting the cutoffs in the ${n}$ summation in a suitably vague fashion) then this equation can be viewed as an instance of the Poisson summation formula.

Another consequence of the functional equation is that the zeroes of ${P_t}$ are symmetric with respect to inversion ${Z \mapsto 1/\overline{Z}}$ across the unit circle. This is of course consistent with the Riemann hypothesis, but does not obviously imply it. The phase ${L(t)}$ is of little consequence in this functional equation; one could easily conceal it by working with the phase rotation ${e^{\pi i L(t)} P_t}$ of ${P_t}$ instead.

One consequence of the functional equation is that ${e^{\pi i L(t)} e^{-i N \theta/2} P_t(e^{i\theta})}$ is real for any ${\theta \in {\bf R}}$; the same is then true for the derivative ${e^{\pi i L(t)} e^{i N \theta} (i e^{i\theta} P'_t(e^{i\theta}) - i \frac{N}{2} P_t(e^{i\theta})}$. Among other things, this implies that ${P'_t(e^{i\theta})}$ cannot vanish unless ${P_t(e^{i\theta})}$ does also; thus the zeroes of ${P'_t}$ will not lie on the unit circle except where ${P_t}$ has repeated zeroes. The analogous statement is true for ${\zeta}$; the zeroes of ${\zeta'}$ will not lie on the critical line except where ${\zeta}$ has repeated zeroes.

Relating to this fact, it is a classical result of Speiser that the Riemann hypothesis is true if and only if all the zeroes of the derivative ${\zeta'}$ of the zeta function in the critical strip lie on or to the right of the critical line. The analogous result for polynomials is

Proposition 3 We have

$\displaystyle \# \{ |Z| = 1: P_t(Z) = 0 \} = N - 2 \# \{ |Z| > 1: P'_t(Z) = 0 \}$

(where all zeroes are counted with multiplicity.) In particular, the zeroes of ${P_t(Z)}$ all lie on the unit circle if and only if the zeroes of ${P'_t(Z)}$ lie in the closed unit disk.

Proof: From the functional equation we have

$\displaystyle \# \{ |Z| = 1: P_t(Z) = 0 \} = N - 2 \# \{ |Z| > 1: P_t(Z) = 0 \}.$

Thus it will suffice to show that ${P_t}$ and ${P'_t}$ have the same number of zeroes outside the closed unit disk.

Set ${f(z) := z \frac{P'(z)}{P(z)}}$, then ${f}$ is a rational function that does not have a zero or pole at infinity. For ${e^{i\theta}}$ not a zero of ${P_t}$, we have already seen that ${e^{\pi i L(t)} e^{-i N \theta/2} P_t(e^{i\theta})}$ and ${e^{\pi i L(t)} e^{i N \theta} (i e^{i\theta} P'_t(e^{i\theta}) - i \frac{N}{2} P_t(e^{i\theta})}$ are real, so on dividing we see that ${i f(e^{i\theta}) - \frac{iN}{2}}$ is always real, that is to say

$\displaystyle \mathrm{Re} f(e^{i\theta}) = \frac{N}{2}.$

(This can also be seen by writing ${f(e^{i\theta}) = \sum_\lambda \frac{1}{1-e^{-i\theta} \lambda}}$, where ${\lambda}$ runs over the zeroes of ${P_t}$, and using the fact that these zeroes are symmetric with respect to reflection across the unit circle.) When ${e^{i\theta}}$ is a zero of ${P_t}$, ${f(z)}$ has a simple pole at ${e^{i\theta}}$ with residue a positive multiple of ${e^{i\theta}}$, and so ${f(z)}$ stays on the right half-plane if one traverses a semicircular arc around ${e^{i\theta}}$ outside the unit disk. From this and continuity we see that ${f}$ stays on the right-half plane in a circle slightly larger than the unit circle, and hence by the argument principle it has the same number of zeroes and poles outside of this circle, giving the claim. $\Box$

From the functional equation and the chain rule, ${Z}$ is a zero of ${P'_t}$ if and only if ${1/\overline{Z}}$ is a zero of ${N P_t - P'_t}$. We can thus write the above proposition in the equivalent form

$\displaystyle \# \{ |Z| = 1: P_t(Z) = 0 \} = N - 2 \# \{ |Z| < 1: NP_t(Z) - P'_t(Z) = 0 \}.$

