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1. Ricci flow

Ricci flow is a means by which one can take an arbitrary Riemannian manifold, and
smooth out the geometry of that manifold to make it look more symmetric. It has
proven to be a very useful tool in understanding the topology of such manifolds.

Ricci flow can be defined for Riemannian manifolds of any dimension, but for sake
of exposition we restrict ourselves here to two-dimensional manifolds (i.e. surfaces),
as they are easy to visualise. From our everyday experience with three-dimensional
space R3, we are familiar with many surfaces such as spheres, cylinders, planes,
torii (e.g. the surface of a doughnut), and so forth. This is an extrinsic way to
think about surfaces - as subsets of a larger ambient space, in this case three-
dimensional Euclidean space. On the other hand, one can think about surfaces in a
more abstract intrinsic manner - by considering how the points in the surface stand
in relation with each other, but not in relation to any external space. (For instance,
the Klein bottle makes perfect sense as a surface from an intrinsic viewpoint, but
cannot be viewed extrinsically in three-dimensional Euclidean space R3, although
it can be viewed extrinsically in four-dimensional Euclidean space R4). It turns
out that the two viewpoints are mostly equivalent to each other, but it will be more
convenient here to adopt the intrinsic perspective.

A good example of a surface is the surface of the Earth. Extrinsically, this is
a subset of a three-dimensional space R3. But we can also view this surface two-
dimensionally by using an atlas: a collection of maps or charts that describe various
regions of this surface by identifying them with a subset of a two-dimensional plane.
As long as we have enough charts to cover the original surface, this atlas is sufficient
to describe the surface. This way of thinking of a surface is not completely intrinsic,
because there is more than one atlas that one could associate to this surface, and
they may differ in various minor ways. For instance, in one atlas, the city of Los
Angeles might be on the boundary of one of the charts, whereas in another atlas, it
might be in the interior of any chart that it appears in. However, there are many
facts one can deduce from an atlas which do not depend on the choice of atlas;
for instance, using any accurate atlas of the Earth one can see that one cannot
travel from Los Angeles to Sydney without crossing at least one ocean. If a fact
regarding a surface does not depend on which atlas one uses, we say that it is
intrinsic or coordinate-independent. It will turn out that Ricci flow is an intrinsic
flow on surfaces; it can be defined without any knowledge of charts or of an extrinsic
ambient space.
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We have informally described the mathematical concept of a surface, or two-
dimensional manifold. But to describe Ricci flow, we need the more sophisticated
concept of a Riemannian surface (or two-dimensional Riemannian manifold). This
is a surface M with an additional (intrinsic) object, a Riemannian metric g, which
specifies the distance d(x, y) between any two points x, y on the surface. The metric
also allows one to specify the angle ∠γ1, γ2 that any two curves γ1, γ2 on the surface
intersect in; for instance, the equator of the earth intersects any longitude at right
angles. The metric also specifies the area |A| of any given set A on the surface (e.g.
the area of Australia). There are a number of properties that these concepts of
distance, angle, and area have to satisfy, but the most important property can be
stated informally as follows: the geometry of a Riemannian surface has to be very
close to the geometry of the Euclidean plane at small length scales.

To give an example of what the above statement means, take any point x in the
surface M , and pick any radius r > 0. Because the Riemannian metric g specifies
a notion of distance, we can define the disk B(x, r) of radius r centred at x, defined
as the set of all points y whose distance d(x, y) to x is less than r. Because the
Riemannian metric g defines a notion of area, we can then discuss the area of
this disk B(x, r). In the Euclidean plane, this area would of course be πr2. In
a Riemannian surface, this need not be the case: for instance, the surface of the
Earth (and hence all disks within this surface) have only a finite amount of total
area, even though πr2 can be arbitrarily large as r goes to infinity. However, we
do require that when r is very small, that the area of the disk B(x, r) becomes
increasingly close to πr2; more precisely, we require that the ratio between the area
and πr2 converges to 1 in the limit r → 0.

This brings us to the notion of scalar curvature R(x). In some cases, such as on the
sphere, the area |B(x, r)| of a small disk B(x, r) is actually a little bit smaller than
πr2; when this is the case, we say that the surface has positive scalar curvature at x.
In some other cases, such as on a saddle, the area |B(x, r)| of a small disk B(x, r) is
a bit larger than πr2; then we say that the surface has negative scalar curvature at
x. In yet more cases, such as on a cylinder, the area |B(x, r)| of a small disk B(x, r)
is equal (or very nearly equal) to πr2; in this case we say the surface has vanishing
scalar curvature at x. (This is despite the cylinder being “curved” when viewed
extrinsically as a subset of three-dimensional space.) Note that on a complicated
surface it is perfectly possible to have positive scalar curvature at some points of
the surface and negative or vanishing scalar curvature at other points. The scalar
curvature R(x) at any given point x can be defined more precisely by the formula

R(x) := lim
r→0

πr2 − |B(x, r)|
πr4/24

.

(For surfaces in an ambient space, this intrinsic concept of scalar curvature is almost
identical to the extrinsic concept of Gauss curvature, which we will not define here.)

