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Astrometry
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Solar system montage, NASA/JPL

Astrometry is the study of positions 
and movements of celestial bodies 

(sun, moon, planets, stars, etc.).

It is a major subfield of astronomy.



Solar system montage, NASA/JPL

Typical questions in astrometry are:

• How far is it from the Earth to the Moon?

• From the Earth to the Sun?

• From the Sun to other planets?

• From the Sun to nearby stars?

• From the Sun to distant stars?



These distances are far too 
vast to be measured directly.

D1

D2

D1 = ???

D2 = ???
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Nevertheless, there are several ways to 
measure these distances indirectly.

D1

D2

D1 / D2 = 3.4 ± 0.1

Hubble deep field, NASA



The methods often rely more on 
mathematics than on technology.

D1

D2

v1 = H D1

v2 = H D2

v1 / v2 = 3.4 ± 0.1

Hubble deep field, NASA

D1 / D2 = 3.4 ± 0.1



From “The Essential Cosmic Perspective”, Bennett et al.

The indirect methods control large 
distances in terms of smaller distances.



From “The Essential Cosmic Perspective”, Bennett et al.

The smaller distances are controlled by 
even smaller distances...



From “The Essential Cosmic Perspective”, Bennett et al.

… and so on, until one reaches distances 
that one can measure directly.



From “The Essential Cosmic Perspective”, Bennett et al.

This is the cosmic distance ladder.



1st rung: the Earth

Earth Observing System composite, NASA



Nowadays, we know that the 
earth is approximately 

spherical, with radius 6378 
kilometers at the equator and 
6356 kilometers at the poles.

Earth Observing System composite, NASA



These values have now been 

verified to great precision by 

many means, including modern 

satellites.

Earth Observing System composite, NASA



But suppose we had no advanced 

technology such as spaceflight, 

ocean and air travel, or even 

telescopes and sextants.

Earth Observing System composite, NASA



Could we still 

calculate the radius 

of the Earth?

Earth Observing System composite, NASA



Could we even tell 

that the Earth was 

round?

Earth Observing System composite, NASA



The answer is yes – if one 
knows some geometry!



Aristotle (384-322 BCE) gave 
a convincing indirect

argument that the Earth was 
round… by looking at the 

Moon.

Copy of a bust of Aristotle by Lysippos (330 BCE)



Aristotle knew that lunar 
eclipses only occurred 
when the Moon was 

directly opposite the Sun.



He deduced that these 
eclipses were caused by 
the Moon falling into the 

Earth’s shadow.



But the shadow of the 
Earth on the Moon in an 

eclipse was always a 
circular arc.



In order for Earth’s 
shadows to always be 

circular, the Earth must 
be round. 



Aristotle also knew there 
were stars one could see 

in Greece but not in 
Egypt, or vice versa.

Night Sky, Till Credner



He reasoned that this was 
due to the curvature of 

the Earth, so that its 
radius was finite.

Night Sky, Till Credner



However, he was unable to 
get an accurate 

measurement of this 
radius.

Night Sky, Till Credner



Eratosthenes, Nordisk familjebok, 1907

Eratosthenes (276-194 
BCE) computed the 

radius of the Earth to be 
40,000 stadia (6800 km). 



Eratosthenes, Nordisk familjebok, 1907

This is accurate 
to within eight 

percent.



Eratosthenes, Nordisk familjebok, 1907

The argument was 
again indirect – but 

now relied on looking 
at the Sun.



Eratosthenes read of a well in Syene, 
Egypt which at noon on the summer 
solstice (June 21) would reflect the 

overhead sun.

Tropic of Cancer, Swinburne University of Technology

Syene



[This is because Syene lies 
almost directly on the 

Tropic of Cancer.]

Tropic of Cancer, Swinburne University of Technology

Syene

Sun directly 

overhead



Eratosthenes tried the 
same experiment in his 

home city of Alexandria.

Tropic of Cancer, Swinburne University of Technology

Syene

Sun directly 

overhead

Alexandria



But on the solstice, the sun was 
at an angle and did not reflect 
from the bottom of the well.