One can use this identity to get a lower bound on the number of zeroes of ${P_t}$ by the method of mollifiers. Namely, for any other polynomial ${M_t}$, we clearly have

$\displaystyle \# \{ |Z| = 1: P_t(Z) = 0 \}$

$\displaystyle \geq N - 2 \# \{ |Z| < 1: M_t(Z)(NP_t(Z) - P'_t(Z)) = 0 \}.$

By Jensen’s formula, we have for any ${r>1}$ that

$\displaystyle \log |M_t(0)| |NP_t(0)-P'_t(0)|$

$\displaystyle \leq -(\log r) \# \{ |Z| < 1: M_t(Z)(NP_t(Z) - P'_t(Z)) = 0 \}$

$\displaystyle + \frac{1}{2\pi} \int_0^{2\pi} \log |M_t(re^{i\theta})(NP_t(e^{i\theta}) - P'_t(re^{i\theta}))|\ d\theta.$

We therefore have

$\displaystyle \# \{ |Z| = 1: P_t(Z) = 0 \} \geq N + \frac{2}{\log r} \log |M_t(0)| |NP_t(0)-P'_t(0)|$

$\displaystyle - \frac{1}{\log r} \frac{1}{2\pi} \int_0^{2\pi} \log |M_t(re^{i\theta})(NP_t(e^{i\theta}) - P'_t(re^{i\theta}))|^2\ d\theta.$

As the logarithm function is concave, we can apply Jensen’s inequality to conclude

$\displaystyle {\bf E} \# \{ |Z| = 1: P_t(Z) = 0 \} \geq N$

$\displaystyle + {\bf E} \frac{2}{\log r} \log |M_t(0)| |NP_t(0)-P'_t(0)|$

$\displaystyle - \frac{1}{\log r} \log \left( \frac{1}{2\pi} \int_0^{2\pi} {\bf E} |M_t(re^{i\theta})(NP_t(e^{i\theta}) - P'_t(re^{i\theta}))|^2\ d\theta\right).$

where the expectation is over the ${t}$ parameter. It turns out that by choosing the mollifier ${M_t}$ carefully in order to make ${M_t P_t}$ behave like the function ${1}$ (while keeping the degree ${M_t}$ small enough that one can compute the second moment here), and then optimising in ${r}$, one can use this inequality to get a positive fraction of zeroes of ${P_t}$ on the unit circle on average. This is the polynomial analogue of a classical argument of Levinson, who used this to show that at least one third of the zeroes of the Riemann zeta function are on the critical line; all later improvements on this fraction have been based on some version of Levinson’s method, mainly focusing on more advanced choices for the mollifier ${M_t}$ and of the differential operator ${N - \partial_z}$ that implicitly appears in the above approach. (The most recent lower bound I know of is ${0.4191637}$, due to Pratt and Robles. In principle (as observed by Farmer) this bound can get arbitrarily close to ${1}$ if one is allowed to use arbitrarily long mollifiers, but establishing this seems of comparable difficulty to unsolved problems such as the pair correlation conjecture; see this paper of Radziwill for more discussion.) A variant of these techniques can also establish “zero density estimates” of the following form: for any ${W \geq 1}$, the number of zeroes of ${P_t}$ that lie further than ${\frac{W}{N}}$ from the unit circle is of order ${O( e^{-cW} N )}$ on average for some absolute constant ${c>0}$. Thus, roughly speaking, most zeroes of ${P_t}$ lie within ${O(1/N)}$ of the unit circle. (Analogues of these results for the Riemann zeta function were worked out by Selberg, by Jutila, and by Conrey, with increasingly strong values of ${c}$.)

