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Finding models of large dense graphs

Suppose we are given a large dense graph G = (V, E),

where V is a set of n = |V | vertices (with n large), and E

is a set of edges, which for us will usually be dense in the

sense that |E| ≥ cn2 for some constant c > 0.

• Example 1 G could be an Erdős-Rényi random

graph G(V, 1/2), with any two vertices connected by

an edge with probability 1/2.

• Example 2 G could be a random complete bipartite

graph G(V1, V2, 1), with the two vertex classes V1, V2

chosen at random.
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It is natural to try to classify all large dense graphs into

various “types”.

• Q1. Is there some “reasonable” classification of all

possible “types” of such graphs?

• Q2. Can one determine what “type” a graph is, just

by looking at a small (random) piece of it?

• Q3. If one knows what type of graph one has, what

questions can one then answer about the graph?

Of course, these questions are related to each other, and

depend on the definition of “type”.
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When n is large, the number of possible graphs on n

vertices is enormous (of size 2(n
2)). This is still true even

if we identify pairs of graphs which are isomorphic (note

the number of isomorphisms is only n! = 2O(n log n)). So a

complete description of all such graphs is infeasible in the

limit n →∞.

But suppose we only want to classify all the large dense

graphs approximately, by choosing some error tolerance

ε > 0 and asking how many different “types” of large

dense graph there are “up to error ε”. Does the situation

improve?
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The answer is yes - if we define “type” and “error”

properly. The correct viewpoint is to view large dense

graphs as being built up of special components, namely

the ε-regular graphs.

Definition A bipartite graph G = (V, W, E)

is said to be ε-regular with density 0 ≤
d ≤ 1 if for any S ⊂ V and T ⊂ W

one has |eG(S, T )− d|S||T || ≤ ε|V ||W |, where

eG(S, T ) is the number of edges between S and

T .
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Example If V, W are sufficiently large depending on ε,

then a random bipartite graph G(V, W, d) between V and

W , in which every pair forms an edge with independent

probability d, is very likely to be ε-regular.
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A more informal definition: a bipartite graph

G = (V, W, E) is ε-regular with density 0 ≤ d ≤ 1 and

some small ε if the probability distribution of small

randomly chosen subgraphs of G is nearly

indistinguishable (up to error O(ε)) from that of the

random graph G(V, W, d) in the previous example.

This allows us to compute any “local” statistic of an

ε-regular graph. For instance, the number of (labeled)

4-cycles in such a graph is (d4 + O(ε))|V |2|W |2.
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The remarkable fact is that every large dense graph is

essentially made up of a bounded number of regular

graphs:

Szemerédi regularity lemma (Szemerédi,

1975) Let G = (V, E) be a graph, and let

ε > 0. Then there exists a vertex partition

V = V1 ∪ . . . ∪ Vm into m = Oε(1) pieces of

comparable size, such that the portion of G

connecting Vi and Vj is ε-regular (with some

density dij) for 1−ε of all pairs 1 ≤ i < j ≤ m.
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Thus, in principle, every graph is described “up to error

ε” (and up to isomorphism) by a collection of numbers

dij for 1 ≤ i < j ≤ m, where m is bounded by ε but not

depending on n.

The dependence of m on ε is, however, rather poor - m

can be as large as a tower of exponentials of height ε−O(1)

(Gowers, 1997). Nevertheless, this lemma is of

fundamental importance in the asymptotic regime

n →∞.
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The regularity lemma has countless applications. Here is

a typical one:

Triangle removal lemma(Ruzsa-Szemerédi,

1978) Suppose a graph G on n vertices contains

only o(n3) triangles. Then these triangles can

be deleted by removing at most o(n2) edges.

Sketch of proof: Apply the regularity lemma. If there

exist cells Vi, Vj, Vk with dijdjkdki large (and the pairs ij,

jk, ki all regular) then this would force G to have more

than o(n3) triangles.