Tropic of Cancer, Swinburne University of Technology

Syene

Sun directly 

overhead

Alexandria

Sun not quite 

overhead



Using a gnomon (measuring stick), 
Eratosthenes measured the deviation 

of the sun from the vertical as 7o.

Tropic of Cancer, Swinburne University of Technology

Syene

Sun directly 

overhead

Alexandria

7o



From trade caravans and other sources, 
Eratosthenes knew Syene to be 5,000 
stadia (740 km) south of Alexandria.

Tropic of Cancer, Swinburne University of Technology

Syene

Sun directly 

overhead

Alexandria

7o

5000 stadia



This is enough 
information to compute 
the radius of the Earth.

Tropic of Cancer, Swinburne University of Technology

7o

5000 stadia7o

r

r

2 π r * 7o / 360o

= 5000 stadia 

r=40000 stadia



[This assumes that the 
Sun is quite far away, 
but more on this later.]

Tropic of Cancer, Swinburne University of Technology

7o

5000 stadia7o

r

r

2 π r * 7o / 360o

= 5000 stadia 

r=40000 stadia



2nd rung: the 

Moon

NASA



• What shape is the Moon?

• How large is the Moon?

• How far away is the Moon?

NASA



The ancient Greeks 
could answer these 

questions also.

NASA



Aristotle argued that the Moon was a 
sphere (rather than a disk) because the 
terminator (the boundary of the Sun’s 

light on the Moon) was always a 
circular arc.

Merriam-Webster



Aristarchus (310-230 BCE) computed 
the distance of the Earth to the Moon 

as about 60 Earth radii. 

[In truth, it varies from 57 to 63 Earth 
radii.]



Aristarchus also computed the radius of 
the Moon as 1/3 the radius of the 

Earth. 

[In truth, it is 0.273 Earth radii.]



The radius of the Earth was computed 
in the previous rung of the ladder, so 
we now know the size and location of 

the Moon.



Aristarchus’s argument to 
measure the distance to the 

Moon was indirect, and 
relied on the Sun.



Aristarchus knew that lunar 
eclipses were caused by the 
Moon passing through the 

Earth’s shadow.



The Earth’s shadow is 
approximately two 
Earth radii wide.

2r



The maximum 
length of a 

lunar eclipse is 
three hours.

2r

v = 2r / 3 hours



It takes one month for 
the Moon to go 

around the Earth.

2r

v = 2r / 3 hours

= 2 π D / 1 month D



This is enough 
information to work 

out the distance to the 
Moon in Earth radii.

2r

D

v = 2r / 3 hours

= 2 π D / 1 month

D = 60 r



Also, the Moon takes 
about 2 minutes to 

set.

V = 2R / 2 min
2R

Moonset over the Colorado Rocky 

Mountains, Sep 15 2008, www.komar.org



The Moon takes 24 hours 
to make a full (apparent) 
rotation around the Earth.

2R
V = 2R / 2 min

= 2 π D / 24 hours

Moonset over the Colorado Rocky 

Mountains, Sep 15 2008, www.komar.org



This is enough information 
to determine the radius of 
the Moon, in terms of the 
distance to the Moon…

2R
V = 2R / 2 min

= 2 π D / 24 hours

R = D / 180

Moonset over the Colorado Rocky 

Mountains, Sep 15 2008, www.komar.org



… which we have 
just computed.

2R
V = 2R / 2 min

= 2 π D / 24 hours

R = D / 180

= r / 3  

Moonset over the Colorado Rocky 

Mountains, Sep 15 2008, www.komar.org



[Aristarchus, by the way, was 
handicapped by not having an 

accurate value of π, which had to 
wait until Archimedes (287-

212BCE) some decades later!]

2R
V = 2R / 2 min

= 2 π D / 24 hours

R = D / 180

= r / 3  

Moonset over the Colorado Rocky 

Mountains, Sep 15 2008, www.komar.org



EIT-SOHO Consortium, ESA, NASA

3rd rung: the Sun



EIT-SOHO Consortium, ESA, NASA

• How large is the Sun?

• How far away is the Sun?



