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Math 115A - Week 1
Textbook sections: 1.1-1.6

Topics covered:

• What is Linear algebra?

• Overview of course

• What is a vector? What is a vector space?

• Examples of vector spaces

• Vector subspaces

• Span, linear dependence, linear independence

• Systems of linear equations

• Bases

* * * * *
Overview of course

• This course is an introduction to Linear algebra. Linear algebra is the
study of linear transformations and their algebraic properties.

• A transformation is any operation that transforms an input to an out-
put. A transformation is linear if (a) every amplification of the input
causes a corresponding amplification of the output (e.g. doubling of the
input causes a doubling of the output), and (b) adding inputs together
leads to adding of their respective outputs. [We’ll be more precise
about this much later in the course.]

• A simple example of a linear transformation is the map y := 3x, where
the input x is a real number, and the output y is also a real number.
Thus, for instance, in this example an input of 5 units causes an output
of 15 units. Note that a doubling of the input causes a doubling of the
output, and if one adds two inputs together (e.g. add a 3-unit input
with a 5-unit input to form a 8-unit input) then the respective outputs
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(9-unit and 15-unit outputs, in this example) also add together (to form
a 24-unit output). Note also that the graph of this linear transformation
is a straight line (which is where the term linear comes from).

• (Footnote: I use the symbol := to mean “is defined as”, as opposed to
the symbol =, which means “is equal to”. (It’s similar to the distinction
between the symbols = and == in computer languages such as C + +,
or the distinction between causation and correlation). In many texts
one does not make this distinction, and uses the symbol = to denote
both. In practice, the distinction is too fine to be really important, so
you can ignore the colons and read := as = if you want.)

• An example of a non-linear transformation is the map y := x2; note
now that doubling the input leads to quadrupling the output. Also if
one adds two inputs together, their outputs do not add (e.g. a 3-unit
input has a 9-unit output, and a 5-unit input has a 25-unit output, but
a combined 3 + 5-unit input does not have a 9 + 25 = 34-unit output,
but rather a 64-unit output!). Note the graph of this transformation is
very much non-linear.

• In real life, most transformations are non-linear; however, they can of-
ten be approximated accurately by a linear transformation. (Indeed,
this is the whole point of differential calculus - one takes a non-linear
function and approximates it by a tangent line, which is a linear func-
tion). This is advantageous because linear transformations are much
easier to study than non-linear transformations.

• In the examples given above, both the input and output were scalar
quantities - they were described by a single number. However in many
situations, the input or the output (or both) is not described by a
single number, but rather by several numbers; in which case the input
(or output) is not a scalar, but instead a vector. [This is a slight
oversimplification - more exotic examples of input and output are also
possible when the transformation is non-linear.]

• A simple example of a vector-valued linear transformation is given by
Newton’s second law

F = ma, or equivalently a = F/m.
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One can view this law as a statement that a force F applied to an
object of mass m causes an acceleration a, equal to a := F/m; thus
F can be viewed as an input and a as an output. Both F and a are
vectors; if for instance F is equal to 15 Newtons in the East direction
plus 6 Newtons in the North direction (i.e. F := (15, 6)N), and the
object has mass m := 3kg, then the resulting acceleration is the vector
a = (5, 2)m/s2 (i.e. 5m/s2 in the East direction plus 2m/s2 in the
North direction).

• Observe that even though the input and outputs are now vectors in
this example, this transformation is still linear (as long as the mass
stays constant); doubling the input force still causes a doubling of the
output acceleration, and adding two forces together results in adding
the two respective accelerations together.

• One can write Newton’s second law in co-ordinates. If we are in three
dimensions, so that F := (Fx, Fy, Fz) and a := (ax, ay, az), then the law
can be written as

Fx = max + 0ay + 0az

Fy = 0ax +may + 0az

Fz = 0ax + 0ay +maz.

This linear transformation is associated to the matrix m 0 0
0 m 0
0 0 m

 .

• Here is another example of a linear transformation with vector inputs
and vector outputs:

y1 = 3x1 + 5x2 + 7x3

y2 = 2x1 + 4x2 + 6x3;

this linear transformation corresponds to the matrix(
3 5 7
2 4 6

)
.
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As it turns out, every linear transformation corresponds to a matrix,
although if one wants to split hairs the two concepts are not quite the
same thing. [Linear transformations are to matrices as concepts are to
words; different languages can encode the same concept using different
words. We’ll discuss linear transformations and matrices much later in
the course.]

• Linear algebra is the study of the algebraic properties of linear trans-
formations (and matrices). Algebra is concerned with how to manip-
ulate symbolic combinations of objects, and how to equate one such
combination with another; e.g. how to simplify an expression such as
(x − 3)(x + 5). In linear algebra we shall manipulate not just scalars,
but also vectors, vector spaces, matrices, and linear transformations.
These manipulations will include familiar operations such as addition,
multiplication, and reciprocal (multiplicative inverse), but also new op-
erations such as span, dimension, transpose, determinant, trace, eigen-
value, eigenvector, and characteristic polynomial. [Algebra is distinct
from other branches of mathematics such as combinatorics (which is
more concerned with counting objects than equating them) or analysis
(which is more concerned with estimating and approximating objects,
and obtaining qualitative rather than quantitative properties).]

