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Eigenvalue distributions

Let M = (aij)1≤i≤n;1≤j≤n be a square matrix. Then one

has n (generalised) eigenvalues λ1, . . . , λn ∈ C. We are

interested in the case when the aij are iid random

variables (e.g. Gaussian or Bernoulli). We would also like

to make as few moment assumptions as possible (ideally,

just second moment).

We would like to understand the asymptotic distribution

of the spectrum {λ1, . . . , λn} in the limit n →∞. (Note

that there is no natural ordering of the n eigenvalues.)
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The first task is to get a rough idea of how large the

eigenvalues are.

If the aij are bounded (or at least have bounded second

moment), then tr(MM∗) =
∑

1≤i,j≤n |aij|2 =
∑n

j=1 σ2
j has

size O(n2) w.h.p. (law of large numbers). Thus we expect

the singular values σj to be of magnitude O(
√

n) on

average.

It turns out that there is a linear algebra inequality

n∑
j=1

|λj|2 ≤
2∑

j=1

σ2
j

which then implies that the eigenvalues λj also have

magnitude O(
√

n) (at least in a root mean square sense).
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Proof of linear algebra inequality:

• By the Jordan normal form, we can write

M = AUA−1 where U is upper triangular. By the

QR factorisation, we can write A = QR where Q is

orthogonal and R is upper triangular. We conclude

that M = QV Q−1 where V is upper triangular.

• The eigenvalues λj are the diagonal entries of V .

• Meanwhile, the sum
∑2

j=1 σ2
j = tr(MM∗) = tr(V V ∗)

is the sum of squares of all the elements of V

(including the ones above the diagonal). The claim

follows.
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If one assumes fourth moment control on the aij, one can

obtain σ1 = O(n1/2) with high probability. From the

linear algebra inequality

sup
1≤j≤n

|λj| ≤ ‖M‖ = σ1

we thus obtain λj = O(n1/2) for all j (not just most j).

But the previous argument is more general (it only needs

second moment), and for the task of controlling limiting

eigenvalue distributions, it is acceptable to lose control of

a minority of the eigenvalues.
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Since the eigenvalues are expected to have size O(
√

n), it

is natural to introduce the normalised spectrum

{ 1√
n
λ1, . . . ,

1√
n
λn}. We then define the empirical spectral

distribution (ESD) µn : R2 → [0, 1] by the formula

µn(s, t) :=
1

n
#{1 ≤ j ≤ n : Re(

1√
n

λn) ≤ s; Im(
1√
n

λn) ≤ t}.

This is a sequence (in n) of (random) functions on the

plane.

Question: Does the sequence µn converge to a limit as

n →∞? If so, what is this limit?
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Let µ : R2 → [0, 1] be a (deterministic) function.

Definition (Weak convergence) We say that

µn converges weakly to µ if for every s, t ∈ R,

µn(s, t) converges to µ(s, t) in probability, i.e.

lim
n→∞

P(|µn(s, t)− µ(s, t)| ≥ ε) = 0 for all ε.

Definition (Strong convergence) We say that

µn converges strongly to µ if, with probability

1, the sequence µn converges uniformly to µ.
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To oversimplify, weak convergence is asking for

P(|µn(s, t)− µ(s, t)| ≥ ε) = o(1)

while strong convergence is essentially asking for

∞∑
n=1

P(|µn(s, t)− µ(s, t)| ≥ ε) < ∞

(cf. the Borel-Cantelli lemma). Thus one needs

quantitative tail bounds (better than O(1/n)) for strong

convergence, but only qualitative tail bounds o(1) for

weak convergence.

[The uniformity in s, t is relatively cheap to attain, due

to the monotonicity properties of µn.]
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Wigner’s semicircular law

The situation is very well understood in the self-adjoint

case, in which the matrix entries aij are only iid for i ≤ j

(and extended to i > j by self-adjointness). In this case,

of course, the spectrum is real (and µn(s, t) is really just

a function of s.
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The famous semi-circular law of Wigner then asserts that

µn converges strongly to the semicircular distribution

µ(s) =
∫ s

−∞ dµ, where µ := 1
2π

(1− s2/4)
1/2
+ ds, at least in

the case of the Gaussian ensemble.