EIT-SOHO Consortium, ESA, NASA

Once again, the ancient Greeks 
could answer these questions 
(but with imperfect accuracy).



EIT-SOHO Consortium, ESA, NASA

Their methods were indirect, 
and relied on the Moon.



Zimbabwe Solar Eclipse 4 Dec 2002, Murray Alexander

Aristarchus already computed 
that the radius of the Moon 
was 1/180 of the distance to 

the Moon.



Zimbabwe Solar Eclipse 4 Dec 2002, Murray Alexander

He also knew that during a 
solar eclipse, the Moon 
covered the Sun almost 

perfectly.



Zimbabwe Solar Eclipse 4 Dec 2002, Murray Alexander

Using similar triangles, he 
concluded that the radius of 

the Sun was also 1/180 of the 
distance to the Sun.



Zimbabwe Solar Eclipse 4 Dec 2002, Murray Alexander

So his next task was to 
compute the distance 

to the Sun.



Zimbabwe Solar Eclipse 4 Dec 2002, Murray Alexander

For this, he turned to 
the Moon again for 

help.



He knew that new Moons 
occurred when the Moon was 
between the Earth and Sun…

BBC



… full Moons occurred when the 
Moon was directly opposite the 

Sun…
BBC



… and half Moons occurred when 
the Moon made a right angle 

between Earth and Sun.
BBC



This implies that half Moons 
occur slightly closer to new 
Moons than to full Moons.

BBC

θ

θ < π/2



Aristarchus thought that half Moons 
occurred 12 hours before the 

midpoint of a new and full Moon.
BBC

θ

θ = π/2 – 2 π *12 

hours/1 month) 



From this and trigonometry, he 
concluded that the Sun was 20 

times further away than the Moon.
BBC

θ

θ = π/2 – 2 π *12 

hours/1 month

cos θ = d/D

d

DD = 20 d



Unfortunately, with ancient Greek 
technology it was hard to time a 

new Moon perfectly.
BBC

θ

θ = π/2 – 2 π *12 

hours/1 month

cos θ = d/D

d

DD = 20 d



The true time discrepancy is ½ hour 
(not 12 hours), and the Sun is 390 
times further away (not 20 times).

BBC

θ

θ = π/2 – 2 π /2 

hour/1 month

cos θ = d/D

d

DD = 390 d



Nevertheless, the basic 
method was correct.

BBC

θ

θ = π/2 – 2 π /2 

hour/1 month

cos θ = d/D

d

DD = 390 d



And Aristarchus’ 
computations led him to an 

important conclusion…
BBC

θ

d = 60 r

D/d = 20

R/D = 1/180

d

D

r

R



… the Sun was much larger 
than the Earth.

BBC

θ

d = 60 r

D/d = 20

R/D = 1/180

d

D

r

R

R ~ 7 r 



[In fact, it is much, much 
larger.]

BBC

θ

d = 60 r

D/d = 20 390

R/D = 1/180

d

D

r

R

R = 7 r 109 r 



He then concluded it was 
absurd to think the Sun 

went around the Earth…

NASA/ESA



… and was the first to 
propose the heliocentric 

model that the Earth 
went around the Sun.

NASA/ESA



[1700 years later, 
Copernicus would credit 

Aristarchus for this 
idea.]

NASA/ESA



Ironically, Aristarchus’ 
theory was not accepted 

by the other ancient 
Greeks…

NASA/ESA



… but we’ll explain 
why later.

NASA/ESA



The distance from the Earth to the Sun is 
known as the Astronomical Unit (AU).

Wikipedia



It is an extremely important rung in the 
cosmic distance ladder.

Wikipedia



Aristarchus’ original estimate of the AU 
was inaccurate…

Wikipedia



… but we’ll see much more accurate ways 
to measure the AU later on.

Wikipedia



4th rung: the 

planets

Solar system montage, NASA/JPL



The ancient astrologers knew that 
all the planets lay on a plane (the 

ecliptic), because they only 
moved through the Zodiac.

Solar system montage, NASA/JPL



But this still left many 
questions unanswered:

Solar system montage, NASA/JPL



• How far away are the planets (e.g. 
Mars)?