* * * * *
Overview of course

• Linear transformations and matrices are the focus of this course. How-
ever, before we study them, we first must study the more basic concepts
of vectors and vector spaces; this is what the first two weeks will cover.
(You will have had some exposure to vectors in 32AB and 33A, but
we will need to review this material in more depth - in particular we
concentrate much more on concepts, theory and proofs than on com-
putation). One of our main goals here is to understand how a small set
of vectors (called a basis) can be used to describe all other vectors in
a vector space (thus giving rise to a co-ordinate system for that vector
space).

• In weeks 3-5, we will study linear transformations and their co-ordinate
representation in terms of matrices. We will study how to multiply two
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transformations (or matrices), as well as the more difficult question of
how to invert a transformation (or matrix). The material from weeks
1-5 will then be tested in the midterm for the course.

• After the midterm, we will focus on matrices. A general matrix or linear
transformation is difficult to visualize directly, however one can under-
stand them much better if they can be diagonalized. This will force us
to understand various statistics associated with a matrix, such as deter-
minant, trace, characteristic polynomial, eigenvalues, and eigenvectors;
this will occupy weeks 6-8.

• In the last three weeks we will study inner product spaces, which are
a fancier version of vector spaces. (Vector spaces allow you to add
and scalar multiply vectors; inner product spaces also allow you to
compute lengths, angles, and inner products). We then review the
earlier material on bases using inner products, and begin the study
of how linear transformations behave on inner product spaces. (This
study will be continued in 115B).

• Much of the early material may seem familiar to you from previous
courses, but I definitely recommend that you still review it carefully, as
this will make the more difficult later material much easier to handle.

* * * * *
What is a vector? What is a vector space?

• We now review what a vector is, and what a vector space is. First let
us recall what a scalar is.

• Informally, a scalar is any quantity which can be described by a sin-
gle number. An example is mass: an object has a mass of m kg for
some real number m. Other examples of scalar quantities from physics
include charge, density, speed, length, time, energy, temperature, vol-
ume, and pressure. In finance, scalars would include money, interest
rates, prices, and volume. (You can think up examples of scalars in
chemistry, EE, mathematical biology, or many other fields).

• The set of all scalars is referred to as the field of scalars; it is usually
just R, the field of real numbers, but occasionally one likes to work
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with other fields such as C, the field of complex numbers, or Q, the
field of rational numbers. However in this course the field of scalars will
almost always be R. (In the textbook the scalar field is often denoted
F, just to keep aside the possibility that it might not be the reals R;
but I will not bother trying to make this distinction.)

• Any two scalars can be added, subtracted, or multiplied together to
form another scalar. Scalars obey various rules of algebra, for instance
x+ y is always equal to y + x, and x ∗ (y + z) is equal to x ∗ y + x ∗ z.

• Now we turn to vectors and vector spaces. Informally, a vector is any
member of a vector space; a vector space is any class of objects which
can be added together, or multiplied with scalars. (A more popular,
but less mathematically accurate, definition of a vector is any quantity
with both direction and magnitude. This is true for some common
kinds of vectors - most notably physical vectors - but is misleading or
false for other kinds). As with scalars, vectors must obey certain rules
of algebra.

• Before we give the formal definition, let us first recall some familiar
examples.

• The vector space R2 is the space of all vectors of the form (x, y), where
x and y are real numbers. (In other words, R2 := {(x, y) : x, y ∈ R}).
For instance, (−4, 3.5) is a vector in R2. One can add two vectors in R2

by adding their components separately, thus for instance (1, 2)+(3, 4) =
(4, 6). One can multiply a vector in R2 by a scalar by multiplying each
component separately, thus for instance 3 ∗ (1, 2) = (3, 6). Among all
the vectors in R2 is the zero vector (0, 0). Vectors in R2 are used for
many physical quantities in two dimensions; they can be represented
graphically by arrows in a plane, with addition represented by the
parallelogram law and scalar multiplication by dilation.

• The vector space R3 is the space of all vectors of the form (x, y, z),
where x, y, z are real numbers: R3 := {(x, y, z) : x, y, z ∈ R}. Addition
and scalar multiplication proceeds similar to R2: (1, 2, 3) + (4, 5, 6) =
(5, 7, 9), and 4 ∗ (1, 2, 3) = (4, 8, 12). However, addition of a vector in
R2 to a vector in R3 is undefined; (1, 2) + (3, 4, 5) doesn’t make sense.
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Among all the vectors in R3 is the zero vector (0, 0, 0). Vectors in R3 are
used for many physical quantities in three dimensions, such as velocity,
momentum, current, electric and magnetic fields, force, acceleration,
and displacement; they can be represented by arrows in space.

• One can similarly define the vector spaces R4, R5, etc. Vectors in
these spaces are not often used to represent physical quantities, and
are more difficult to represent graphically, but are useful for describing
populations in biology, portfolios in finance, or many other types of
quantities which need several numbers to describe them completely.

* * * * *
Definition of a vector space

• Definition. A vector space is any collection V of objects (called vec-
tors) for which two operations can be performed:

• Vector addition, which takes two vectors v and w in V and returns
another vector v + w in V . (Thus V must be closed under addition).

• Scalar multiplication, which takes a scalar c in R and a vector v in V ,
and returns another vector cv in V . (Thus V must be closed under
scalar multiplication).

• Furthermore, for V to be a vector space, the following properties must
be satisfied:

• (I. Addition is commutative) For all v, w ∈ V , v + w = w + v.

