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iid matrix ensembles

Let n be a large integer, and let M = (aij)1≤i,j≤n be a

random matrix in which all the coefficients aij ≡ a are

independent and have the same distribution a, which can

be either continuous or discrete, and either real or

complex. Note that M is not assumed to be symmetric.

[The condition that aij are identical can be relaxed, but

the independence assumption is vital to our current

arguments.]
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Model examples:

• Gaussian ensemble Each aij ≡ N(0, 1) is normally

distributed with variance 1.

• Bernoulli ensemble Each aij ∈ {−1, +1} with

equal probability of each.

• Sparse Bernoulli ensemble Each aij ∈ {−1, 0, +1}
with probability µ/2 of +1,−1 and probability 1− µ

of 0.
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The Gaussian case enjoys a very strong algebraic

structure (with many useful identities); for instance, it is

invariant under the action of left or right multiplication

by the orthogonal group O(n). Because of this structure,

this case is almost completely understood.

These algebraic techniques do not seem to extend to

ensembles such as the Bernoulli ensemble. Nevertheless,

we expect these ensembles to have analogous behaviour

(after we normalise the mean and variance of the

underlying distribution a) - i.e. we believe in a

“universality principle”.
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There are two sequences associated to the random matrix

M that we wish to study:

• The (generalised) eigenvalues λ1, . . . , λn ∈ C (the

roots of det(M − λI) = 0);

• The singular values σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 (the

roots of det(MM∗ − σ2I) = 0).
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Many other interesting characteristics of a random

matrix are related to these numbers, e.g.

• The determinant det(M) is equal to
∏n

i=1 λi, and its

magnitude is equal to
∏n

i=1 σi.

• In particular, the matrix M is invertible or

non-singular iff det(M) 6= 0 iff λi 6= 0 for all i, iff

σn > 0.

• The trace tr(M) is equal to
∑

i λi.

• More generally, the moments tr(Mk) and

tr((MM∗)k) = tr((M∗M)k) are equal to
∑

i λ
k
i and∑

i σ
2k
i respectively.
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• The operator norm ‖M‖ := sup‖x‖≤1 ‖Mx‖ is equal

to σ1.

• The inverse operator norm ‖M−1‖ is equal to 1/σn.

• The condition number ‖M‖‖M−1‖ is equal to σ1/σn.

• The resolvent norms ‖(M − zI)−1‖ are related not to

the singular values of M , but to the singular values

of M − zI.
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A basic question in random matrix theory is to estimate

the probability distributions of the above quantities for a

given random matrix ensemble M . In this lecture we

focus on two specific questions:

• What is the singularity probability

P(det(M) = 0) = P(σn = 0) = P(
∏

i λi = 0)?

• Can we estimate the probability distribution of

det(M)?
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A popular and effective technique in random matrix

theory is the moment method. In this method one first

computes moments such as tr(Mk) and tr((MM∗)k) for

various values of k. One then uses these computations,

together with the identities

tr(Mk) =
∑

i

λk
i ; tr((MM∗)k) =

∑
i

σ2k
i

to try to control the eigenvalues λi and singular values σi.
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• Example: for the Bernoulli ensemble one has

tr(MM∗) = n2, thus
∑

i σ
2
i = n2, and so the root

mean square of σi is
√

n.

• By more sophisticated moment methods one can also

conclude that σ1 = O(
√

n) with high probability.

• From the elementary inequality supi |λi| ≤ ‖M‖ = σ1

we also conclude that λi = O(
√

n) for all i w.h.p..

• This method also gives a limiting distribution of the

σi (but not the λi!).
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Unfortunately, moment methods are not good at

detecting singularity (in which just one of the n

eigenvalues or singular values vanishes). If M is

well-conditioned (i.e. σ1/σn bounded), then one can use

the identity

log | det M | =
∑

i

log |λi| =
∑

i

log σi

and the moment method (approximating the log function

by polynomials) to understand det M . Unfortunately, for

the matrices of interest, M can be quite ill-conditioned

(and even singular).
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A trivial case: non-singularity of the

Gaussian ensemble

As a warm up, let us consider the following trivial result:

Proposition. A Gaussian random matrix M

is non-singular with probability 1.