It can be extended to the case when aij are independent

for i ≤ j, have mean zero, unit variance, and uniformly

controlled second moment (thus E|aij|21|aij |>K → 0 as

K →∞ uniformly in i, j).
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The semicircular law is proven by the moment method,

using the identity∫ ∞

−∞
sm dµn(s) =

1

n

n∑
j=1

λm
j =

1

n
tr((

1√
n

M)m)

for m = 0, 1, 2, . . .. The key step is to show that∫ ∞

−∞
sm dµn(s) →

∫ ∞

−∞
sm dµ(s)

w.h.p.
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When one only has second moment control, a preliminary

truncation argument to force aij to be bounded is also

needed.

But this is not difficult, because the spectrum is stable in

the self-adjoint case; if M ′ is a self-adjoint perturbation

(or truncation) of a self-adjoint matrix M , then the

spectrum of M ′ is close to that of M , as can be seen for

instance from the Weyl eigenvalue inequalities.
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The circular law

In the non self-adjoint case, there is an analogous law, in

which the semi-circular measure dµ = 1
2π

(1− s2/4)
1/2
+ is

replaced by the circular measure dµ = 1
π
1s2+t2≤1 dsdt.

Conjecture (circular law). If the aij are

iid with zero mean and unit variance, then µn

converges weakly or strongly to µ.

This conjecture is strongly supported by numerics. It is

not completely resolved, but there are many partial

results.
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For the Gaussian ensemble, the strong circular law was

established in (Mehta, 1967), using an explicit formula

for the joint distribution.

In (Girko, 1984), Girko proposed a method to establish

the circular law in general, but certain tail bounds on

least singular values were needed to make the method

rigorous. In (Bai, 1997), this was accomplished, proving

the strong circular law for continuous complex

distributions aij with bounded sixth moment; this was

relaxed to (2 + η)th moment for any η > 0 in

(Bai-Silverstein, 2006). Several alternate proofs of the

strong and weak circular laws under similar assumptions

were also given in (Girko, 2004).
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In the above arguments, the continuity of the aij was

needed to bound certain least singular values. But with

the recent progress on these bounds in the discrete case

(Rudelson, 2006; T.-Vu, 2007; Rudelson-Vershynin, 2007;

T.-Vu, 2008), as discussed in the previous lecture, it

became possible to remove this continuity assumption.
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In (Götze-Tikhomirov, 2007) the weak circular law for

discrete subgaussian ensembles was proven (using the

least singular tail bounds of Rudelson); a similar result

with the subgaussian hypothesis relaxed to (4 + η)th

moment was described in (Girko, 2004). The strong

circular law under a fourth moment assumption was

established in (Pan-Zhou, 2007), and relaxed to (2 + η)th

moment in (T.-Vu, 2008). An alternate proof of the weak

circular law under (2 + η)th moment assumption was

given in (Götze-Tikhomirov, 2008).

Thus we are only an η away from fully resolving the

circular law!
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A new difficulty

There is a major new difficulty in the non-selfadjoint

case, which manifests itself in two related ways:

• The spectrum can be very unstable with respect to

perturbations. (In particular, truncation is now

dangerous.)

• One cannot always control the spectrum effectively

just from knowing a few moments.

[Note that the first few moments are very stable with

respect to perturbations.]
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For instance, consider the matrix

M :=



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

0 0 0 . . . 0



18



and the exponentially tiny perturbation

M ′ :=



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

2−n 0 0 . . . 0


.
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The matrix M has characteristic polynomial

det(M − λI) = (−λ)n and so the spectrum is {0} (with

multiplicity n). But the perturbation M ′ has

characteristic polynomial

det(M ′ − λI) = (−λ)n − (−2)−n, and so the spectrum is

{1
2
e2πij/n : j = 1, . . . , n}. An exponentially small change

in the matrix has caused the spectrum to move by ∼ 1!

Note also that trMk = tr(M ′)k for all k = 0, . . . , n− 1;

the moment method cannot distinguish M from M ′ until

the nth moment, which is too difficult to compute in

practice.
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The instability of the spectrum near a complex number λ

is closely related to the operator norm of the resolvent

(M − λI)−1, or equivalently to the least singular value of

M − λI. In other words, spectral instability is caused by

the presence of pseudospectrum.

Indeed, if ‖(M − λI)−1‖ is bounded, then a standard

Neumann series argument shows that M ′ − λI remains

invertible for small perturbations M ′ of M , and so the

spectrum cannot come close to λ.