• (II. Addition is associative) For all u, v, w ∈ V , u+(v+w) = (u+v)+w.

• (III. Additive identity) There is a vector 0 ∈ V , called the zero vector,
such that 0 + v = v for all v ∈ V .

• (IV. Additive inverse) For each vector v ∈ V , there is a vector −v ∈ V ,
called the additive inverse of v, such that −v + v = 0.

• (V. Multiplicative identity) The scalar 1 has the property that 1v = v
for all v ∈ V .
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• (VI. Multiplication is associative) For any scalars a, b ∈ R and any
vector v ∈ V , we have a(bv) = (ab)v.

• (VII. Multiplication is linear) For any scalar a ∈ R and any vectors
v, w ∈ V , we have a(v + w) = av + aw.

• (VIII. Multiplication distributes over addition) For any scalars a, b ∈ R
and any vector v ∈ V , we have (a+ b)v = av + bv.

* * * * *
(Not very important) remarks

• The number of properties listed is long, but they can be summarized
briefly as: the laws of algebra work! They are all eminently reasonable;
one would not want to work with vectors for which v +w 6= w + v, for
instance. Verifying all the vector space axioms seems rather tedious,
but later we will see that in most cases we don’t need to verify all of
them.

• Because addition is associative (axiom II), we will often write expres-
sions such as u+v+w without worrying about which order the vectors
are added in. Similarly from axiom VI we can write things like abv.
We also write v − w as shorthand for v + (−w).

• A philosophical point: we never say exactly what vectors are, only
what vectors do. This is an example of abstraction, which appears
everywhere in mathematics (but especially in algebra): the exact sub-
stance of an object is not important, only its properties and functions.
(For instance, when using the number “three” in mathematics, it is
unimportant whether we refer to three rocks, three sheep, or whatever;
what is important is how to add, multiply, and otherwise manipulate
these numbers, and what properties these operations have). This is
tremendously powerful: it means that we can use a single theory (lin-
ear algebra) to deal with many very different subjects (physical vectors,
population vectors in biology, portfolio vectors in finance, probability
distributions in probability, functions in analysis, etc.). [A similar phi-
losophy underlies “object-oriented programming” in computer science.]
Of course, even though vector spaces can be abstract, it is often very

9



helpful to keep concrete examples of vector spaces such as R2 and R3

handy, as they are of course much easier to visualize. For instance,
even when dealing with an abstract vector space we shall often still
just draw arrows in R2 or R3, mainly because our blackboards don’t
have all that many dimensions.

• Because we chose our field of scalars to be the field of real numbers R,
these vector fields are known as real vector fields, or vector fields over
R. Occasionally people use other fields, such as complex numbers C, to
define the scalars, thus creating complex vector fields (or vector fields
over C), etc. Another interesting choice is to use functions instead of
numbers as scalars (for instance, one could have an indeterminate x,
and let things like 4x3 + 2x2 + 5 be scalars, and (4x3 + 2x2 + 5, x4− 4)
be vectors). We will stick almost exclusively with the real scalar field
in this course, but because of the abstract nature of this theory, almost
everything we say in this course works equally well for other scalar
fields.

• A pedantic point: The zero vector is often denoted 0, but technically
it is not the same as the zero scalar 0. But in practice there is no harm
in confusing the two objects: zero of one thing is pretty much the same
as zero of any other thing.

* * * * *
Examples of vector spaces

• n-tuples as vectors. For any integer n ≥ 1, the vector space Rn is
defined to be the space of all n-tuples of reals (x1, x2, . . . , xn). These
are ordered n-tuples, so for instance (3, 4) is not the same as (4, 3); two
vectors are equal (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are only equal if
x1 = y1, x2 = y2, . . ., and xn = yn. Addition of vectors is defined by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) := (x1 + y1, x2 + y2, . . . , xn + yn)

and scalar multiplication by

c(x1, x2, . . . , xn) := (cx1, cx2, . . . , cxn).

The zero vector is
0 := (0, 0, . . . , 0)
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and additive inverse is given by

−(x1, x2, . . . , xn) := (−x1,−x2, . . . ,−xn).

• A typical use of such a vector is to count several types of objects. For
instance, a simple ecosystem consisting of X units of plankton, Y units
of fish, and Z whales might be represented by the vector (X, Y, Z).
Combining two ecosystems together would then correspond to adding
the two vectors; natural population growth might correspond to mul-
tiplying the vector by some scalar corresponding to the growth rate.
(More complicated operations, dealing with how one species impacts
another, would probably be dealt with via matrix operations, which
we will come to later). As one can see, there is no reason for n to be
restricted to two or three dimensions.

• The vector space axioms can be verified for Rn, but it is tedious to do
so. We shall just verify one axiom here, axiom VIII: (a+ b)v = av+ bv.
We can write the vector v in the form v := (x1, x2, . . . , xn). The left-
hand side is then

(a+ b)v = (a+ b)(x1, x2, . . . , xn) = ((a+ b)x1, (a+ b)x2, . . . , (a+ b)xn)

while the right-hand side is

av + bv = a(x1, x2, . . . , xn) + b(x1, x2, . . . , xn)

= (ax1, ax2, . . . , axn) + (bx1, bx2, . . . , bxn)

= (ax1 + bx1, ax2 + bx2, . . . , axn + bxn)

and the two sides match since (a + b)xj = axj + bxj for each j =
1, 2, . . . , n.