Trivial proof: The set {M : det M = 0} of singular

matrices in Mn(R) has positive codimension and thus

has measure zero. Since the probability distribution of

the Gaussian ensemble in Mn(R) is absolutely

continuous, the claim follows. �
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The trivial proof does not generalise well to the discrete

case. Hence we will need to find a less trivial proof.

Let X1, . . . , Xn ∈ Rn be the rows of a Gaussian random

matrix M , thus X1, . . . , Xn are iid Gaussian random

vectors. Observe that M is singular if and only if

X1, . . . , Xn are linearly dependent, or equivalently that

Xi lies in the span of X1, . . . , Xi−1 for some i. Thus:

P(det(M) = 0) ≤
n∑

i=1

P(Xi ∈ Vi)

where Vi := span(X1, . . . , Xi−1).
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Slightly less trivial proof: For each 1 ≤ i ≤ n, we

condition (fix) the vectors X1, . . . , Xi−1. Then the vector

space Vi = span(X1, . . . , Xi−1) is fixed, has positive

codimension and thus has measure zero. Since the

distribution of Xi is absolutely continuous (and is

independent of X1, . . . , Xi−1), we have

P(Xi ∈ Vi|X1, . . . , Xi−1) = 0

for all X1, . . . , Xi−1.
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Integrating, we get

P(Xi ∈ Vi) = 0

and thus

P(det(M) = 0) ≤
∑

i

P(Xi ∈ Vi) = 0

as desired. �
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This proof will discretise more easily than the previous

proof, because the geometry of the vector space Vi ⊂ Rn

is easier to understand than the geometry of the singular

set {M : det(M) = 0} ⊂ Mn(R).

We also see for the first time the very useful conditioning

trick to fix some (but not all) of the randomness in the

ensemble.
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Determinant of the Gaussian ensemble

We now modify the above “less trivial” proof to control

the determinant of a Gaussian matrix.

Theorem Let M be a Gaussian matrix. With

probability 1 − o(1), we have log | det M | ∼
n log n.

[Much more precise bounds are possible, but we focus on

this crude bound for simplicity.]

17



Once again, we introduce the random rows

X1, . . . , Xn ∈ Rn. Observe that | det M | is the volume of

the parallelopiped generated by X1, . . . , Xn.

Using the elementary “base × height” formula for

parallelopipeds repeatedly, we obtain

| det M | =
n∏

i=1

dist(Xi, span(X1, . . . , Xi−1)) =
n∏

i=1

dist(Xi, Vi)

and thus

log | det M | =
n∑

i=1

log dist(Xi, Vi).
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So we need to understand log dist(Xi, Vi) for each i.

As before, we fix i and condition on X1, . . . , Xi−1 to fix

Vi. Let πV ⊥i
: Rn → V ⊥

i be the projection to the

orthogonal complement V ⊥
i of Vi, then

dist(Xi, Vi) = |πV ⊥i
(Xi)|.

But as Xi is an n-dimensional Gaussian vector (with each

coordinate ≡ N(0, 1)), πV ⊥i
(Xi) is an

n− i + 1-dimensional Gaussian vector (with each

coordinate ≡ N(0, 1)).

19



In particular, we have

log dist(Xi, Vi) = log |πV ⊥i
(Xi)| ∼ log

√
n− i

with high probability (e.g. 1−O(n−10)), as long as n− i

is reasonably large (e.g. n− i > 100 log n). In the

remaining cases i = n−O(log n), we can use a crude

bound such as

| log dist(Xi, Vi)| ≤ 100 log n

with probability 1−O(n−10).
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Summing this we have

log | det(M)| =
n∑

i=1

log dist(Xi, Vi)

∼
n−100 log n∑

i=1

log
√

n− i

+
n∑

i=n−100 log n

O(log n)

∼ n log n

with probability 1− o(1), as required. �
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Singularity of the Bernoulli ensemble

The singularity probability of a Bernoulli matrix is

non-zero (e.g. two rows could be identical). We in fact

have

Conjecture. A Bernoulli random matrix M

is singular with probability (1
2

+ o(1))n.

In 1967, Komlós showed:

Proposition. A Bernoulli random matrix M

is singular with probability o(1).
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We prove this by an argument of Vu. We again consider

the random rows X1, . . . , Xn ∈ Rn and the spaces

Vi := span(X1, . . . , Xi−1). This time, though, the Xi are

not Gaussian, but are instead distributed uniformly in

the discrete cube {−1, +1}n.

