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Extreme singular values

Let M = (aij)1≤i≤n;1≤j≤m be a square or rectangular

matrix with 1 ≤ m ≤ n, thus M : Cm → Cn. The least

singular value σm ≥ 0 can be defined as

σm := inf
v∈Cm:‖v‖=1

‖Mv‖.

The largest singular value σ1 ≥ σm is similarly given by

σ1 := sup
v∈Cm:‖v‖=1

‖Mv‖.

Of course, if the aij are real, one can replace C by R

throughout.
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As in the previous lecture, we are interested in the case

when the aij are independent random variables.

Important model examples include

• Gaussian ensemble: aij ≡ N(0, 1) for all i, j.

• Bernoulli ensemble: aij ∈ {−1, +1} for all i, j,

with equal probability of each.

• Resolvent models: n = m, and aij ≡ a− zδij for

some fixed distribution a and a deterministic z ∈ C.

We shall mostly focus on the case of square matrices

n = m, but also consider the rectangular case

m = (1− δ)n for fixed eccentricity 0 < δ < 1.
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In this lecture, we shall focus on the problem of tail

estimates for the singular values. In particular, we are

interested in upper tail estimates

P(σ1 ≥ K) ≤ . . .

for the largest singular value, and lower tail estimates

P(σm ≤ ε) ≤ . . .

for the least singular value.

[Upper and lower tail estimates for other singular values

are also of interest, but these two are particularly useful

for upper-bounding the condition number σ1/σm.]
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The largest singular value

We begin with the theory of σ1, which is much simpler

and better understood. Furthermore, upper tail estimates

on σ1 will be needed to obtain lower tail estimates on σm.

The techniques here are quite general, but for sake of

concreteness we focus on the Bernoulli case.
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One can obtain remarkably good control on σ1 by the

moment method. For instance, from the second moment

identity

nm = tr(M∗M) =
m∑

j=1

σ2
j

we obtain the bounds

√
n ≤ σ1 ≤

√
nm.
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By computing higher moments, one can obtain much

better bounds, for instance one can show

P(σ1 ≤ C
√

n) � exp(−cn)

for some absolute constants C, c > 0. Thus σ1 ∼
√

n with

exponentially high probability. (This result holds more

generally when the coefficients are uniformly

subgaussian; weaker bounds are also available assuming

uniformly bounded fourth moment (Latala, 2005).)
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Similar higher moment computations also show that σ1 is

distributed according to the Tracy-Widom law. (This

result holds more generally when the coefficients are

uniformly subgaussian (Soshnikov, 2002; recently

improved by Ruzmaikina, 2008).)
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The moment method does not generalise well to lower

tail bounds for the least singular value (because negative

moments such as tr(M∗M)−1 are hard to compute). So

let us give another proof of the upper tail estimate that

does not rely as heavily on the moment method.

The starting point is the identity

σ1 = sup
v∈Sm−1

‖Mx‖

where Sm−1 := {v ∈ Rm : ‖x‖ = 1} is the unit sphere in

Rm.
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The sphere Sm−1 is uncountable, and so we have an

uncountably infinite supremum. But we can use the ε-net

argument to replace this infinite supremum with a finite

one.

Let Ω ⊂ Sm−1 be a 1/2-net of Sm−1, i.e. a maximal

1/2-separated subset of Sm−1. Then every element of

Sm−1 lies within 1/2 of an element of Ω. From the

triangle inequality we conclude

σ1 = sup
v∈Sm−1

‖Mv‖ ≤ sup
x∈Ω

‖Mv‖+
1

2
σ1

and thus

σ1 ≤ 2 sup
v∈Ω

‖Mv‖.
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On the other hand, the spherical caps centred at

elements of Ω of radius 1/4 are all disjoint. Standard

volume packing arguments thus yield the cardinality

bound |Ω| � exp(O(m)). We can thus apply the crude

union bound:

P(σ1 ≥ K) ≤ P(sup
v∈Ω

‖Mv‖ ≥ K/2)

≤
∑
v∈Ω

P(‖Mv‖ ≥ K/2)

� exp(O(m)) sup
v∈Ω

P(‖Mv‖ ≥ K/2).
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We have thus reduced the upper tail estimate for σ1 to

upper tail estimates for ‖Mv‖ for various unit vectors

v = (v1, . . . , vm), paying an “entropy cost” exp(O(m)).

If we let X1, . . . , Xn ∈ {−1, +1}m be the rows of M , we

can write

‖Mv‖ = (
n∑

i=1

|Xi · v|2)1/2.