• There are of course other things we can do with Rn, such as taking dot
products, lengths, angles, etc., but those operations are not common
to all vector spaces and so we do not discuss them here.

• Scalars as vectors. The scalar field R can itself be thought of as a
vector space - after all, it has addition and scalar multiplication. It
is essentially the same space as R1. However, this is a rather boring
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vector space and it is often confusing (though technically correct) to
refer to scalars as a type of vector. Just as R2 represents vectors in
a plane and R3 represents vectors in space, R1 represents vectors in a
line.

• The zero vector space. Actually, there is an even more boring vector
space than R - the zero vector space R0 (also called {0}), consisting
solely of a single vector 0, the zero vector, which is also sometimes
denoted () in this context. Addition and multiplication are trivial:
0 + 0 = 0 and c0 = 0. The space R0 represents vectors in a point.
Although this space is utterly uninteresting, it is necessary to include
it in the pantheon of vector spaces, just as the number zero is required
to complete the set of integers.

• Complex numbers as vectors. The space C of complex numbers
can be viewed as a vector space over the reals; one can certainly add two
complex numbers together, or multiply a complex number by a (real)
scalar, with all the laws of arithmetic holding. Thus, for instance, 3+2i
would be a vector, and an example of scalar multiplication would be
5(3+2i) = 15+10i. This space is very similar to R2, although complex
numbers enjoy certain operations, such as complex multiplication and
complex conjugate, which are not available to vectors in R2.

• Polynomials as vectors I. For any n ≥ 0, let Pn(R) denote the
vector space of all polynomials of one indeterminate variable x whose
degree is at most n. Thus for instance P3(R) contains the “vectors”

x3 + 2x2 + 4; x2 − 4; −1.5x3 + 2.5x+ π; 0

but not
x4 + x+ 1;

√
x; sin(x) + ex; x3 + x−3.

Addition, scalar multiplication, and additive inverse are defined in the
standard manner, thus for instance

(x3 + 2x2 + 4) + (−x3 + x2 + 4) = 3x2 + 8 (0.1)

and
3(x3 + 2x2 + 4) = 3x3 + 6x2 + 12.

The zero vector is just 0.
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• Notice in this example it does not really matter what x is. The space
Pn(R) is very similar to the vector space Rn+1; indeed one can match
one to the other by the pairing

anx
n + an−1x

n−1 + . . .+ a1x+ a0 ⇐⇒ (an, an−1, . . . , a1, a0),

thus for instance in P3(R), the polynomial x3 + 2x2 + 4 would be as-
sociated with the 4-tuple (1, 2, 0, 4). The more precise statement here
is that Pn(R) and Rn+1 are isomorphic vector spaces; more on this
later. However, the two spaces are still different; for instance we can
do certain operations in Pn(R), such as differentiate with respect to x,
which do not make much sense for Rn+1.

• Notice that we allow the polynomials to have degree less than n; if we
only allowed polynomials of degree exactly n, then we would not have
a vector space because the sum of two vectors would not necessarily be
a vector (see (0.1)). (In other words, such a space would not be closed
under addition).

• Polynomials as vectors II. Let P (R) denote the vector space of all
polynomials of one indeterminate variable x - regardless of degree. (In
other words, P (R) :=

⋃∞
n=0 Pn(R), the union of all the Pn(R)). Thus

this space in particular contains the monomials

1, x, x2, x3, x4, . . .

though of course it contains many other vectors as well.

• This space is much larger than any of the Pn(R), and is not isomor-
phic to any of the standard vector spaces Rn. Indeed, it is an infinite
dimensional space - there are infinitely many “independent” vectors in
this space. (More on this later).

• Functions as vectors I. Why stick to polynomials? Let C(R) denote
the vector space of all continuous functions of one real variable x - thus
this space includes as vectors such objects as

x4 + x+ 1; sin(x) + ex; x3 + π − sin(x); |x|.
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One still has addition and scalar multiplication:

(sin(x) + ex) + (x3 + π − sin(x)) = x3 + ex + π

5(sin(x) + ex) = 5 sin(x) + 5ex,

and all the laws of vector spaces still hold. This space is substantially
larger than P (R), and is another example of an infinite dimensional
vector space.

• Functions as vectors II. In the previous example the real variable
x could range over all the real line R. However, we could instead
restrict the real variable to some smaller set, such as the interval [0, 1],
and just consider the vector space C([0, 1]) of continuous functions on
[0, 1]. This would include such vectors such as

x4 + x+ 1; sin(x) + ex; x3 + π − sin(x); |x|.

This looks very similar to C(R), but this space is a bit smaller because
more functions are equal. For instance, the functions x and |x| are
the same vector in C([0, 1]), even though they are different vectors in
C(R).

• Functions as vectors III. Why stick to continuous functions? Let
F(R,R) denote the space of all functions of one real variable R, re-
gardless of whether they are continuous or not. In addition to all the
vectors in C(R) the space F(R,R) contains many strange objects, such
as the function

f(x) :=

{
1 if x ∈ Q
0 if x 6∈ Q

This space is much, much, larger than C(R); it is also infinite di-
mensional, but it is in some sense “more infinite” than C(R). (More
precisely, the dimension of C(R) is countably infinite, but the dimen-
sion of F(R,R) is uncountably infinite. Further discussion is beyond
the scope of this course, but see Math 112).