The zeroes of ${P'_t}$ tend to live somewhat closer to the origin than the zeroes of ${P_t}$. Suppose for instance that we write

$\displaystyle P_t(Z) = \sum_{j=0}^N a_j(t) Z^j = a_N(t) \prod_{j=1}^N (Z - \lambda_j)$

where ${\lambda_1,\dots,\lambda_N}$ are the zeroes of ${P_t(Z)}$, then by evaluating at zero we see that

$\displaystyle \lambda_1 \dots \lambda_N = (-1)^N a_0(t) / a_N(t)$

and the right-hand side is of unit magnitude by the functional equation. However, if we differentiate

$\displaystyle P'_t(Z) = \sum_{j=1}^N a_j(t) j Z^{j-1} = N a_N(t) \prod_{j=1}^{N-1} (Z - \lambda'_j)$

where ${\lambda'_1,\dots,\lambda'_{N-1}}$ are the zeroes of ${P'_t}$, then by evaluating at zero we now see that

$\displaystyle \lambda'_1 \dots \lambda'_{N-1} = (-1)^N a_1(t) / N a_N(t).$

The right-hand side would now be typically expected to be of size ${O(1/N) \approx \exp(- \log N)}$, and so on average we expect the ${\lambda'_j}$ to have magnitude like ${\exp( - \frac{\log N}{N} )}$, that is to say pushed inwards from the unit circle by a distance roughly ${\frac{\log N}{N}}$. The analogous result for the Riemann zeta function is that the zeroes of ${\zeta'(s)}$ at height ${\sim T}$ lie at a distance roughly ${\frac{\log\log T}{\log T}}$ to the right of the critical line on the average; see this paper of Levinson and Montgomery for a precise statement.

In the previous set of notes, we studied upper bounds on sums such as ${|\sum_{N \leq n \leq N+M} n^{-it}|}$ for ${1 \leq M \leq N}$ that were valid for all ${t}$ in a given range, such as ${[T,2T]}$; this led in turn to upper bounds on the Riemann zeta ${\zeta(\sigma+it)}$ for ${t}$ in the same range, and for various choices of ${\sigma}$. While some improvement over the trivial bound of ${O(N)}$ was obtained by these methods, we did not get close to the conjectural bound of ${O( N^{1/2+o(1)})}$ that one expects from pseudorandomness heuristics (assuming that ${T}$ is not too large compared with ${N}$, e.g. ${T = O(N^{O(1)})}$.

However, it turns out that one can get much better bounds if one settles for estimating sums such as ${|\sum_{N \leq n \leq N+M} n^{-it}|}$, or more generally finite Dirichlet series (also known as Dirichlet polynomials) such as ${|\sum_n a_n n^{-it}|}$, for most values of ${t}$ in a given range such as ${[T,2T]}$. Equivalently, we will be able to get some control on the large values of such Dirichlet polynomials, in the sense that we can control the set of ${t}$ for which ${|\sum_n a_n n^{-it}|}$ exceeds a certain threshold, even if we cannot show that this set is empty. These large value theorems are often closely tied with estimates for mean values such as ${\frac{1}{T}\int_T^{2T} |\sum_n a_n n^{-it}|^{2k}\ dt}$ of a Dirichlet series; these latter estimates are thus known as mean value theorems for Dirichlet series. Our approach to these theorems will follow the same sort of methods used in Notes 3, in particular relying on the generalised Bessel inequality from those notes.

Our main application of the large value theorems for Dirichlet polynomials will be to control the number of zeroes of the Riemann zeta function ${\zeta(s)}$ (or the Dirichlet ${L}$-functions ${L(s,\chi)}$) in various rectangles of the form ${\{ \sigma+it: \sigma \geq \alpha, |t| \leq T \}}$ for various ${T > 1}$ and ${1/2 < \alpha < 1}$. These rectangles will be larger than the zero-free regions for which we can exclude zeroes completely, but we will often be able to limit the number of zeroes in such rectangles to be quite small. For instance, we will be able to show the following weak form of the Riemann hypothesis: as ${T \rightarrow \infty}$, a proportion ${1-o(1)}$ of zeroes of the Riemann zeta function in the critical strip with ${|\hbox{Im}(s)| \leq T}$ will have real part ${1/2+o(1)}$. Related to this, the number of zeroes with ${|\hbox{Im}(s)| \leq T}$ and ${|\hbox{Re}(s)| \geq \alpha}$ can be shown to be bounded by ${O( T^{O(1-\alpha)+o(1)} )}$ as ${T \rightarrow \infty}$ for any ${1/2 < \alpha < 1}$.

In the next set of notes we will use refined versions of these theorems to establish Linnik’s theorem on the least prime in an arithmetic progression.

Our presentation here is broadly based on Chapters 9 and 10 in Iwaniec and Kowalski, who give a number of more sophisticated large value theorems than the ones discussed here.