Nevertheless, we still have the inequality

P(det(M) = 0) ≤
n∑

i=1

P(Xi ∈ Vi).
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In the low dimensional case i 6= n−O(1), we can use the

following simple bound:

Odlyzko bound: (1988) P(Xi ∈ Vi) ≤
2−(n−i+1).

Proof: We condition on X1, . . . , Xi−1 to fix Vi, which has

dimension at most i− 1. Thus, there exist i− 1

coordinates aj1 , . . . , aji−1
which determine all the other

n− i + 1 coordinates of a vector a = (a1, . . . , an) ∈ Vi.

Thus, if we condition on the coordinates aj1 , . . . , aji−1
of

Xi, the probability Xi ∈ Vi is at most 2−(n−i+1) as

desired. �
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It remains to show that P(Xi ∈ Vi) = o(1) when

i = n−O(1). The hardest case is i = n.

We condition to fix Vn, and let v be a unit normal vector

to Vn. Then

P(Xn ∈ Vn) ≤ P(Xn · v = 0).

Writing Xn = (a1, . . . , an) and v = (v1, . . . , vn), we need

to understand the collision probability

P(a1v1 + . . . + anvn = 0)

for the random walk ±v1 ± v2 . . .± vn.
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The task of computing this collision probability is known

as the Littlewood-Offord problem. A basic bound is:

Erdős’ Littlewood-Offord inequality

(1945) Suppose at least k of the v1, . . . , vn are

non-zero. Then

P(a1v1 + . . . + anvn = 0) � 1√
k
.

Notice that this bound is tight if all the non-zero

coefficients of vi are of equal magnitude.

26



So we fix a parameter 1 ≪ k ≪ n and divide into two

cases, depending on the sparsity of the fixed vector v.

• Incompressible case: At least k coefficients of v

are non-zero. Then from Erdős’ Littlewood-Offord

inequality, P(Xn ∈ Vn) ≤ 1/
√

k, which is OK as long

as k ≫ 1.

• Compressible case: Fewer than k coefficients of v

are non-zero. But (as v is orthogonal to X1, . . . , Xn)

this means that k of the columns Y1, . . . , Yn of M are

linearly dependent. Direct counting shows that the

probability of this is exponentially small in n if k is

not too large (e.g. k = O(log log n) is enough).
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Putting all the above arguments together gives the bound

P(σn = 0) = P(det(M) = 0) = o(1)

as desired. �

In the next lecture, we will see that a similar strategy

also allows us to obtain a non-trivial lower bound on the

singular value σn.
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Determinant of the Bernoulli ensemble

A modification of the above argument also lets us control

the determinant:

Theorem (T.-Vu 2005) Let M be a Bernoulli

matrix. With probability 1 − o(1), we have

log | det M | = (1− o(1))1
2
n log n.

[More precise bounds are available.]
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Some context for this bound:

• By symmetry of the Bernoulli distribution, det M is

distributed symmetrically around the origin.

• The moment method gives

E det M2 = n! = exp(n log n−O(n)) (Turán, 1940).

Higher moments can be computed but rapidly

become difficult (and not too useful).

• We have the crude bound

| det M | ≤ |X1| . . . |Xn| = nn/2 = exp(1
2
n log n), which

is attained for Hadamard matrices.

• By row reduction, det M is an integer multiple of

2n−1. The mod p distribution is also understood.
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Sketch of proof:

• As before, we rely on the identity

log det M =
n∑

i=1

log dist(Xi, Vi) =
n∑

i=1

log |πV ⊥i
Xi|.

• In the low-dimensional case i ≤ n−O(log n), the

vector πV ⊥i
Xi is no longer Gaussian. Nevertheless,

dist(Xi, Vi) is still a Lipschitz function of Xi, and one

can use Talagrand’s inequality (1996) to show that

log dist(Xi, Vi) concentrates near log
√

n− i as in the

Gaussian case.
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• In the high dimensional case i > n−O(log n), one

again has to consider a unit normal vector v to Vi,

thus dist(Xi, Vi) ≥ |Xi · v|. We split into two cases.

• In the compressed case in which almost all the

coefficients of v are very small (and so a few columns

Y1, . . . , Yn are almost dependent), one can use direct

counting arguments to show that this case is very

unlikely.

