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Abstract. A quick tour through some topics in analytic prime
number theory.

1. Introduction

The prime numbers 2, 3, 5, 7, . . . are one of the oldest topics studied in
mathematics.

We now have a lot of intuition as to how the primes should behave,
and a great deal of confidence in our conjectures about the primes...
but we still have a great deal of difficulty in proving many of these
conjectures!

Ultimately, this is because the primes are believed to not obey behave
pseudorandomly in many ways, and not to follow any simple pattern.

We have many ways of establishing that a pattern exists... but how
does one demonstrate the absence of a pattern?

In this article I will try to convince you why the primes are believed to
behave pseudorandomly, and how one could try to make this intuition
rigorous. This is only a small sample of what is going on in the subject;
I am omitting many major topics, such as sieve theory or exponential
sums, and am glossing over many important technical details.

2. Finding primes

It is a paradoxical fact that the primes are simultaneously very numer-
ous, and hard to find. On the one hand, we have the following ancient
theorem:

Theorem 2.1 (Euclid’s theorem). [2] There are infinitely many primes.

In particular, given any k, there exists a prime with at least k digits.
1
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But there is no known quick and deterministic way to locate such a
prime! (Here, “quick” means “computable in a time which is polyno-
mial in k”.)

In particular, there is no known (deterministic) formula that can quickly
generate large numbers that are guaranteed to be prime.

The largest known prime is 243,112,609 − 1 [3] - about 13 million digits
long.

On the other hand, one can find primes quickly by probabilistic meth-
ods.

Indeed, any k-digit number can be tested for primality quickly, either
by probabilistic methods[9, 11] or by deterministic methods (Agarwal-
Kayal-Saxena 2002). These methods are based on variants of Fermat’s
little theorem, which asserts that an = a mod n whenever n is prime.
(Note that if n is a k-digit number, an mod n can be computed quickly,

by first repeatedly squaring a to compute a2j
mod n for various values

of j, and then expanding n in binary and multiplying the indicated
residues a2j

mod n together.)

Also, we have the following fundamental theorem:

Theorem 2.2 (Prime number theorem). [8, 13] The number of primes
less than a given integer n is (1 + o(1)) n

logn
, where o(1) tends to zero

as n→∞.

In particular, the probability of a randomly selected k-digit number
being prime is about 1

k log 10
.

So one can quickly find a k-digit prime with high probability by ran-
domly selecting k-digit numbers and testing each of them for primality.

2.3. Is randomness really necessary? To summarize: We do not
know a quick way to find primes determinstically. However, we have
quick ways to find primes randomly.

On the other hand, there are major conjectures in complexity theory,
such as P = BPP , which assert (roughly speaking) that any problem
that can be solved quickly by probabilistic methods, can also be solved
quickly by deterministic methods. (Strictly speaking, the P = BPP
conjecture only applies to decision problems - problems with a yes/no
answer - rather than search problems such as the task of finding a prime,
but there are variants of P = BPP , such as P = promise − BPP ,
which would be applicable here.
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These conjectures are closely related to the more famous conjecture
P 6= NP , which is a USD $ 1 million Clay Millennium prize problem.

Many other important probabilistic algorithms have been derandomised
into deterministic ones, but this has not been done for the problem of
finding primes. (A massively collaborative research project is currently
underway to attempt this[10].)

3. Counting primes

We’ve seen that it’s hard to get a hold of any single large prime. But
it is easier to study the set of primes collectively rather than one at a
time.

An analogy: it is difficult to locate and count all the grains of sand
in a box, but one can get an estimate on this count by weighing the
box, subtracting the weight of the empty box, and dividing by the
average weight of a grain of sand. The point is that there is an easily
measured statistic (the weight of the box) which is reflects the collective
behaviour of the sand.

For instance, from the fundamental theorem of arithmetic one can es-
tablish Euler’s product formula

∞∑
n=1

1

ns
=

∏
p prime

(1 +
1

ps
+

1

p2s
+

1

p3s
+ . . .)

=
∏

p prime

(1− 1

ps
)−1

(1)

for any s > 1 (and also for other values of s, if one defines one’s terms
carefully enough).

The formula (1) links the collective behaviour of the primes to the
behaviour of the Riemann zeta function

ζ(s) :=
∞∑
n=1

1

ns
,

thus ∏
p prime

(1− 1

ps
) =

1

ζ(s)
(2)

One can then deduce information about the primes from information
about the zeta function (and in particular, its zeroes).
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For instance, from the divergence of the harmonic series
∑∞

n=1
1
n

= +∞
we see that 1

ζ(s)
goes to zero as s approaches 1 (from the right, at least).

From this and (2) we already recover Euclid’s theorem (Theorem 2.1),
and in fact obtain the stronger result of Euler that the sum

∑
p

1
p

of

reciprocals of primes diverges also.

In a similar spirit, one can use the techniques of complex analysis,
combined with the (non-trivial) fact that ζ(s) has no zeroes when
Re(s) ≥ 1, to establish the prime number theorem (Theorem 2.2);
indeed, this is how the theorem was originally proved (and one can
conversely use the prime number theorem to deduce the fact about the
zeroes of ζ).