• Functions as vectors IV. Just as the vector space C(R) of continuous
functions can be restricted to smaller sets, the space F(R,R) can also
be restricted. For any subset S of the real line, let F(S,R) denote
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the vector space of all functions from S to R, thus a vector in this
space is a function f which assigns a real number f(x) to each x in S.
Two vectors f , g would be considered equal if f(x) = g(x) for each x
in S. For instance, if S is the two element set S := {0, 1}, then the
two functions f(x) := x2 and g(x) := x would be considered the same
vector in F({0, 1},R), because they equal the same value at 0 and 1.
Indeed, to specify any vector f in {0, 1}, one just needs to specify f(0)
and f(1). As such, this space is very similar to R2.

• Sequences as vectors. An infinite sequence is a sequence of real
numbers

(a1, a2, a3, a4, . . .);

for instance, a typical sequence is

(2, 4, 6, 8, 10, 12, . . .).

Let R∞ denote the vector space of all infinite sequences. These se-
quences are added together by the rule

(a1, a2, . . .) + (b1, b2, . . .) := (a1 + b1, a2 + b2, . . .)

and scalar multiplied by the rule

c(a1, a2, . . .) := (ca1, ca2, . . .).

This vector space is very much like the finite-dimensional vector spaces
R2, R3, . . ., except that these sequences do not terminate.

• Matrices as vectors. Given any integers m,n ≥ 1, we let Mm×n(R)
be the space of all m × n matrices (i.e. m rows and n columns) with
real entries, thus for instance M2×3 contains such “vectors” as(

1 2 3
4 5 6

)
,

(
0 −1 −2
−3 −4 −5

)
.

Two matrices are equal if and only if all of their individual components
match up; rearranging the entries of a matrix will produce a different

15



matrix. Matrix addition and scalar multiplication is defined similarly
to vectors:(

1 2 3
4 5 6

)
+

(
0 −1 −2
−3 −4 −5

)
=

(
1 1 1
1 1 1

)
(

1 2 3
4 5 6

)
=

(
10 20 30
40 50 60

)
.

Matrices are useful for many things, notably for solving linear equations
and for encoding linear transformations; more on these later in the
course.

• As you can see, there are (infinitely!) many examples of vector spaces,
some of which look very different from the familiar examples of R2 and
R3. Nevertheless, much of the theory we do here will cover all of these
examples simultaneously. When we depict these vector spaces on the
blackboard, we will draw them as if they were R2 or R3, but they are
often much larger, and each point we draw in the vector space, which
represents a vector, could in reality stand for a very complicated object
such as a polynomial, matrix, or function. So some of the pictures we
draw should be interpreted more as analogies or metaphors than as a
literal depiction of the situation.

* * * * *
Non-vector spaces

• Now for some examples of things which are not vector spaces.

• Latitude and longitude. The location of any point on the earth can
be described by two numbers, e.g. Los Angeles is 34 N, 118 W. This
may look a lot like a two-dimensional vector in R2, but the space of
all latitude-longitude pairs is not a vector space, because there is no
reasonable way of adding or scalar multiplying such pairs. For instance,
how could you multiply Los Angeles by 10? 340 N, 1180 W does not
make sense.

• Unit vectors. In R3, a unit vector is any vector with unit length, for
instance (0, 0, 1), (0,−1, 0), and (3

5
, 0, 4

5
) are all unit vectors. However
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the space of all unit vectors (sometimes denoted S2, for two-dimensional
sphere) is not a vector space as it is not closed under addition (or under
scalar multiplication).

• The positive real axis. The space R+ of positive real numbers is
closed under addition, and obeys most of the rules of vector spaces, but
is not a vector space, because one cannot multiply by negative scalars.
(Also, it does not contain a zero vector).

• Monomials. The space of monomials 1, x, x2, x3, . . . does not form a
vector space - it is not closed under addition or scalar multiplication.

* * * * *
Vector arithmetic

• The vector space axioms I-VIII can be used to deduce all the other
familiar laws of vector arithmetic. For instance, we have

• Vector cancellation law If u, v, w are vectors such that u+v = u+w,
then v = w.

• Proof: Since u is a vector, we have an additive inverse −u such that
−u+u = 0, by axiom IV. Now we add −u to both sides of u+v = u+w:

−u+ (u+ v) = −u+ (u+ w).

Now use axiom II:

(−u+ u) + v = (−u+ u) + w

then axiom IV:
0 + v = 0 + w

then axiom III:
v = w.

• As you can see, these algebraic manipulations are rather trivial. After
the first week we usually won’t do these computations in such painful
detail.
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• Some other simple algebraic facts, which you can amuse yourself with
by deriving them from the axioms:

0v = 0; (−1)v = −v; −(v+w) = (−v)+(−w); a0 = 0; a(−x) = (−a)x = −ax

* * * * *
Vector subspaces

• Many vector spaces are subspaces of another. A vector space W is a
subspace of a vector space V if W ⊆ V (i.e. every vector in W is also a
vector in V ), and the laws of vector addition and scalar multiplication
are consistent (i.e. if v1 and v2 are in W , and hence in V , the rule that
W gives for adding v1 and v2 gives the same answer as the rule that V
gives for adding v1 and v2.)