• In the uncompressed case in which there are many

coefficients that are not too small, one can use a

version of Erdős’ Littlewood-Offord bound to obtain

a crude lower bound on |Xi · v|. �
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Exponential bounds

The above arguments, combined with more advanced

Littlewood-Offord (and inverse Littlewood-Offord)

theorems, eventually give P(det(M) = 0) = OA(n−A) for

any A. (More on this in the next lecture.) But one can

do even better:

Theorem (Kahn-Komlós-Szemerédi 1995) For

the Bernoulli ensemble, we have P(det(M) =

0) ≤ (c + o(1))n for some 0 < c < 1.
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c ≤ 0.999 Kahn-Komlós-Szemerédi (1995)

c ≤ 0.939 . . . T.-Vu (2005)

c ≤ 3
4

= 0.75 T.-Vu (2006)

c ≤ 1√
2

= 0.707 . . . Bourgain-Vu-Wood (2008)

c = 1
2
? Conjectured

Similar results are known for more general ensembles

(Rudelson-Vershynin, 2007; Bourgain-Vu-Wood, 2008).

For certain discrete ensembles, the optimal value of c is

attained (Bourgain-Vu-Wood, 2008).
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Now we sketch a proof. Instead of using the inequality

P(det(M) = 0) ≤
n∑

i=1

P(Xi ∈ Vi)

as before, it is more convenient to use the variant

P(det(M) = 0) ≤
∑
V

P(X1, . . . , Xn span V )

where V ranges over proper subspaces. Note that

P(X1, . . . , Xn span V ) ≤ P(X ∈ V )n

where X is uniformly distributed in {−1, +1}n.
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• If the space V is poor (so P(X ∈ V ) ≤ cn), a

conditioning argument lets one bound this case easily

(using n− 1 of the vectors X1, . . . , Xn to span V ).

• If the space V is very rich (so P(X ∈ V ) > o(1)), the

Erdős Littlewood-Offord inequality lets us conclude

that a normal vector of V is compressed, and

counting arguments let us bound this case easily.

• The difficult case is when V is only somewhat rich:

cn ≤ P(X ∈ V ) ≤ o(1).

36



The key new idea here is a swapping argument: one finds

another random vector Y with the concentration property

P(X ∈ V ) ≤ cP(Y ∈ V ).

Morally speaking, this implies that

P(X1, . . . , Xn span V ) ≤ cnP(Y1, . . . , Yn span V )

and so

P(det(M) = 0) ≤ cnP(det(M ′) = 0) ≤ cn

where M ′ is formed using the rows Y1, . . . , Yn. (The

precise swapping argument is more technical.)
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One good choice of random vector Y = (b1, . . . , bn) is a

sparse Bernoulli vector, in which each bi equals ±1 with

probability µ/2 and 0 with probability 1− µ.

Intuitively, this vector has more zeroes in it and so is

more likely to lie in the vector space V . (For instance, it

is identically zero with probability (1− µ)n.)

To prove P(X ∈ V ) ≤ cP(Y ∈ V ), the main task is to

show that

P(X · v = 0) ≤ cP(Y · v = 0)

for certain unit vectors v. “Lazy random walk is more

concentrated than random walk”.
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Key ingredients: (Halász, 1975)

• The Fourier identities

P(X · v = 0) =

∫
R/Z

n∏
i=1

cos(2πvit) dt

P(Y · v = 0) =

∫
R/Z

n∏
i=1

(1− µ) + µ cos(4πvit) dt.

• The elementary inequalities

| cos(θ)| ≤ [(1− µ) + µ cos(2θ)]σ

| cos(α)|| cos(β)| ≤ [(1− µ) + µ cos(2(α + β))]2σ

for various 1/4 < µ < 1 and σ > 1.
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• The Mann-Kneser-Macbeath inequality (1953)

mes(A + B) ≥ min(mes(A) + mes(B), 1)

from additive combinatorics, where A, B ⊂ R/Z.

This is already enough to get c ≤ 0.939 . . .. To get

c ≤ 3/4 or c ≤ 1/
√

2 requires more advanced inverse

theorems of Freiman type from additive combinatorics, in

order to classify the exceptional vectors v in which

P(X ∈ V ) is not extremely small compared to P(Y ∈ V ).

40