Direct computation shows that

E‖Mv‖2 =
n∑

i=1

E|Xi · v|2 =
n∑

i=1

|v|2 = n

so ‖Mv‖ has an average value of O(
√

n).
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Indeed, from the Chernoff inequality one has an

exponential tail estimate

P(‖Mv‖ ≥ K
√

n) � exp(−cKn)

for any K ≥ 2 and some absolute constant c > 0. For K

large enough, the exponential tail of exp(−cKn)

overwhelms the entropy penalty of exp(O(m)), and we

obtain

P(σ1 ≥ K
√

n) � exp(−cn)

as claimed.
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Moral: The ε-net argument can control tail probabilities

for singular values, as long as one has very good tail

probabilities for ‖Mv‖ and very good entropy bounds for

the ε-net.

For the least singular value problem, this argument works

well for vectors v which are “compressible” or otherwise

“structured”, as such sets of vectors tend to have small

entropy. But for generic vectors v, it may be that there is

too much entropy for the ε-net argument to work.
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The least singular value

Now we consider lower tail probabilities for the least

singular value σ1. We continue to work with the

Bernoulli case for concreteness.

We begin with

Rectangular case.(Litvak-Pajor-Rudelson-

Tomczak-Jaegermann, 2005) If m = (1 − δ)n

for some fixed 0 < δ < 1 (independent of n),

then

P(σm ≤ ε
√

n) � exp(−cn)

for some ε, c > 0 depending on δ but not on n.
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We rely again on the ε-net argument.

From the preceding discussion, we already know that

σ1 = O(
√

n) with exponentially high probability. Thus

we can assume that σ1 ≤ K
√

n for some K = O(1).

We now let Ω be an ε/K-net of Sm−1. Then

σm = inf
v∈Sm−1

‖Mv‖ ≥ inf
v∈Ω

‖Mv‖ − ε

K
σ1

and so

P(σm ≤ ε
√

n) ≤ P(inf
v∈Ω

‖Mv‖ ≤ 2ε
√

n).
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Volume-packing arguments show that |Ω| � O(1/ε)m.

Thus we have

P(σm ≤ ε
√

n) � O(1/ε)m sup
v∈Ω

P(‖Mv‖ ≤ 2ε
√

n).

Once again, we have ‖Mv‖ = (
∑n

i=1 |Xi · v|2)1/2. For

most unit vectors v, Xi · v is distributed much like a

Gaussian N(0, 1) (thanks to the central limit theorem),

and Chernoff-type estimates then give

P(‖Mv‖ ≤ 2ε
√

n) � O(ε)n.
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Since m = (1− δ)n for some fixed δ > 0, we thus obtain

the claim by taking ε small enough.

Unfortunately, there are a few unit vectors v which are

too sparse or compressed for the central limit theorem to

apply. For instance, if v = ej is a basis vector, then Xi · v
has the Bernoulli distribution, and P(‖Mv‖ ≤ 2ε

√
n) is

at least as large as 2−n.

Fortunately, the space of compressed vectors has much

smaller entropy, and a variant of the above argument

suffices to treat this case.
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These results have been extended to the intermediate

eccentricity case δ = o(1)

(Litvak-Pajor-Rudelson-Tomczak-Jaegermann, 2005;

Rudelson-Vershynin 2008). But for the remainder of this

lecture we focus on the square case δ = 0, so m = n.

Here, we expect the least singular value σn to be much

smaller than
√

n.

Indeed, from the moment method it is known that the

limiting distribution of the n singular values σ1, . . . , σn is

a continuous distribution on [0, 2
√

n]. This suggests (but

does not prove) that σn should be of size n−1/2. (Moment

methods only give the weaker bound of Oε(n
ε) for any

ε > 0.)
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For the Gaussian ensemble, one can explicitly compute

the distribution of σn, and show that

P(σn ≤ εn−1/2) � ε

for any ε > 0 (Edelman 1988). In particular, we have

σn � n−1/2 with high probability.

Analogous bounds are now known for discrete ensembles

such as the Bernoulli ensemble (Rudelson 2006; T.-Vu

2007; Rudelson-Vershynin 2007). For instance, for

Bernoulli (or more generally, subgaussian) ensembles we

have

P(σn ≤ εn−1/2) � ε + cn

for some 0 < c < 1 (Rudelson-Vershynin 2007).
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Here we shall present a slightly different estimate:

Theorem. (T.-Vu 2007) Let M be (say) the

Bernoulli ensemble. Then for every A > 0

there exists B > 0 such that

P(σn ≤ n−B) �A n−A.

For the Bernoulli case, the argument allows one to take

B = A + 1/2 + o(1), thus almost recovering the optimal

bound in the polynomial regime. On the other hand, the

method here also extends to matrices with much weaker

moment conditions (one only needs uniform second

moments), because one does not need strong control on

σ1 (crude polynomial-type bounds σ1 � nO(1) suffice).
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Overview of argument

Once again, our starting points are the identities

P(σn ≤ n−B) = P(‖Mv‖ ≤ n−B for some v ∈ Sn−1)

and

‖Mv‖ = (
n∑

i=1

|Xi · v|2)−1/2.