Thus, for every i, j, k, one of the pairs ij, jk, ki is either

irregular or has small density. Deleting the o(n2) edges

associated to such pairs one obtains the claim.
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All known proofs of the triangle removal lemma use some

version of the regularity lemma (or something equivalent

to that lemma)!

The same general strategy allows one to prove various

property testing results for graphs using the regularity

lemma; see e.g. Alon-Shapira (2005), Lovasz-Szegedy

(2005), . . ..
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The graph theoretic applications of the regularity lemma

can lead to applications in other areas too. Here is a

typical example:

Roth-Varnavides theorem(Roth 1956; Var-

navides, 1959) A subset of Z/nZ of cardinality

at least δn will contain at least c(δ)n2 arith-

metic progressions of length 3 if n is large

enough compared to δ, where c(δ) > 0.

Sketch of proof: Suppose for contradiction that we could

find a set A ⊂ Z/nZ of cardinality at least δn which only

had o(n2) arithmetic progressions. In particular, there
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are at most o(n3) solutions to the system of constraints

x, y, z ∈ Z/nZ; 2x + y ∈ A; x− z ∈ A;−y − 2z ∈ A(∗).

This is asserting that a certain tripartite Cayley graph on

O(n) vertices has only o(n3) triangles, which can then be

deleted by removing only o(n2) edges. But every a ∈ A

and r ∈ Z/nZ generates a solution

(x, y, z) = (r, a− 2r, r − a) to (*), and removing an edge

deletes at most one of these δn2 solutions, giving the

required contradiction.
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Thanks to recent work by Nagle-Rödl-Schacht-Skokan,

Gowers, and later authors on extending the regularity

lemma to hypergraphs, the above methods have been

extended to give a new and fairly direct proof of

Szemerédi’s theorem(Szemerédi, 1975) Ev-

ery set of integers of positive upper density

contains arbitrarily long arithmetic progres-

sions.
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Another application of the regularity lemma is to

compactify the space of all large dense graphs. Let us say

that a sequence Gi = (Vi, Ei) of increasingly large graphs

is convergent if for any finite k, the probability

distribution of a random k-element subgraph of Gi

converges to a limit as i →∞. (For instance, for fixed p,

the Erdős-Rényi graphs G(n, p) are almost surely

convergent as n →∞.)

Theorem (Lovasz-Szegedy, 2004) Every se-

quence of increasingly large graphs has a con-

vergent subsequence.
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Actually, one can be more precise. Define a graphon to be

a symmetric measurable function p : [0, 1]× [0, 1] → [0, 1].

One can then define a generalised Erdős-Rényi graph

G(n, p) on n vertices by giving each vertex v a colour

xv ∈ [0, 1] uniformly at random, and then connecting v to

w with probability p(xv, xw) independently at random.

Let G(∞, p) be the (formal) graph limit of the G(n, p).

Theorem (Lovasz-Szegedy, 2004) Every se-

quence of increasingly large graphs has a

subsequence converging to G(∞, p) for some

graphon p.
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Example The complete random bipartite graphs

G(V1, V2, 1) on n vertices almost surely converge to the

graphon limit G(∞, p), where p is 1 on

[0, 1/2]× (1/2, 1] ∪ (1/2, 1] ∪ [0, 1/2] and zero elsewhere.

This theorem is largely equivalent to the regularity

lemma (or to a “weak” form of that lemma due to Frieze

and Kannan). In particular, many consequences of the

regularity lemma (e.g. the triangle removal lemma) can

also be proven using graph limits. The role of the

regularity lemma is then played by such classical analysis

results as the Lebesgue differentiation theorem (!).
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One can also view the theory of graph limits in terms of

the theory of exchangeable measures from probability

theory.

Given a finite deterministic graph G = (V, E), one can

create an infinite random graph G̃ = (Z, Ẽ) by randomly

assigning a vertex vn ∈ V to each integer n and then

“pulling back” the graph G by declaring n,m to be

connected in Ẽ if vn, vm are connected in E. This

random graph is exchangeable, which means that

permutations of the vertex set Z do not affect the

distribution of the graph.

