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The (incompressible) Navier-Stokes equations model the
evolution of incompressible fluids such as water. They take the
form

∂tu + (u · ∇)u = ν∆u −∇p
∇ · u = 0

u(0, x) = u0(x)

where u : [0,+∞)× R3 → R3 is the velocity field,
p : [0,+∞)× R3 → R is the pressure field, and u0 : R3 → R3 is
the given initial velocity, and ν > 0 is the viscosity constant. To
avoid technicalities we restrict attention to solutions that are
smooth and have suitable decay at infinity (we do not work on
domains to avoid boundary issues). We also assume the
compatibility condition ∇ · u0 = 0.
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Each of the terms in the Navier-Stokes equations

∂tu + (u · ∇)u = ν∆u −∇p
∇ · u = 0

has a physical interpretation:

ν∆u represents the dissipative effect of viscosity.
(u · ∇)u represents the effect of transport (that the fluid is
travelling at velocity u).
The equation ∇ · u = 0 and the compensating pressure
term ∇p represent the effects of incompressibility.
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Standard PDE methods (e.g. the energy method) give local
existence:

Local existence
If u0 is smooth and has sufficient decay at infinity, then there
exists a time 0 < T∗ ≤ ∞ and a smooth solution
u : [0,T∗)× R3 → R3, p : [0,T∗)× R3 → R to the Navier-Stokes
equations with initial data u0. Furthermore, if T∗ <∞, the sup
norm ‖u(t)‖L∞(R3) goes to infinity as t → T−

∗ (finite time
blowup).

One then has the notorious open problem:

Navier-Stokes global regularity problem

Is it always true that T∗ =∞?
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Of course, for physical fluids such as water, the velocity
field cannot actually go to infinity, and so the finite time
blowup scenario does not occur. So if the answer to the
global regularity problem is negative, this means that for
certain choices of initial data, the Navier-Stokes equations
will at some point cease to be an accurate model for a
physical fluid.
If one works in two spatial dimensions rather than three,
the global regularity problem was solved in the 1960s
(Ladyshenskaya).
Why is the three-dimensional problem so much harder
than the two-dimensional one?
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To see the problem heuristically, let us temporarily ignore the
role of incompressibility and the pressure p in the
Navier-Stokes equations, which then informally become

∂tu ≈ ν∆u − (u · ∇)u.

One can view this equation as a “contest” between the linear
heat equation

∂tu = ν∆u

and the transport equation

∂tu = −(u · ∇)u.
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∂tu ≈ ν∆u − (u · ∇)u.

If one is in the viscosity-dominated regime

ν∆u � (u · ∇)u

then one expects the solution to the Navier-Stokes equation to
behave like that of the heat equation

∂tu = ν∆u

for which we expect global smooth solutions.
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If instead we are in the transport-dominated regime

ν∆u � (u · ∇)u

then we expect the solution to the Navier-Stokes equation to
behave like that of the transport equation

∂tu = (u · ∇)u

for which one may expect finite time blowup (in analogy with the
one-dimensional Burgers equation

∂tu = u∂xu.
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To get some heuristic understanding of when the viscosity term
ν∆u or the transport term (u · ∇)u, suppose that at a given
point in time t , the velocity field u achieves an amplitude (i.e.
speed) of A(t), and oscillates at a wavelength of 1/N(t) (or
equivalently, at a frequency of N(t)). Then, we expect

ν∆u ≈ A(t)N(t)2

and
(u · ∇)u ≈ A(t)N(t)A(t).

Thus we expect viscosity domination when A(t)� N(t)
(amplitude smaller than frequency), and transport domination
when N(t)� A(t) (amplitude higher than frequency). This
heuristic holds in any spatial dimension.
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On the other hand, a basic property of the Navier-Stokes
equation (in d spatial dimensions) is that the kinetic energy

E(t) :=
1
2

∫
Rd
|u(t , x)|2 dx

is decreasing over time (due to viscosity effects); indeed, from
integration by parts we have the energy identity

∂tE(t) = −ν
∫

Rd
|∇u(t , x)|2 dx .

In particular, the energy stays bounded over time:∫
Rd
|u(t , x)|2 dx = O(1).
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If the velocity field u has wavelength 1/N(t), then it must be
spread out, at minimum, over a ball of radius ∼ 1/N(t), which
has volume ∼ 1/N(t)d . The energy bound∫

Rd
|u(t , x)|2 dx = O(1)

then implies that
A(t)2/N(t)d = O(1)

and so
A(t) = O(N(t)d/2).
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In two spatial dimensions d = 2, we thus see that the
transport-dominated scenario does not occur (the
Navier-Stokes equation is critical), and one can show that
the viscosity-dominated scenario eventually wins out,
which helps explain the result of Ladyshenskaya that one
has global regularity of Navier-Stokes in two dimensions.
But in three dimensions, there is a lot of room between
N(t)d/2 = N(t)3/2 and N(t) (the Navier-Stokes equation is
supercritical), allowing for the transport-dominated
scenario to occur in this case.
In general, the regularity problem for supercritical
equations are poorly understood; the Navier-Stokes
problem is a key test case.