A key role is played by the small ball probabilities

pε(v) := P(|X · v| ≤ ε)

for various v ∈ Sn−1 and ε > 0, where X is uniformly

distributed on {−1, +1}n.
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Following the general strategy of (Rudelson, 2006), one

breaks into three cases:

• In the compressible case in which v is mostly

concentrated on a few coefficients, an ε-net argument

works well (due to the low entropy of the space of

compressible vectors), combined with

Littlewood-Offord inequalities of Erdős type.

• In the poor case in which the small ball probabilities

are very small (less than n−A−O(1)), a conditioning

argument (similar to those used in the previous

lecture) suffices.
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• The most difficult case is the rich incompressible case

in which v is spread out among many coefficients,

but has large small ball probabilities. Here an ε-net

argument eventually works, but the entropy estimate

required is non-trivial. (In the case of integer-valued

matrices, one can avoid entropy calculations by using

a discretisation argument instead (T.-Vu, 2007).)

Actually, one can unify the compressible and rich cases,

though for conceptual reasons it seems better to keep

these cases separate.
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The conditioning argument

We sketch here the conditioning argument (essentially

dating back to (Komlós, 1967)) used to establish the

bound

P(‖Mv‖ ≤ n−B for some poor v ∈ Sn−1) � n−A

where the vectors v are poor in the sense that

pn−B+O(1)(v) ≤ n−A−O(1). To simplify the exposition we

shall be careless with the nO(1) factors.
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The key point is that M has the same least singular

value as its adjoint M∗. In particular, if ‖Mv‖ ≤ n−B for

some (poor) unit vector v, then we must also have

‖M∗w‖ ≤ n−B for some unit vector w, thus we have a

near-linear dependence

‖w1X1 + . . . + wnXn‖ ≤ n−B

between the rows of M . By symmetry (and paying a

factor of n in the probability bounds) we may assume

that |wn| ≥ 1/
√

n, and so we can express Xn as a linear

combination of X1, . . . , Xn−1 (with coefficients O(nO(1)))

plus an error of O(n−B+O(1)).
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On the other hand, since ‖Mv‖ ≤ n−B, we have

Xi · v = O(n−B) for all 1 ≤ i ≤ n. In particular, we can

find a poor vector u depending only on X1, . . . , Xn−1

such that Xi · u = O(n−B) for all 1 ≤ i ≤ n− 1. (One can

view u as a kind of “unit normal” to the space spanned

by X1, . . . , Xn−1.)

We now condition X1, . . . , Xn−1 to fix u. In order for

‖Mv‖ ≤ n−B to hold, Xn needs to be approximately a

combination of X1, . . . , Xn−1, which forces

Xn · u = O(n−B+O(1)). But as u is poor, this only occurs

with probability n−A−O(1), and the claim follows.
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The rich case

Now let us consider the problem of bounding the

contribution

P(‖Mv‖ ≤ n−B for some rich v ∈ Sn−1)

where the vectors are p-rich in the sense that

pn−B+O(1)(v) ∼ p

for some n−A−O(1) � p ≤ 1. In this case we will in fact

obtain an exponentially good bound exp(−cn).

There are some important technicalities involving the

nO(1) factors, but we shall temporarily ignore them.
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By paying a logarithmic factor, we can fix p (up to

constants). The hardest case is when p ∼ n−A−O(1). (In

the other extreme case p ∼ 1, the Littlewood-Offord

inequality of Erdős forces v to be compressed, and the

ε-net argument works easily in this case.)

Using a crude bound σ1 � nO(1) and the ε-net argument,

we can replace the sphere Sn−1 by an n−B+O(1)-net Ω.

For each rich v, we morally have

P(‖Mv‖ ≤ n−B) � pn.

So we need an entropy bound on Ω that is much better

than p−n.
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The full net Ω has cardinality about (nB+O(1))n - far too

large! But the set of p-rich vectors in Ω is much smaller.

Indeed, modulo some technicalities involving nO(1)

factors, we have

Proposition (T.-Vu, 2008) The number of p-

rich vectors in Ω is at most n−n/2+o(n)p−n.

Except for these technicalities, this proposition settles

the rich case.

30



A similar bound was implicitly obtained in

(Rudelson-Vershynin, 2007) which works for more general

p, but requires more care with the nO(1) factors (in

particular, one needs σ1 = O(n1/2).

A variant of the Rudelson-Vershynin bound has also been

obtained recently in (Götze-Tikhomorov, 2008), which

can handle nO(1) factors (thus allowing for σ1 to be large)

but needs p to be close to 1, thus giving a o(1) tail

probability bound for the least singular value in this case.
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What are the nO(1) technicalities?