• For instance, the space P2(R) - the vector space of polynomials of
degree at most 2 is a subspace of P3(R). Both are subspaces of P (R),
the vector space of polynomials of arbitrary degree. C([0, 1]), the space
of continuous functions on [0, 1], is a subspace of F([0, 1],R). And
so forth. (Technically, R2 is not a subspace of R3, because a two-
dimensional vector is not a three-dimensional vector. However, R3

does contain subspaces which are almost identical to R2. More on this
later).

• If V is a vector space, and W is a subset of V (i.e. W ⊆ V ), then
of course we can add and scalar multiply vectors in W , since they are
automatically vectors in V . On the other hand, W is not necessarily
a subspace, because it may not be a vector space. (For instance, the
set S2 of unit vectors in R3 is a subset of R3, but is not a subspace).
However, it is easy to check when a subset is a subspace:

• Lemma. Let V be a vector space, and let W be a subset of V . Then
W is a subspace of V if and only if the following two properties are
satisfied:

• (W is closed under addition) If w1 and w2 are in W , then w1 + w2 is
also in W .
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• (W is closed under scalar multiplication) If w is in W and c is a scalar,
then cw is also in W .

• Proof. First suppose that W is a subspace of V . Then W will be
closed under addition and multiplication directly from the definition of
vector space. This proves the “only if” part.

• Now we prove the harder “if part”. In other words, we assume that W is
a subset of V which is closed under addition and scalar multiplication,
and we have to prove that W is a vector space. In other words, we
have to verify the axioms I-VIII.

• Most of these axioms follow immediately because W is a subset of V ,
and V already obeys the axioms I-VIII. For instance, since vectors v1, v2
in V obey the commutativity property v1+v2 = v2+v1, it automatically
follows that vectors in W also obey the property w1 + w2 = w2 + w1,
since all vectors in W are also vectors in V . This reasoning easily gives
us axioms I, II, V, VI, VII, VIII.

• There is a potential problem with III though, because the zero vector 0
of V might not lie in W . Similarly with IV, there is a potential problem
that if w lies in W , then −w might not lie in W . But both problems
cannot occur, because 0 = 0w and −w = (−1)w (Exercise: prove this
from the axioms!), and W is closed under scalar multiplication. �

• This Lemma makes it quite easy to generate a large number of vector
spaces, simply by taking a big vector space and passing to a subset
which is closed under addition and scalar multiplication. Some exam-
ples:

• (Horizontal vectors) Recall that R3 is the vector space of all vectors
(x, y, z) with x, y, z real. Let V be the subset of R3 consisting of all
vectors with zero z co-ordinate, i.e. V := {(x, y, 0) : x, y ∈ R}. This is
a subset of R3, but moreover it is also a subspace of R3. To see this,
we use the Lemma. It suffices to show that V is closed under vector
addition and scalar multiplication. Let’s check the vector addition. If
we have two vectors in V , say (x1, y1, 0) and (x2, y2, 0), we need to
verify that the sum of these two vectors is still in V . But the sum is
just (x1 + x2, y1 + y2, 0), and this is in V because the z co-ordinate
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is zero. Thus V is closed under vector addition. A similar argument
shows that V is closed under scalar multiplication, and so V is indeed
a subspace of R3. (Indeed, V is very similar to - though technically not
the same thing as - R2). Note that if we considered instead the space
of all vectors with z co-ordinate 1, i.e. {(x, y, 1) : x, y ∈ R}, then this
would be a subset but not a subspace, because it is not closed under
vector addition (or under scalar multiplication, for that matter).

• Another example of a subspace of R3 is the plane {(x, y, z) ∈ R3 :
x + 2y + 3z = 0}. A third example of a subspace of R3 is the line
{(t, 2t, 3t) : t ∈ R}. (Exercise: verify that these are indeed subspaces).
Notice how subspaces tend to be very flat objects which go through the
origin; this is consistent with them being closed under vector addition
and scalar multiplication.

• In R3, the only subspaces are lines through the origin, planes through
the origin, the whole space R3, and the zero vector space {0}. In R2,
the only subspaces are lines through the origin, the whole space R2,
and the zero vector space {0}. (This is another clue as to why this
subject is called linear algebra).

• (Even polynomials) Recall that P (R) is the vector space of all poly-
nomials f(x). Call a polynomial even if f(x) = f(−x); for instance,
f(x) = x4 + 2x2 + 3 is even, but f(x) = x3 + 1 is not. Let Peven(R)
denote the set of all even polynomials, thus Peven(R) is a subset of
P (R). Now we show that Peven(R) is not just a subset, it is a sub-
space of P (R). Again, it suffices to show that Peven(R) is closed under
vector addition and scalar multiplication. Let’s show it’s closed un-
der vector addition - i.e. if f and g are even polynomials, we have to
show that f + g is also even. In other words, we have to show that
f(−x) + g(−x) = f(x) + g(x). But this is clear since f(−x) = f(x)
and g(−x) = g(x). A similar argument shows why even polynomials
are closed under scalar multiplication.

• (Diagonal matrices) Let n ≥ 1 be an integer. Recall that Mn×n(R)
is the vector space of n × n real matrices. Call a matrix diagonal if
all the entries away from the main diagonal (from top left to bottom
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right) are zero, thus for instance 1 0 0
0 2 0
0 0 3


is a diagonal matrix. Let Dn(R) denote the space of all diagonal n×n
matrices. This is a subset of Mn×n(R), and is also a subspace, because
the sum of any two diagonal matrices is again a diagonal matrix, and
the scalar product of a diagonal matrix and a scalar is still a diagonal
matrix. The notation of a diagonal matrix will become very useful
much later in the course.