Terence Tao Finite time blowup for an averaged Navier-Stokes equation



In two spatial dimensions d = 2, we thus see that the
transport-dominated scenario does not occur (the
Navier-Stokes equation is critical), and one can show that
the viscosity-dominated scenario eventually wins out,
which helps explain the result of Ladyshenskaya that one
has global regularity of Navier-Stokes in two dimensions.
But in three dimensions, there is a lot of room between
N(t)d/2 = N(t)3/2 and N(t) (the Navier-Stokes equation is
supercritical), allowing for the transport-dominated
scenario to occur in this case.
In general, the regularity problem for supercritical
equations are poorly understood; the Navier-Stokes
problem is a key test case.

Terence Tao Finite time blowup for an averaged Navier-Stokes equation



In two spatial dimensions d = 2, we thus see that the
transport-dominated scenario does not occur (the
Navier-Stokes equation is critical), and one can show that
the viscosity-dominated scenario eventually wins out,
which helps explain the result of Ladyshenskaya that one
has global regularity of Navier-Stokes in two dimensions.
But in three dimensions, there is a lot of room between
N(t)d/2 = N(t)3/2 and N(t) (the Navier-Stokes equation is
supercritical), allowing for the transport-dominated
scenario to occur in this case.
In general, the regularity problem for supercritical
equations are poorly understood; the Navier-Stokes
problem is a key test case.

Terence Tao Finite time blowup for an averaged Navier-Stokes equation



The above dimensional analysis suggests an
approximately self-similar blowup scenario for
three-dimensional Navier-Stokes, in which the amplitude
A(t) of the velocity field scales like N(t)3/2, and the kinetic
energy is concentrated in a ball of radius ∼ 1/N(t).
In this scenario, the transport term dominates, and so the
energy should move around at speed ∼ A(t) ∼ N(t)3/2. In
particular, it is in principle possible for the energy to
concentrate further into a ball of radius 1/2N(t) in a time
period ∼ 1/N(t)5/2, increasing the amplitude further to
(2N(t))3/2 in the process.
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Then, the energy could concentrate further to a ball of radius
1/4N(t) in time period ∼ 1/(2N(t))5/2. Iterating this, one could
potentially obtain blowup in time

1/N(t)5/2 + 1/(2N(t))5/2 + · · · <∞.

This blowup scenario is compatible with the energy identity. But
can it actually happen?
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I was able to show that blowup is possible if one modifies the
equations a little:

Theorem (T., 2014)
There exists an averaged version of the Navier-Stokes
equations which obeys the energy identity, but which has
solutions that blow up in finite time.

Previous work (Montgomery-Smith, Gallagher-Paicu, Sinai)
obtained finite time blowup for variants of Navier-Stokes which
did not obey an energy identity.
Now to explain what averaging means...
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We first eliminate the role of the pressure p in the
Navier-Stokes equations

∂tu + (u · ∇)u = ν∆u −∇p
∇ · u = 0.

Let
Pv := v −∆−1∇(∇ · v)

be the Leray projection (the orthogonal projection to
divergence-free vector fields, that eliminates gradients).
Applying P, one obtains the Leray form

∂tu = ν∆u + B(u,u)

of the Navier-Stokes equations, where B(u,u) is the bilinear
expression

B(u,u) = −P((u · ∇)u).
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The energy identity for the Navier-Stokes equations

∂tu = ν∆u + B(u,u)

is equivalent to the identity

〈B(u,u),u〉L2 = 0

which is provable from a simple integration by parts.
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The averaged Navier-Stokes equations take the form

∂tu = ν∆u + B̃(u,u)

where B̃(u,u) obeys the energy identity

〈B̃(u,u),u〉L2 = 0

and is an average of operators of the form

T1B(T2u,T3u)

where T1,T2,T3 are compositions of (a) rotation operators; (b)
dilation operators by scales between 1 and 2; and (c) Fourier
multipliers of order 0. These operators are bounded on most
standard function spaces (e.g. Lp spaces), so B̃ obeys most of
the estimates that B does.
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standard function spaces (e.g. Lp spaces), so B̃ obeys most of
the estimates that B does.
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Roughly speaking, the theorem shows that one cannot
hope to prove global regularity for Navier-Stokes just using
the energy identity and estimates for the linear and
nonlinear parts of the Navier-Stokes equation.
This rules out some of the known approaches for
establishing regularity. (Big caveat: methods exploiting the
vorticity equation are not yet ruled out.)
Actually, I now believe that finite time blowup for
Navier-Stokes is possible, if one carefully chooses the
initial data. (More on this later.)
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Now we sketch some details of the proof. The first step is to
perform a wavelet decomposition

u(t) =
∑
j,k

Xj,k (t)ψj,k

of the velocity field into “wavelets” ψj,k at various wavelengths
2−k and locations j2−k . The Navier-Stokes equation