• What are their orbits?

• How long does it take to complete 
an orbit?

Solar system montage, NASA/JPL



Ptolemy (90-168 CE) attempted 
to answer these questions, but 

obtained highly inaccurate 
answers…



... because he was working with 
a geocentric model rather 
than a heliocentric one.



The first person to obtain 
accurate answers was Nicholas 

Copernicus (1473-1543).



Copernicus started with the records of 
the ancient Babylonians, who knew 

that the apparent motion of Mars (say) 
repeated itself every 780 days (the 

synodic period of Mars).

Babylonian world map, 7th-8th century BCE, British Museum

ωEarth – ωMars =  1/780 days



Using the heliocentric model, he 
also knew that the Earth went 
around the Sun once a year.

Babylonian world map, 7th-8th century BCE, British Museum

ωEarth – ωMars =  1/780 days

ωEarth = 1/year



Subtracting the implied angular velocities, 
he found that Mars went around the Sun 
every 687 days (the sidereal period of 

Mars).

Babylonian world map, 7th-8th century BCE, British Museum

ωEarth – ωMars =  1/780 days

ωEarth = 1/year

ωMars =  1/687 days



Assuming circular orbits, and using 
measurements of the location of Mars in 

the Zodiac at various dates...

Babylonian world map, 7th-8th century BCE, British Museum

ωEarth – ωMars =  1/780 days

ωEarth = 1/year

ωMars =  1/687 days



…Copernicus also computed the 
distance of Mars from the Sun to 

be 1.5 AU.

Babylonian world map, 7th-8th century BCE, British Museum

ωEarth – ωMars =  1/780 days

ωEarth = 1/year

ωMars =  1/687 days



Both of these measurements are 
accurate to two decimal places.

Babylonian world map, 7th-8th century BCE, British Museum

ωEarth – ωMars =  1/780 days

ωEarth = 1/year

ωMars =  1/687 days



Tycho Brahe (1546-1601) made 
extremely detailed and long-term 
measurements of the position of 

Mars and other planets.



Unfortunately, his data deviated slightly 
from the predictions of the Copernican 

model.



Johannes Kepler (1571-1630) 
reasoned that this was because 
the orbits of the Earth and Mars 

were not quite circular.



But how could one use Brahe’s 
data to work out the orbits of 

both the Earth and Mars 
simultaneously?



That is like solving for two 
unknowns using only one 

equation – it looks impossible!



To make matters worse, the data 
only shows the declination 

(direction) of Mars from Earth.  
It does not give the distance.



So it seems that there is 
insufficient information 

available to solve the problem.



Nevertheless, Kepler found some 
ingenious ways to solve the 

problem.



He reasoned that if one wanted to 
compute the orbit of Mars 

precisely, one must first figure 
out the orbit of the Earth.



And to figure out the orbit of the 
Earth, he would argue 

indirectly… using Mars!



To explain how this works, let’s 
first suppose that Mars is fixed, 

rather than orbiting the Sun.



But the Earth is moving in an 
unknown orbit.



At any given time, one can measure the position 
of the Sun and Mars from Earth, with respect 

to the fixed stars (the Zodiac).



Assuming that the Sun and Mars are fixed, one 
can then triangulate to determine the position 

of the Earth relative to the Sun and Mars.



Unfortunately, Mars is not fixed; 
it also moves, and along an 

unknown orbit.



So it appears that 
triangulation does not 

work.



But Kepler had one 
additional piece of 

information:



he knew that after every 
687 days…



Mars returned to its 
original position.



So by taking Brahe’s data at 
intervals of 687 days…



… Kepler could triangulate and compute 
Earth’s orbit relative to any position of Mars.



Once Earth’s orbit was known, it could be used to 
compute more positions of Mars by taking other 

sequences of data separated by 687 days…



… which allows one to 
compute the orbit of Mars.



Kepler’s laws of planetary motion

1. Planets orbit in ellipses, with the Sun as one of 
the foci.

2. A planet sweeps out equal areas in equal times.

3. The square of the period of an orbit is 
proportional to the cube of its semi-major axis.

Using the data for Mars and 
other planets, Kepler

formulated his three laws of 
planetary motion.

