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Additive prime number theory

Additive prime number theory is the study of additive
patterns in the prime numbers 2, 3, 5, 7, . . ..
Examples of additive patterns include twins p, p + 2,
arithmetic progressions a, a + r , . . . , a + (k − 1)r , and
prime gaps pn+1 − pn.
Many open problems regarding these patterns still remain,
but there has been some recent progress in some
directions.
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Long arithmetic progressions in the primes

I’ll first discuss a theorem of Ben Green and myself from
2004:
Theorem: The primes contain arbitrarily long arithmetic
progressions.
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It was previously established by van der Corput (1929) that
the primes contained infinitely many progressions of length
three. In 1981, Heath-Brown showed that there are
infinitely many progressions of length four, in which three
elements are prime and the fourth is an almost prime (the
product of at most two primes).
The proof of the full theorem combines three separate
ingredients: random models for the primes, sieve theory,
and Szemerédi’s theorem.
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Prime counting heuristics

While we are not able to prove everything we would like to
in this subject, we do have a rather convincing set of
heuristics with which to predict how to count various
patterns in the primes.
The starting point is the prime number theorem, which
asserts that the number of primes less than a large
number N is roughly N/ log N.
One can interpret this fact probabilistically: if one picks an
integer at random between 1 and N, then it has a
probability of about 1/ log N of being prime.
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Cramér’s random model

Cramér’s random model for the primes asserts that the
primes behave “as if” each integer n had an independent
probability of 1/ log n of being prime, in the sense that
statistics for the primes asymptotically match statistics for
this random model.
This model turns out to not be totally accurate, but there
are some refinements to this model which give quite
convincing predictions.
We’ll illustrate this with a study of the twin prime
conjecture: there are infinitely many pairs p, p + 2 of
primes that are a distance 2 apart. This ancient conjecture
remains open, despite many partial results.
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A “proof” of the twin prime conjecture

Let N be a large number, and let n be an integer chosen
randomly between 1 and N.
From the prime number theorem, n and n + 2 each have a
probability about 1/ log N of being prime.
Assuming that the events “n is prime” and “n + 2 is prime”
are independent, we conclude that n, n + 2 are
simultaneously prime with probability about 1/ log2 N.
In other words, there are about N/ log2 N twin primes less
than N. Letting N →∞ we obtain the twin prime
conjecture.
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Correcting the model

This argument is incorrect. One reason to see this is that it
would also predict an infinite number of consecutive primes
n, n + 1, which is false, as all but one of the primes are odd.
However, one can correct for this by refining the model.
Right now, we are giving each integer n ∈ {1, . . . , N} an
equal chance of 1/ log N of being prime. A smarter model
would be to give the odd integers a 2/ log N chance of
being prime and the even integers a 0 chance of being
prime. (This omits the prime 2, but this is negligible in the
grand scheme of things.)
With this refined model, consecutive primes are ruled out
(as they should), and the expected number of twin primes
increases from N/ log2 N to 2N/ log2 N.
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The prime tuples conjecture

One can refine the model further, by excluding the
multiples of 3 from being prime (and increasing the
probability of the remaining numbers of being prime from
2/ log N to 3/ log N). This turns out to adjust the expected
number of twin primes downward, to 1.5 N

log2 N
.

Continuing to add information about small moduli, the
expected count given by these models continues to
change, but can be easily computed to converge to an
asymptotic prediction, which in the case of twin primes
turns out to be Π2

N
log2 N

, where Π2 is the twin prime
constant

Π2 = 2
∏

p odd prime
(1− 1

(p − 1)2 ) ≈ 1.320 . . . .
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This is believed to be the correct asymptotic.
More generally, there is a similar asymptotic conjectured
for other patterns in the primes; this is basically the
Hardy-Littlewood prime tuples conjecture. Roughly
speaking, it is asserting that the sequence of adjusted
Crámer models discussed earlier is asymptotically
accurate for describing the primes.
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One can think of each of these models as identifying a
certain amount of “structure” in the primes, and then
saying that all other aspects of the primes are “random”.
For instance, one could observe the structure that the
primes have density about 2/ log N in the odd numbers
and 1/ log N in the even numbers, but assert that there is
no discernible additional structure on top of this.
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Viewed in this light, the prime tuples conjecture is
asserting that apart from the “obvious” structure that the
primes obey (they are almost all coprime to 2, coprime to
3, etc.), there is no additional pattern or structure to this
sequence of integers, and they behave as if they were
random relative to the structure already identified.
However, we are unable at this time to rigorously rule out a
bizarre “conspiracy” among primes to exhibit an additional
layer of structure (e.g. to avoid congregating as twins
n, n + 2 after a certain point). How does one disprove a
conspiracy?
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Sieve theory

Now we turn from random models to another aspect of
prime number theory, namely sieve theory.
One way to approach the primes is to start with all the
integers in a given range (e.g. from N/2 to N) and then sift
out all the non-primes, for instance by removing the
multiples of 2, then the multiples of 3, and so forth up to
the multiples of

√
N (the sieve of Eratosthenes).

One can hope to count, say, twin primes, by keeping track
of the number of twins at each stage of the sifting process.