∂tu = ν∆u + B(u,u)

then becomes an infinite-dimensional system of ODE, roughly
of the form

∂tXj,k = −ν22kXj,k +
∑

j1,k1,j2,k2

cj,k ,j1,k1,j2,k2Xj1,k1Xj2,k2

for some explicit structure constants cj,k ,j1,k1,j2,k2 coming from B.
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The energy identity then becomes a cancellation condition,
namely that the structure constants cj,k ,j1,k1,j2,k2 symmetrise
to zero after summing over the 3! permutations of (j , k),
(j1, k1), (j2, k2).
Roughly speaking, an averaged Navier-Stokes equation
gives rise to a very similar ODE, but with the structure
constants cj,k ,j1,k1,j2,k2 replaced with some smaller
constants c̃j,k ,j1,k1,j2,k2 that one is at liberty to choose
(provided one obeys the above cancellation condition).
One can then design or “engineer” various interesting
equations by choosing these structure constants
appropriately, somewhat like designing an electrical circuit
by choosing the resistances, capacitances, etc. of the
components appropriately.
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One such model system of ODE was introduced to study the
Navier-Stokes equation by Katz and Pavlovic in 2002:

∂tXn = −24n/5Xn + 2n−1X 2
n−1 − 2nXnXn+1.

This can be thought of as a “shell model” of Navier-Stokes, with
Xn modeling the energy-normalised velocity 2−3n/5u of the fluid
at frequencies ∼ 22n/5 (in a ball B(0,O(2−2n/5)).
Ignoring the viscosity term −24n/5Xn, one can depict this
system schematically as follows:
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In principle, what should happen with this system is the energy
will flow from the Xn mode to the Xn+1 mode, then to the Xn+2
mode, at ever faster speeds (corresponding to the blowup
scenario in which the energy cascades to higher and higher
frequencies at faster and faster rates), until a blowup occurs,
with the blowup so fast that the effect of viscosity is negligible.
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But it was shown by Barbato, Morandin, and Romito that no
blowup occurs. The problem is that as the energy is being
transferred from the Xn−1 mode to the Xn mode, energy is
simultaneously being transferred from the Xn to the Xn+1 mode,
and so forth. This leads to a diffusion of the energy into many
different modes rather than in just one or two modes, which
turns out to decrease the amplitude to the point where the
viscosity begins to dominate and prevent the finite time blowup.
(But in five and higher dimensions, it was shown by Cheskidov
that the viscosity does not dominate, and finite time blowup
occurs for the corresponding Katz-Pavlovic models.)
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In order to prevent this diffusion, one needs a system in which a
delay is “programmed” between the transfer of energy from the
n− 1 modes to the n modes, and the transfer of energy to the n
modes to the n + 1 modes. It turns out that this can be done
using the system

∂tX1,n = (1 + ε0)5n/2(−ε−2X3,nX4,n − εX1,nX2,n

− ε2 exp(−K 10)X1,nX3,n + KX 2
4,n−1))

∂tX2,n = (1 + ε0)5n/2(εX 2
1,n − ε−1K 10X 2

3,n)

∂tX3,n = (1 + ε0)5n/2(ε2 exp(−K 10)X 2
1,n + ε−1K 10X2,nX3,n)

∂tX4,n = (1 + ε0)5n/2(ε−2X3,nX1,n − (1 + ε0)5/2KX4,nX1,n+1)

(ignoring viscosity), where ε0 is a small quantity, K is a very
large quantity and ε is an extremely small quantity.
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Returning back to the fluid interpretation of this system of
ODE, the solution evolves as follows.
At a given point in time, the energy of the solution may be
concentrated at a certain frequency scale (1 + ε0)n.
The dynamics are such that the solution is “programmed”
to push almost all of its energy (after some delay) into a
replica of itself at the next highest frequency scale
(1 + ε0)n+1.
This process replicates itself at exponentially increasing
speeds, until one achieves a singularity in finite time.
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If one wished to simulate this for the true Navier-Stokes
equations, one would have to build a “machine” purely out
of (inviscid) incompressible fluid (a “water computer”),
which, when running, constructed a smaller copy of itself,
injected almost all of its energy into this smaller copy, and
then “turned itself off”.
By the scaling properties of the Navier-Stokes equation,
this smaller copy should then make an even smaller copy,
and so forth until a finite time blowup is achieved.
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As far as I can tell, there is no mathematical barrier to such
a machine existing (for idealised fluids). There is however
an immense engineering barrier to actually constructing
such a machine, even on paper.
The most significant obstacle seems to be the need to
build some analogue of logic gates purely out of ideal fluid
(as opposed to out of averaged Navier-Stokes equations).
With such gates, one can in principle build a
Turing-universal computer, and from that one should be
able to build the right sort of self-replicating machine.
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There actually is a branch of engineering called fluidics
that constructs logic gates out of fluids, pipes and valves.
So, the main remaining challenge (in principle, at least) is
to figure out how to simulate pipes and valves out of an
ideal fluid!
No idea how to do this, but I see no reason why it shouldn’t
be mathematically possible to do so (there is no
conservation law that seems to block it, for instance.)
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Thanks for listening!
Happy birthday, Sergiu!
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