NASA



Newton’s law of universal gravitation

Any pair of masses attract by a force proportional 
to the masses, and inversely proportional to the 

square of the distance.

|F| = G m1 m2 / r2

This led Isaac Newton (1643-
1727) to formulate his law 

of gravity.

NASA



NASA

Kepler’s methods allowed for 
very precise measurements of 
the planets in terms of the AU.



NASA

Conversely, if one had an 
alternate means to compute 

distances to planets, this would 
give a measurement of the AU.



NASA

One way to measure such distances is by 
parallax – measuring the same object 
from two different locations on the 

Earth.



NASA

By measuring the parallax of the transit of 
Venus across the Sun in several locations 

(including James Cook’s voyage!), the AU 
was computed reasonably accurately in the 

18th century. 



NASA

With modern technology such as radar and 
interplanetary satellites, the AU and the 

planetary orbits have now been computed to 
extremely high precision.



NASA

Incidentally, such precise measurements of 
Mercury revealed a precession that was not 

explained by Newtonian gravity…



NASA

… , and was one of the first experimental 
verifications of general relativity (which is 

needed in later rungs of the ladder).



5th rung: the speed 

of light

Lucasfilm



Technically, the speed 
of light, c, is not a 

distance.

Lucasfilm



However, one needs to know 
it in order to ascend higher 

rungs of the distance 
ladder.

Lucasfilm



The first accurate measurements 
of c were by Ole Rømer

(1644-1710) and Christiaan
Huygens (1629-1695).

Ole Rømer



Their method was indirect… 
and used a moon of Jupiter, 

namely Io.

Christaan Huygens



Io has the shortest orbit of all 
the major moons of Jupiter.  It 
orbits Jupiter once every 42.5 

hours. 

NASA/JPL/University of Arizona



Rømer made many 
measurements of this orbit by 
timing when Io entered and 

exited Jupiter’s shadow.

NASA/JPL/University of Arizona



However, he noticed that when Jupiter 
was aligned with the Earth, the orbit 
advanced slightly; when Jupiter was 

opposed, the orbit lagged. 

NASA/JPL/University of Arizona



The difference was slight; the orbit 
lagged by about 20 minutes when 

Jupiter was opposed. 

NASA/JPL/University of Arizona



Huygens reasoned that this was 
because of the additional distance 
(2AU) that the light from Jupiter 

had to travel.

NASA/JPL/University of Arizona



Using the best measurement of the 
AU available to him, he then 

computed the speed of light as c = 
220,000 km/s. 

[The truth is 299,792 km/s.]

NASA/JPL/University of Arizona



This computation was 
important for the future 
development of physics.

NASA/JPL/University of Arizona



James Clerk Maxwell (1831-1879) 
observed that the speed of light 
almost matched the speed his 

theory predicted for 
electromagnetic radiation.



He then reached the important 
conclusion that light was a form 

of electromagnetic radiation.

sciencelearn.org.nz



This observation was instrumental 
in leading to Einstein’s theory of 

special relativity.



It also led to the development of 
spectroscopy.

Ian Short



Both of these turn out to be 
important tools for climbing 
higher rungs of the ladder.

Ian Short



6th rung: nearby 

stars

Northern Arizona University



We already saw that parallax from 
two locations on the Earth could 

measure distances to other 
planets.

Northern Arizona University



This is not enough separation to 
discern distances to even the 

next closest star (which is about 
270,000 AU away!)

Northern Arizona University



However, if one takes 
measurements six months apart, 
one gets a distance separation of 

2AU...



… which gives enough parallax to 
measure all stars within about 
100 light years (30 parsecs).



This provides a lot of very useful 
data – tens of thousands of stars 
- for the next rung of the ladder.

Northern Arizona University



These parallax computations, 
which require accurate 

telescopy, were first done by 
Friedrich Bessel (1784-1846) in 

1838.