This already indicates that the least singular values of

M − λI will play an important role in the argument.
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Girko’s method

As the moment method is now unavailable, one must

establish the circular law by other means. The key

breakthrough was made by Girko in 1984. Instead of

moments trMk =
∑n

j=1 λk
j , the idea was to study the

Stieltjes transform

sn(z) :=

∫
dµn(s, t)

s + it− z
=

1

n

n∑
j=1

1
1√
n
λj − z

.

This is a meromorphic function with simple poles at each

eigenvalue. In principle, control on sn leads to control on

µn, and vice versa.
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Because sn is meromorphic, it suffices to understand the

real part snr. For this, one has the fundamental identity

snr(s + it) =
1

n

n∑
j=1

Re
1

1√
n
λj − s− it

= − d

ds

1

n

n∑
j=1

log | 1√
n

λj − s− it|

= − d

ds

1

n
log | det(

1√
n

M − (s + it)I)|.

Thus, in principle, it suffices to understand the quantity
1
n

log | det( 1√
n
M − (s + it)I)|. (In practice, one controls

the Fourier transform of this quantity.)
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One can express 1
n

log | det( 1√
n
M − (s + it)I)| in terms of

the eigenvalues of 1√
n
M − (s + it)I and thus of M , but

this leads us right back to where we started.

But instead, we can express this quantity in terms of the

singular values σj(
1√
n
M − (s + it)I) of 1√

n
M − (s + it)I:

1

n
log | det(

1√
n

M−(s+it)I)| = 1

n

n∑
j=1

log σj(
1√
n

M−(s+it)I).
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The reason why this is useful is because, in contrast to

the eigenvalues, the distribution of the singular values of
1√
n
M − (s + it)I can be efficiently controlled (in

principle, at least) by the moment method:

1

n

n∑
j=1

σj(
1√
n

M − (s + it)I)2k =

1

n
tr(((

1√
n

M − (s + it)I)∗(
1√
n

M − (s + it)I))k).

For instance, when s + it = 0 one obtains a

Marchenko-Pastur law.

One can also hope to control the determinant

| det( 1√
n
M − (s + it)I)| by a variety of other methods
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(e.g. base × height, cofactor expansion, etc.).
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There is a remaining difficulty, which is that the function

log : (0, +∞) → R is singular at 0 and thus cannot be

uniformly approximated by polynomials. (The singularity

at +∞ is easily dealt with, using upper bounds on ‖M‖.)
To get around this, Girko made the approximation

log σj(
1√
n

M−(s+it)I) ≈ log

√
ε2 + σj(

1√
n

M − (s + it)I)2

for some ε > 0. The function log
√

ε2 + x2 is now smooth

at 0 and the contribution of the RHS can now be dealt

with a variety of methods (after many computations).
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The remaining difficulty is to show that the

approximation gives an asymptotically accurate control

on in the limit ε → 0. For this it becomes necessary to

establish lower tail bounds on the least singular value of
1√
n
M − (s + it)I.

Fortunately, with recent results we know that this

singular value is usually bounded below by n−O(1). This

allows one to take ε = n−O(1) in the above approximation,

which eventually costs some factors of log 1
ε
∼ log n in

various estimates (which, ultimately, cause one to require

2 + η moment rather than second moment).
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Because of the instability of the spectrum, truncation

methods are unavailable (until one has regularised the

problem and reduced matters to controlling singular

values instead of eigenvalues). So the case of random

variables with few moment bounds is genuinely more

difficult than those of higher moment bounds.

In particular, once one loses fourth moment bounds, one

can no longer assume that the largest singular value σ1 of
1√
n
M − (s + it)I is bounded by O(1); only polynomial

bounds O(nO(1)) are available. This causes some

technical difficulties in this regime.
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The circular law results have been extended to the case

in which the entries are independent but not identical

(though one always needs mean zero and unit variance),

provided one has a (slightly technical) uniform control of

second-moment type (which is called “κ-controllability”

in (T.-Vu, 2008)). The methods also extend to sparser

models in which only n1+ε of the n2 coefficients are

non-zero (and adjusting the normalisation accordingly);

see (Götze-Tikhomirov, 2007, T.-Vu, 2008).

The case of non-zero mean is not well understood at

present; the circular law here needs to be replaced by a

different law, but it is not clear what the new law should

be.
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