• A problem arises because the small ball probabilities

pn−B+O(1)(v) vary with the O(1) parameter in the

exponent.

• On the other hand, in the rich case we have

n−A−O(1) � pn−B+O(1)(v) ≤ 1 for all values of O(1) in

a certain range. Also, pε(v) is clearly increasing in ε.
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• If B is sufficiently large depending on A, we may

apply the pigeonhole principle to find B′ ≤ B such

that

pn−B′ (v) ≤ pn−B′+10(v) ≤ n0.1pn−B′ (v)

(say). Using this range of scales [n−B′
, n−B′+10]

instead of n−B+O(1), we can fix the argument.

Optimising this argument carefully in the case

σ1 = O(n1/2) gives the near-sharp dependence

B = A + 1/2 + o(1). More generally, when σ1 = O(nγ)

for some γ ≥ 1/2, we obtain B = (2A + 1)γ + o(1)

(T.-Vu, 2008).
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The entropy bound

The heart of the matter is the entropy bound counting

the number of p-rich vectors. This is essentially the

Inverse Littlewood-Offord problem If v =

(v1, . . . , vn) is a unit vector such that

pε(v) = P(|a1v1 + . . . + anvn| ≤ ε) ≥ p,

where a1, . . . , an ∈ {−1, +1} are iid Bernoulli

signs, what does this tell us about v? (In par-

ticular, what entropy does the set of such v

have?)
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For instance, the classical Littlewood-Offord inequality of

Erdős, when rephrased in this language, tells us that at

most O(1/p2) coefficients of v can exceed ε in magnitude.

Unfortunately this bound is only non-trivial for

p ≥ 1/
√

n. Later Littlewood-Offord results of Moser,

Halász, Kleitman, Sarkőzy-Szemerédi, and others reveal

more information for smaller p, but not enough to get

satisfactory entropy bounds for the inverse problem.

We do not yet have an absolutely sharp answer to this

problem (as compared to, say, the inverse theorems of

Freiman type in additive combinatorics). However, the

bounds we have are sufficient to establish various

non-trivial bounds for the least singular value.
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One case in which pε(v) is expected to be large, is when

the coefficients of v lie close to those of a (symmetric)

generalised arithmetic progression (GAP)

P := {n1w1 + . . . + nrwr : ni ∈ {−Ni, . . . , Ni}}

for some rank r ≥ 1, some dimensions N1, . . . , Nr, and

some steps w1, . . . , wr ∈ R. Indeed, from the theory of

random walks, we know that if v1, . . . , vn ∈ P , then the

random walk a1v1 + . . . + anvn mostly lies in
√

nP , which

has cardinality O(nr/2|P |), and so the small ball

probability should be at least n−r/2/|P | in this case.

Similarly if v1, . . . , vn “almost” lie in P .
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It turns out that this implication is partially reversible: if

the small ball probability is large, then almost all the

coefficients of v lie near an arithmetic progression. Here

is a typical statement:

Theorem (T.-Vu, 2007) If pε(v) ≥ n−A, then

all but n0.01 of the coefficients of n coefficients

of v lie within O(nOA(1)ε) of a GAP P of rank

OA(1) and volume |P | �A nOA(1).

Other results of this type are in (Rudelson-Vershynin,

2007) and (T.-Vu, 2008). The latter result is what is

needed to prove the entropy bound mentioned earlier.
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The proofs of these inverse Littlewood-Offord theorems

proceeds by expressing the small ball probability pε(v) in

a Fourier-analytic form (using the Esséen concentration

inequality), and then relying heavily on the additive

combiantorics of GAPs (i.e. Minkowski’s geometry of

numbers).
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A discretisation trick

In the case of integer-valued matrices (e.g. Bernoulli

ensemble) there is an additional discretisation trick which

can allow one to avoid detailed entropy calculations.
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The key observation is this: if one has some concentration

|a1v1 + . . . + anvn| ≤ ε

for some small 0 < ε < 1/4 and some signs

a1, . . . , an ∈ {−1, +1}, and the vi are all very close

(within 1/4n) to an integer, then we can round off to

obtain an exact identity

a1[v1] + . . . + an[vn] = 0

where [v] is the nearest integer to v.
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Similar phenomena hold if the coefficients of v lie close to

some “coarse” GAP, modulo “fine” errors which are

small with respect to the spacing of that GAP. In this

case we say that v is discretisable.

In principle, this trick allows us to estimate a tail

probability P(σn < ε) by the singularity probability

P(σn = 0), which is much better understood.

It turns out that an elementary analysis of GAPs,

combined with the inverse Littlewood-Offord theorem

mentioned earlier, implies that all (polynomially) rich

vectors are discretisable (T.-Vu 2007; see

Rudelson-Vershynin 2007 for a related result). This gives

an alternate way to treat the Bernoulli case.
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