Ironically, when Aristarchus 
proposed the heliocentric model, 
his contemporaries dismissed it, 
on the grounds that they did not 
observe any parallax effects…



… so the heliocentric model would 
have implied that the stars were 
an absurdly large distance away.



[Which, of course, they are.]



7th rung: the 

Milky Way

Milky Way, Serge Brunier



One can use detailed observations 
of nearby stars to provide a 

means to measure distances to 
more distant stars.

Milky Way, Serge Brunier



Using spectroscopy, one can 
measure precisely the colour of a 

nearby star; one can also 
measure its apparent brightness.

Milky Way, Serge Brunier



Using the apparent brightness, the 
distance, and inverse square law, 

one can compute the absolute 
brightness of these stars.

Milky Way, Serge Brunier



Ejnar Hertzsprung (1873-1967) 
and Henry Russell (1877-1957) 
plotted this absolute brightness 
against color for thousands of 
nearby stars in 1905-1915…



… leading to the famous 
Hertzprung-Russell diagram.

Richard Powell



Once one has this diagram, one 
can use it in reverse to measure 

distances to more stars than 
parallax methods can reach.

Richard Powell



Indeed, for any star, one can 
measure its colour and its 

apparent brightness…

Richard Powell



and from the Hertzprung-Russell 
diagram, one can then infer the 

absolute brightness.

Richard Powell



From the apparent brightness 
and absolute brightness, one 

can solve for distance.

Richard Powell



This technique (main sequence 
fitting) works out to about 

300,000 light years (covering the 
entire galaxy!)

Milky Way, Serge Brunier



Beyond this distance, the main 
sequence stars are too faint to be 

measured accurately.

Milky Way, Serge Brunier



8th rung: Other 

galaxies

Hubble deep field, NASA



Henrietta Swan Leavitt (1868-
1921) observed a certain class of 
stars (the Cepheids) oscillated in 

brightness periodically.

American Institute of Physics



Plotting the absolute brightness 
against the periodicity she 

observed a precise relationship.

Henrietta Swan Leavitt, 1912



This gave yet another way to 
obtain absolute brightness, and 

hence observed distances.

Henrietta Swan Leavitt, 1912



Because Cepheids are so bright, 
this method works up to 
13,000,000 light years!



Most galaxies are fortunate to have 
at least one Cepheid in them, so 

we know the distances to all 
galaxies out to a reasonably 

large distance.



Similar methods, using supernovae 
instead of Cepheids, can 

sometimes work to even larger 
scales than these.

Supernova remnant, NASA, ESA, HEIC, Hubble Heritage Team



9th rung: the 

universe

Simulated matter distribution in universe, Greg Bryan



Edwin Hubble (1889-1953) 
noticed that distant galaxies had 
their spectrum red-shifted from 

those of nearby galaxies.



With this data, he formulated Hubble’s law: 
the red-shift of an object was proportional 

to its distance.

NASA



This led to the famous Big Bang model of the 
expanding universe, which has now been 
confirmed by many other cosmological 

observations.

NASA, WMAP



But it also gave a way to measure 
distances even at extremely large 
scales… by first measuring the 

red-shift and then applying 
Hubble’s law.

Hubble deep field, NASA



These measurements have led to 
accurate maps of the universe at 

very large scales…

Two degree field Galaxy red-shift survey, W. Schaap et al.



which have led in turn to many 
discoveries of very large-scale 
structures, such as the Great 

Wall.

Two degree field Galaxy red-shift survey, W. Schaap et al.



For instance, our best estimate (as 
of 2004) of the current diameter 

of the universe is that it is at 
least 78 billion light-years.

Cosmic microwave background fluctuation, WMAP



The mathematics becomes more 
advanced at this point, as the 

effects of general relativity has 
highly influenced the data we 

have at this scale of the universe.

Artist’s rendition of a black hole, NASA



Cutting-edge technology (such as 
the Hubble space telescope 

(1990-) and WMAP (2001-)) has 
also been vital to this effort.

Hubble telescope, NASA



Climbing this rung of the ladder (i.e. 
mapping the universe at its very 
large scales) is still a very active 

area in astronomy today!

WMAP, NASA