The existence of graph limits is then equivalent to the

sequential compactness of exchangeable random graphs.
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As pointed out recently by Austin and Diaconis-Janson,

the identification of graph limits with graphons is

equivalent to a classification of exchangeable random

graphs (or exchangeable arrays) due to Aldous (1981)

and Kallenberg (1992), which in turn generalises a

classical theorem of de Finetti.
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By using the theory of exchangeable measures and a

compactness argument, one can show that one can

regularise a graph G = (V, E) by using random

neighbourhoods. More precisely, if one picks m vertices

v1, . . . , vm at random, and then partitions V into the 2m

cells formed by the neighbourhoods of these vertices,

then the probability that these cells form an ε-regular

partition of the graph G (after accounting for the

unequal sizes of the cells) approaches 1 for a sequence of

m going to infinity, where the decay rate and the sparsity

of the sequence is uniformly controlled in n. (This fact

was also observed by Ishigami, and may also be folklore.)
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Intuitively, as m gets large, the random sample of m

vertices is increasingly likely to ferret out any

irregularities or biases in the distribution of edges in the

graph, so that the only thing left after taking the

connectivity of these m vertices into account is random

noise.

This theory (and its extension to hypergraphs) was

recently used by Austin and myself to establish various

property testing results for graphs and hypergraphs.
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Regularity in additive combinatorics and

number theory

The philosophy of the regularity lemma - that a large

general object can be modeled by objects of much lower

complexity - is not restricted to graph theory. For

instance, such lemmas have become useful in additive

combinatorics and in number theory.
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The arithmetic analogue of regularity is that of Gowers

uniformity. Roughly speaking, two sets A, B are close in

the Gowers uniformity norm of order 2 if the number of

solutions to problems such as

a, a + r, a + 2r ∈ A

or

a, a + h1, a + h2, a + h1 + h2 ∈ A

are close to the number of solutions to the same problems

in B.

We say that A is ε-uniform of order 2 if it is within ε of a

random set of the same density in the Gowers uniformity

norm of order 2.
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More generally, A, B are close in the Gowers uniformity

norm of order k if the number of solutions to problems

such as

a, a + r, a + 2r, . . . , a + kr ∈ A

or

a +
∑
i∈I

hi ∈ A for all I ⊂ {1, . . . , k}

are close to the number of solutions to the same problems

in B.

We say that A is ε-uniform of order k if it is within ε of

a random set of the same density in the Gowers

uniformity norm of order k.
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Here is a typical statement:

Arithmetic regularity lemma of order 2

(Green, 2005) Let G be a vector space over

F2, let A ⊂ G be a set, and let ε > 0. Then

one can partition G into Oε(1) affine subspaces,

such that A is ε-uniform of order 2 on 1− ε.
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This result is proven by exploiting a close connection

between uniformity of order 2 of a set A, and the Fourier

coefficients of that set A.

Similar (but more complicated) statements exist for more

general abelian groups G, and can be used for instance to

give new proofs of the Roth-Varnavides theorem (as well

as various refinements thereof).

Analogues of this lemma for order 3 are known (Green-T.

2006, Gowers-Wolf 2008), and are conjectured for higher

order.
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A cousin of this lemma was also decisive in establishing

that the primes contain arbitrarily long arithmetic

progressions. Roughly speaking, the key proposition is

Sparse regularity lemma (Green-T. 2004)

Let k ≥ 2 be fixed and N be large. Let A be

the (weighted) set of primes from 1 to N , with

each prime p given a weight of log p. Then

there exists a dense (weighted) subset B of

{1, . . . , N}, with weights O(1), such that A

and B are close in the Gowers uniformity norm

of order k.
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[Actually, for technical reasons one does not work with

the primes themselves, but with an arithmetic progression

{n : Wn + b prime} of primes, for certain W, b.]

This lemma, combined with Szemerédi’s theorem on

arithmetic progressions, implies that the primes contain

infinitely many progressions of length k + 1.

The proof of the lemma is related to that of certain

variants of the Szemerédi regularity lemma for sparse

graphs.
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