One can refine this notion to that of Ricci curvature Ric(x)(v, v). Consider now an
angular sector A(x, r, θ, v) inside a small disk B(x, r) of small angular aperture θ
(measured in radians) centred around some direction v (a unit vector) emanating
from x; this sector is well-defined, basically because the Riemannian metric gives
us the notions of distance and angle. In Euclidean space, the area |A(x, r, θ, v)| of
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this sector is 1
2θr2. But on a surface, the area |A(x, r, θ, v)| might be slightly less

(resp. slightly more) than 1
2θr2. In these cases we say that the surface has positive

(resp. negative) Ricci curvature at x in the direction v. More precisely, we have

Ric(x)(v, v) := lim
r→0

lim
θ→0

1
2θr2 − |A(x, r, θ, v)|

θr4/24
.

Now it turns out that for surfaces, this more complicated notion is in fact equivalent
to half of the scalar curvature: Ric(x)(v, v) = 1

2R(x). In particular the direction v
in fact plays no role in Ricci curvature in two dimensions. However, it is possible
to extend all of the above concepts to other dimensions. (For instance, to define
scalar and Ricci curvature for three-dimensional manifolds, one would use balls and
solid sectors instead of disks and angular sectors, as well as making other necessary
adjustments, such as replacing the expression πr2 with 4

3πr3.) In higher dimensions
it turns out that the Ricci curvature is more complicated than the scalar curvature;
for instance, in three dimensions it is possible for a point x to have positive Ricci
curvature in one direction but negative Ricci curvature in another; intuitively, this
means that narrow sectors in the former direction “curve inwards”, whereas narrow
sectors in the latter direction “curve outwards”.

Now we can describe Ricci flow informally as the process of stretching the metric
g in directions of negative Ricci curvature, and contracting the metric in directions
of positive Ricci curvature. The stronger the curvature, the faster the stretching
or contracting of the metric. The concepts of stretching and contracting will not
be defined formally here, but they increase or decrease the distance between points
along these directions. By changing the notion of distance, one also affects the
notions of angle and volume (though it turns out in two dimensions that Ricci flow
is conformal, which means that the notion of angle remains unaffected by the flow;
this fact is closely related to the previously mentioned fact that in two dimensions,
the Ricci curvature is the same in all directions). Ricci flow can be described
succinctly and precisely by the equation

d

dt
g = −2Ric

although we will not define here exactly what it means to differentiate the metric g
with respect to the time variable t, and what it means for that derivative to equal
the Ricci curvature multiplied by −2.

In principle, one could perform Ricci flow on a manifold for as long a period of time
as one wished. In practice, however, it is possible (especially in the presence of
positive curvature) for the Ricci flow to cause a manifold to develop singularities -
points where one ceases to look like a manifold (for instance, the geometry may stop
resembling Euclidean geometry even at very small scales). For example, if one starts
with a perfectly round sphere and performs Ricci flow, what will happen is that the
sphere will contract at a steady rate until it becomes a point, which is no longer a
two-dimensional manifold. In three dimensions, more complicated singularities are
possible: for instance, one can have a neck pinch, in which a cylinder-like “neck” of
the manifold shrinks under Ricci flow, until at one or more places along the neck, the
cylinder has tapered down to a point. The types of possible singularity formations
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for three-dimensional Ricci flow were only classified completely in a recent and very
important paper of Perelman.

Some years ago, Hamilton made the fundamental observation that Ricci flow is an
excellent tool for simplifying the structure of a manifold - generally speaking, it
compresses all the positive-curvature parts of the manifold into nothingness, while
expanding the negative-curvature parts of the manifold until they become very
homogeneous (the manifold begins to look much the same no matter which one
vantage point in the manifold one selects). Indeed, the flow seems to separate
the manifold into extremely symmetric components. For instance, in two dimen-
sions, the Ricci flow in fact always ends up endowing the manifold with a metric
of constant curvature, which could be positive (as in the sphere), zero (as in the
cylinder), or negative (as in a curious object known as hyperbolic space); the fact
that such a constant-curvature metric can always be found is known as the uni-
formisation theorem and is of fundamental importance in the theory of surfaces. In
higher dimensions, the Ricci flow can develop singularities before perfect symmetry
is attained, but it turns out that it is possible to perform surgeries on the singu-
larities that develop this way, so that the manifold becomes smooth again and one
can restart the Ricci flow process. (The surgery may however change the topology
of the manifold, for instance it might convert a connected manifold into two dis-
connected pieces.) In three dimensions, it has recently been shown by Perelman
(though with not all details fully fleshed out yet) that Ricci flow, when augmented
by surgery to remove the singularities, does indeed convert an arbitrary manifold
(obeying some mild assumptions) into a finite union of some very symmetric (and
explicitly describable) pieces; the precise statement of this conclusion was known
as the geometrisation conjecture of Thurston. One consequence of this conjecture
(which is now a rigorous theorem proved by Perelman) is the Poincaré conjecture:
any three-dimensional manifold which is simply connected (which means that any
closed loop on the manifold can be contracted smoothly to a point, without ever
leaving the manifold) can in fact be smoothly deformed into a 3-sphere (which
is to four-dimensional Euclidean space as the usual two-dimensional sphere is to
three-dimensional Euclidean space). The proof of Poincaré’s conjecture is one of
the most impressive recent achievements of modern mathematics; its proof, based
on a detailed analysis of Ricci flow and surgery, is far too complicated to summarise
here.
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