The famous Riemann hypothesis asserts that ζ(s) has no zeroes when1

Re(s) > 1/2. It implies a much stronger version of the prime num-
ber theorem, namely that the number of primes less than an integer
n > 1 is given by the more precise formula

∫ n

0
dx

log x
+ O(n1/2 log n),

where O(n1/2 log n) is a quantity which is bounded in magnitude by
Cn1/2 log n for some absolute constant C (for instance, one can take
C = 1

8π
once n is at least 2657 [12]). The hypothesis has many other

consequences in number theory; it is another of the USD $ 1 million
Clay Millennium prize problems. More generally, much of what we
know about the primes has come from an extensive study of the prop-
erties of the Riemann zeta function and its relatives, although there
are also some questions about primes that remain out of reach even
assuming strong conjectures such as the Riemann hypothesis.

4. Modeling primes

A fruitful way to think about the set of primes is as a pseudorandom
set - a set of numbers which is not actually random, but behaves like
one.

For instance, the prime number theorem asserts, roughly speaking, that
a randomly chosen large integer n has a probability of about 1/ log n of
being prime. One can then model the set of primes by replacing them
with a random set of integers, in which each integer n > 1 is selected
with an independent probability of 1/ log n; this is Cramér’s random
model.

1A technical point: the sum
∑∞

n=1
1

ns does not converge in the classical sense
when Re(s) < 1, so one has to interpret this sum in a fancier way, or else use a
different definition of ζ(s) in this case; but I will not discuss these subtleties here.
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This model is too crude, because it misses some obvious structure in the
primes, such as the fact that most primes are odd. But one can improve
the model to address this, by picking a model where odd integers n are
selected with an independent probability of 2/ log n and even integers
are selected with probability 0.

One can also take into account other obvious structure in the primes,
such as the fact that most primes are not divisible by 3, not divisible
by 5, etc. This leads to fancier random models which we believe to
accurately predict the asymptotic behaviour of primes.

For example, suppose we want to predict the number of twin primes
n, n + 2 less than a given threshold N . Using the Cramér random
model, we expect, for any given n, that n, n+ 2 will simultaneously be
prime with probability 1

logn log(n+2)
, so we expect the number of twin

primes to be about

N∑
n=1

1

log n log(n+ 2)
≈ N

log2N
.

This prediction is inaccurate; for instance, the same argument would
also predict plenty of pairs of consecutive primes n, n + 1, which is
absurd. But if one uses the refined model where odd integers are prime
with an independent probability of 2/ logN and even integers are prime
with probability 0, one gets the slightly different prediction∑

1≤n≤N :n odd

2

log n
× 2

log(n+ 2)
≈ 2

N

log2N
.

More generally, if one assumes that all numbers n divisible by some
prime less than a small threshold w are prime with probability zero,
and are prime with a probability of

∏
p<w(1 − 1

p
)−1 × 1

logN
otherwise,

one is eventually led to the prediction

2
∏

p<w,p an odd prime

(1− 1

p2
)× N

log2N

Sending w →∞, one is led to the asymptotic prediction

Π2
N

log2N

for the number of twin primes less than N , where Π2 is the twin prime
constant

Π2 := 2
∏

p≥3 prime

1− 1

(p− 1)2
≈ 1.32032 . . . .
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For N = 1010, this prediction is accurate to four decimal places, and is
believed to be asymptotically correct. (This is part of a more general
conjecture, known as the Hardy-Littlewood prime tuples conjecture.)

Similar arguments based on random models give convincing heuristic
support for many other conjectures in number theory, and are backed
up by extensive numerical calculations.

5. Finding patterns in primes

Of course, the primes are a deterministic set of integers, not a random
one, so the predictions given by random models are not rigorous. But
can they be made so?

There has been some progress in doing this. One approach is to try to
classify all the possible ways in which a set could fail to be pseudoran-
dom (i.e. it does something noticeably different from what a random
set would do), and then show that the primes do not behave in any of
these ways.

For instance, consider the odd Goldbach conjecture: every odd
integer larger than five is the sum of three primes. If, for instance,
all large primes happened to have their last digit equal to one, then
Goldbach’s conjecture could well fail for some large odd integers whose
last digit was different from three. Thus we see that the conjecture
could fail if there was a sufficiently strange “conspiracy” among the
primes.

However, one can rule out this particular conspiracy by using the prime
number theorem in arithmetic progressions, which tells us that (among
other things) there are many primes whose last digit is different from 1.
(The proof of this theorem is based on the proof of the classical prime
number theorem.)

Moreover, by using the techniques of Fourier analysis (or more pre-
cisely, the Hardy-Littlewood circle method), we can show that all the
conspiracies which could conceivably sink Goldbach’s conjecture (for
large integers, at least) are broadly of this type: an unexpected “bias”
for the primes to prefer one remainder modulo 10 (or modulo another
base, which need not be an integer), over another.

Vinogradov[14] eliminated each of these potential conspiracies, and es-
tablished Vinogradov’s theorem: every sufficiently large odd integer is
the sum of three primes. This method has since been extended by
many authors, to cover many other types of patterns; for instance,
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related techniques were used by Ben Green and myself[4] to estab-
lish that the primes contained arbitrarily long arithmetic progressions,
and in subsequent work of Ben Green, myself, and Tamar Ziegler [5],
[6], [7] to count a wide range of other additive patterns also. (Very
roughly speaking, known techniques can count additive patterns that
involve two independent parameters, such as arithmetic progressions
a, a+ r, . . . , a+ (k − 1)r of a fixed length k.)

Unfortunately, “one-parameter” patterns, such as twins n, n+2, remain
stubbornly beyond current technology. There is still much to be done
in the subject!
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