Terence Tao Recent progress in additive prime number theory



Introduction
Arithmetic progressions

Other linear patterns

Random models for the primes
Sieve theory
Szemerédi’s theorem
Putting it together

For instance, the number of twins n, n + 2 in the entire
range [N/2, N] is N/2 + O(1). After removing the multiples
of two, the count drops to N/4 + O(1); after removing the
multiples of three, it drops further to N/12 + O(1), and so
forth.
Unfortunately, the “O(1)” errors multiple rapidly, and
overwhelm the main term long before one reaches the
level of multiples of

√
N.

One can partially address this problem by “smoothing” the
sieve (rather than eliminating numbers outright, adjust their
“score” upward or downward whenever they are divisible or
not divisible by certain numbers), but one still cannot get to√

N by these techniques alone (there is a specific
obstruction to this, known as the parity problem).

Terence Tao Recent progress in additive prime number theory



Introduction
Arithmetic progressions

Other linear patterns

Random models for the primes
Sieve theory
Szemerédi’s theorem
Putting it together

Almost primes

Nevertheless, it is possible to use sieve theory to control
things up to some partial height, e.g. up to multiples of
N1/10. The resulting sifted set consists not only of primes,
but also contains almost primes - products of a bounded
number (e.g. at most ten) of (large) primes.
To summarise several decades of work in sieve theory into
a single sentence, these methods can establish analogues
of conjectures such as the prime tuples conjecture, but
with primes replaced by almost primes. For instance, one
can find infinitely many twins of almost primes. [I’m
glossing over the technical issue here of exactly how to
define “almost prime”.]
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To put it another way, the almost primes do indeed behave
like we expect the primes to, namely that they have no
structure beyond the obvious ones (like the primes, the
almost primes tend to be coprime to 2, coprime to 3, etc.)
On the other hand, there are more almost primes than
primes; there are about N/ log N primes less than N, but
there are about CN/ log N almost primes less than N
(where C is a constant that depends on how exactly one
defines “almost prime”).
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Szemerédi’s theorem

To summarise so far: we have conjectures about patterns
in the primes, but cannot prove them in general.
But if we replace primes with the larger set of almost
primes, we can then verify the analogous conjectures for
almost primes using sieve theory.
For a special type of pattern, namely arithmetic
progressions, there is an additional powerful tool available,
namely Szemerédi’s theorem.
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Szemerédi’s theorem: Any subset of the A integers of
positive upper density (which means that
lim supN→∞

#(A∩[−N,N])
2N+1 > 0) contains arbitrarily long

arithmetic progressions.
First proven by Szemerédi in 1975. Note that this type of
result is false for other patterns, such as twins n, n + 2 (e.g.
the multiples of 3 have positive density, but no twins).
Arithmetic progressions are more “indestructible” than
other patterns.
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Szemerédi’s theorem is difficult to prove. There have been
many different proofs, each of which has been very significant
in stimulating further research, including:

Szemerédi’s original combinatorial proof using graph
theory (1975);
Furstenberg’s ergodic theory proof (1977);
Gowers’ proof using “generalised Fourier analysis” and
additive combinatorics (2001);
The proofs of Gowers, Nagle-Rödl-Schacht-Skokan, and
later authors using graph and hypergraph theory
(2004-2006);
The combinatorial proof of the Polymath1 collaborative
project (2009).
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The proofs are too technical to describe here, but they all
share some features in common.
Namely, they all have to address the fact that the dense set
A of integers could be very structured (e.g. the multiples of
four), very random (e.g. a random subset of integers of
density 1/4), or a combination of both (e.g. a random
subset of the even integers of density 1/2).
In each of these cases, arithmetic progressions can be
found, but the reason for the progressions is different in
different cases.
Accordingly, all of the proofs must at some point split A up
into “structured” and “random” components.
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Putting it all together

Szemerédi’s theorem shows that sets of positive density
have arbitrarily long progressions.
It does not directly apply to the primes, because the primes
have zero density.
However, the primes have positive relative density with
respect to the almost primes.
And the almost primes behave quite randomly (in
particular, they have plenty of progressions).
It is possible to combine these facts to show that the
primes have arbitrarily long progressions.
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Very informal sketch of proof

If the primes obeyed the (modified) Cramér random model,
we would be done. But they could obey some exotic
structure not predicted by this model, e.g. they could be
unexpectedly dense on some structured set.
If this occurs, we adjust the random model to take this
additional structure into account. We repeat this process
until no significant additional structure is found.
We end up with some “exotic” random model that models
the primes. (Showing the process terminates is non-trivial.)
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On the other hand, the primes are a dense subset of the
almost primes, which behave like a random subset of the
entire integers. (Here we use a particular notion of the
almost primes, studied by Goldston and Yıldırım in their
work on prime gaps.
Because of this, one can show that the random model for
the primes contain a random subset of a dense subset of
integers.
Dense subsets of the integers contain lots of arithmetic
progressions. Many of them will survive the passage to a
random subset.
Since the model for the primes is accurate, the primes
themselves contain lots of arithmetic progressions.
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Other linear patterns