• (Trace zero matrices) Let n ≥ 1 be an integer. If A is an n × n
matrix, we define the trace of that matrix, denoted tr(A), to be the
sum of all the entries on the diagonal. For instance, if

A =

 1 2 3
4 5 6
7 8 9


then

tr(A) = 1 + 5 + 9 = 15.

Let M0
n×n(R) denote the set of all n× n matrices whose trace is zero:

M0
n×n(R) := {A ∈Mn×n : tr(A) = 0}.

One can easily check that this space is a subspace of Mn×n. We will
return to traces much later in this course.

• Technically speaking, every vector space V is considered a subspace of
itself (since V is already closed under addition and scalar multiplica-
tion). Also the zero vector space {0} is a subspace of every vector space
(for a similar reason). But these are rather uninteresting examples of
subspaces. We sometimes use the term proper subspace of V to denote
a subspace W of V which is not the whole space V or the zero vector
space {0}, but instead is something in between.
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• The intersection of two subspaces is again a subspace (why?). For
instance, since the diagonal matrices Dn(R) and the trace zero matrices
M0

n×n(R) are both subspaces of Mn×n(R), their intersection Dn(R) ∩
M0

n×n(R) is also a subspace of Mn×n(R). On the other hand, the
union of two subspaces is usually not a subspace. For instance, the
x-axis {(x, 0) : x ∈ R} and y-axis {(0, y) : y ∈ R}, but their union
{(x, 0) : x ∈ R} ∪ {(0, y) : y ∈ R} is not (why?). See Assignment 1 for
more details.

• In some texts one uses the notation W ≤ V to denote the statement
“W is a subspace of V ”. I’ll avoid this as it may be a little confusing at
first. However, the notation is suggestive. For instance it is true that
if U ≤ W and W ≤ V , then U ≤ V ; i.e. if U is a subspace of W , and
W is a subspace of V , then U is a subspace of V . (Why?)

* * * * *
Linear combinations

• Let’s look at the standard vector space R3, and try to build some
subspaces of this space. To get started, let’s pick a random vector in
R3, say v := (1, 2, 3), and ask how to make a subspace V of R3 which
would contain this vector (1, 2, 3). Of course, this is easy to accomplish
by setting V equal to all of R3; this would certainly contain our single
vector v, but that is overkill. Let’s try to find a smaller subspace of R3

which contains v.

• We could start by trying to make V just consist of the single point
(1, 2, 3): V := {(1, 2, 3)}. But this doesn’t work, because this space
is not a vector space; it is not closed under scalar multiplication. For
instance, 10(1, 2, 3) = (10, 20, 30) is not in the space. To make V a
vector space, we cannot just put (1, 2, 3) into V , we must also put
in all the scalar multiples of (1, 2, 3): (2, 4, 6), (3, 6, 9), (−1,−2,−3),
(0, 0, 0), etc. In other words,

V ⊇ {a(1, 2, 3) : a ∈ R}.

Conversely, the space {a(1, 2, 3) : a ∈ R} is indeed a subspace of R3

which contains (1, 2, 3). (Exercise!). This space is the one-dimensional
space which consists of the line going through the origin and (1, 2, 3).
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• To summarize what we’ve seen so far, if one wants to find a subspace
V which contains a specified vector v, then it is not enough to contain
v; one must also contain the vectors av for all scalars a. As we shall see
later, the set {av : a ∈ R} will be called the span of v, and is denoted
span({v}).

• Now let’s suppose we have two vectors, v := (1, 2, 3) and w := (0, 0, 1),
and we want to construct a vector space V in R3 which contains both
v and w. Again, setting V equal to all of R3 will work, but let’s try to
get away with as small a space V as we can.

• We know that at a bare minimum, V has to contain not just v and w,
but also the scalar multiples av and bw of v and w, where a and b are
scalars. But V must also be closed under vector addition, so it must
also contain vectors such as av+bw. For instance, V must contain such
vectors as

3v + 5w = 3(1, 2, 3) + 5(0, 0, 1) = (3, 6, 9) + (0, 0, 5) = (3, 6, 14).

We call a vector of the form av + bw a linear combination of v and w,
thus (3, 6, 14) is a linear combination of (1, 2, 3) and (0, 0, 1). The space
{av + bw : a, b ∈ R} of all linear combinations of v and w is called the
span of v and w, and is denoted span({v,w}). It is also a subspace of
R3; it turns out to be the plane through the origin that contains both
v and w.

• More generally, we define the notions of linear combination and span
as follows.

• Definition. Let S be a collection of vectors in a vector space V (either
finite or infinite). A linear combination of S is defined to be any vector
in V of the form

a1v1 + a2v2 + . . .+ anvn

where a1, . . . , an are scalars (possibly zero or negative), and v1, . . . , vn
are some elements in S. The span of S, denoted span(S), is defined to
be the space of all linear combinations of S:

span(S) := {a1v1 + a2v2 + . . .+ anvn : a1, . . . , an ∈ R; v1, . . . , vn ∈ S}.
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• Usually we deal with the case when the set S is just a finite collection

S = {v1, . . . , vn}

of vectors. In that case the span is just

span({v1, . . . , vn}) := {a1v1 + a2v2 + . . .+ anvn : a1, . . . , an ∈ R}.

(Why?)