An arithmetic progression of a fixed length k is a sequence
of numbers n1, n1 + n2, n1 + 2n2, . . . , n1 + (k − 1)n2
parameterised in a linear fashion by two integer
parameters a, r .
One can consider more general linear (or affine) patterns
c11n1 + . . . + c1dnd + c1, . . . , ck1n1 + . . . + ckdnd + ck
generated by some integer parameters n1, . . . , nd , where
the cij and ci are fixed coefficients.
One can then ask whether one can find choices of the
parameters in which all of the elements in this pattern are
prime; one can also ask the more refined question of how
many such choices there are in a given range (e.g. with all
n1, . . . , nd less than a threshold N).
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Many classical problems in prime number theory can be viewed
as special cases of this problem. For instance:

The twin prime conjecture corresponds to the pattern
n1, n1 + 2.
The even Goldbach conjecture corresponds to the pattern
n1, N − n1, where N is a fixed even number larger than 2.
The odd Goldbach conjecture corresponds to the pattern
n1, n2, N − n1 − n2, where N is a fixed odd number larger
than 5.
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There are some obvious obstructions to solvability of this
problem.

Obstructions mod p If it is not possible for all of the linear
forms to be simultaneously coprime to a given modulus p,
then this presents an obvious obstruction to solvability. For
instance, at least one of n, n + 1 has to be even, which
makes it hard for both to be prime; similarly, at least one of
n, n + 2, n + 4 has to be divisible by 3.
Obstructions at infinity If the linear forms can be positive
only finitely often, then this of course prevents having more
than a finite number of solutions.
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In a series of papers, Ben Green, Tamar Ziegler and I
(2006-2009) established the following result:
Theorem. If a family of affine-linear forms has no
obstructions mod p and at infinity, and any two forms are
affinely independent, then the forms can be simultaneously
prime infinitely often. Furthermore, the number of solutions
obeys the asymptotic predicted by the Hardy-Littlewood
prime tuples conjecture.
Thus, for instance, there are infinitely many n1, n2 such that
n1, n2, n1 + n2 + 1, n1 + 2n2 + 2 are all prime (i.e. there are
infinitely many progressions of length three whose
difference is one less than a prime). The theorem also
implies our previous result that the primes contained
arbitrarily long arithmetic progressions.
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Unfortunately, the requirement that no two forms are
affinely dependent means that the theorem does not apply
to classical problems such as the twin prime problem. (A
variant of the result can however be used to recover the
famous theorem of Vinogradov that the odd Goldbach
conjecture is true for sufficiently large odd numbers.)
Indeed, our methods fundamentally rely on having at least
two free parameters n1, n2 to work with; one-parameter
problems such as the twin prime or even Goldbach
conjecture remain out of reach.
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The starting point for the arguments is similar to that used
to establish long progressions in primes, namely to locate
an accurate dense model for the primes.
Previously, one used Szemerédi’s theorem to generate
progressions regardless of whether the primes obeyed the
Crámer model or some more exotic model. Here,
Szemerédi’s theorem is not available. Instead, we work to
eliminate the possibility of an exotic model, leaving only the
Crámer model.
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Dichotomy between structure and randomness

The two key steps in the argument (in addition to the fact
that the primes have a dense model) are, roughly
speaking, as follows:
Proposition 1. If a dense set does not have the “expected”
number of patterns of a certain form, then it must be
irregularly distributed with respect to some structured set.
Proposition 2. The primes (or more precisely, a proxy for
the primes known as the Möbius function) is uniformly
distributed with respect to every structured set.
Combining these facts with some additional arguments,
one obtains the theorem.
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What is structure?

To formalise this approach, one has to define precisely the
type of “structured sets” that block a set from having the
expected number of patterns.
To given an example, suppose that a set of integers A had
an unusual propensity to congregate in the set P of
integers with a last digit of 7. Then one would expect A to
have an unusually large number of (say) arithmetic
progressions n, n + r , n + 2r of length three, since
whenever the first two elements of a progression lie in P,
the third element does also.
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More generally, any infinite arithmetic progression
P = {n : n = a mod q} can distort the number of
progressions of length three in this manner.
A little less obviously, a Bohr set such as
P = {n : {

√
2n} ≤ 0.1}, where {x} is the fractional part of

n, also distorts progressions of length three. This can be
explained using the identity

√
2n − 2

√
2(n + r) +

√
2(n + 2r) = 0.
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Even less obviously, for more complicated patterns such as
progressions n, n + r , n + 2r , n + 3r of length four,
quadratic Bohr sets such as P = {n : {

√
2n2} ≤ 0.1} can

distort the number of patterns, ultimately because of
identities such as
√

2n2 − 3
√

2(n + r)2 + 3
√

2(n + 2r)2 −
√

2(n + 3r)2 = 0.
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It turns out (with a lot of effort, using some technology of
Gowers, of Ratner, and of Leibman) that one can
completely classify the types of sets that can distort these
sots of patterns, in terms of the dynamics of nilmanifolds
G/Γ.
One can also show (using some powerful technology of
Ratner and of Vinogradov) that the primes behave
uniformly with respect to these dynamical systems.
These are the two major ingredients used to establish the
main theorem.
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