• Occasionally we will need to deal when S is empty. In this case we set
the span span(∅) of the empty set to just be {0}, the zero vector space.
(Thus 0 is the only vector which is a linear combination of an empty
set of vectors. This is part of a larger mathematical convention, which
states that any summation over an empty set should be zero, and every
product over an empty set should be 1.)

• Here are some basic properties of span.

• Theorem. Let S be a subset of a vector space V . Then span(S) is a
subspace of V which contains S as a subset. Moreover, any subspace
of V which contains S as a subset must in fact contain all of span(S).

• We shall prove this particular theorem in detail to illustrate how to go
about giving a proof of a theorem such as this. In later theorems we
will skim over the proofs more quickly.

• Proof. If S is empty then this theorem is trivial (in fact, it is rather
vacuous - it says that the space {0} contains all the elements of an
empty set of vectors, and that any subspace of V which contains the
elements of an empty set of vectors, must also contain {0}), so we shall
assume that n ≥ 1. We now break up the theorem into its various
components.

(a) First we check that span(S) is a subspace of V . To do this we need
to check three things: that span(S) is contained in V ; that it is closed
under addition; and that it is closed under scalar multiplication.

(a.1) To check that span(S) is contained in V , we need to take a typical
element of the span, say a1v1 + . . .+ anvn, where a1, . . . , an are scalars
and v1, . . . , vn ∈ S, and verify that it is in V . But this is clear since
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v1, . . . , vn were already in V and V is closed under addition and scalar
multiplication.

(a.2) To check that the space span(S) is closed under vector addition,
we take two typical elements of this space, say a1v1 + . . . + anvn and
b1v1 + . . . + bnvn, where the aj and bj are scalars and vj ∈ S for j =
1, . . . n, and verify that their sum is also in span(S). But the sum is

(a1v1 + . . .+ anvn) + (b1v1 + . . .+ bnvn)

which can be rearranged as

(a1 + b1)v1 + . . .+ (an + bn)vn

[Exercise: which of the vector space axioms I-VIII were needed in order
to do this?]. But since a1 + b1, . . . , an + bn are all scalars, we see that
this is indeed in span(S).

(a.3) To check that the space span(S) is closed under vector addition,
we take a typical element of this space, say a1v1+. . . anvn, and a typical
scalar c. We want to verify that the scalar product

c(a1v1 + . . .+ anvn)

is also in span({v1, . . . , vn}). But this can be rearranged as

(ca1)v1 + . . .+ (can)vn

(which axioms were used here?). Since ca1, . . . , can were scalars, we see
that we are in span(S) as desired.

(b) Now we check that span(S) contains S. It will suffice of course to
show that span(S) contains v for each v ∈ S. But each v is clearly a
linear combination of elements in S, in fact v = 1.v and v ∈ S. Thus v
lies in span(S) as desired.

(c) Now we check that every subspace of V which contains S, also
contains span(S). In order to stop from always referring to “that sub-
space”, let us use W to denote a typical subspace of V which contains
S. Our goal is to show that W contains span(S).

This the same as saying that every element of span(S) lies in W . So,
let v = a1v1 + . . .+ anvn be a typical element of span(S), where the aj
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are scalars and vj ∈ S for j = 1, . . . , n. Our goal is to show that v lies
in W .

Since v1 lies in W , and W is closed under scalar multiplication, we see
that a1v1 lies in W . Similarly a2v2, . . . , anvn lie in W . But W is closed
under vector addition, thus a1v1 + . . .+anvn lies in W , as desired. This
concludes the proof of the Theorem. �

• We remark that the span of a set of vectors does not depend on what
order we list the set S: for instance, span({u, v,w}) is the same as
span({w, v, u}). (Why is this?)

• The span of a set of vectors comes up often in applications, when one
has a certain number of “moves” available in a system, and one wants
to see what options are available by combining these moves. We give
a example, from a simple economic model, as follows.

• Suppose you run a car company, which uses some basic raw materials
- let’s say money, labor, metal, for sake of argument - to produce some
cars. At any given point in time, your resources might consist of x
units of money, y units of labor (measured, say, in man-hours), z units
of metal, and w units of cars, which we represent by a vector (x, y, z, w).

Now you can make various decisions to alter your balance of resources.
For instance, suppose you could purchase a unit of metal for two units
of money - this amounts to adding (−2, 0, 1, 0) to your resource vector.
You could do this repeatedly, thus adding a(−2, 0, 1, 0) to your resource
vector for any positive a. (If you could also sell a unit of metal for two
units of money, then a could also be negative. Of course, a can always
be zero, simply by refusing to buy or sell any metal). Similarly, one
might be able to purchase a unit of labor for three units of money, thus
adding (−3, 1, 0, 0) to your resource vector. Finally, to produce a car
requires 4 units of labor and 5 units of metal, thus adding (0,−4,−5, 1)
to your resource vector. (This is of course an extremely oversimplified
model, but will serve to illustrate the point).

• Now we ask the question of how much money it will cost to create a
car - in other words, for what price x can we add (−x, 0, 0, 1) to our
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resource vector? The answer is 22, because

(−22, 0, 0, 1) = 5(−2, 0, 1, 0) + 4(−3, 1, 0, 0) + 1(0,−4,−5, 1)

and so one can convert 22 units of money to one car by buying 5 units
of metal, 4 units of labor, and producing one car. On the other hand,
it is not possible to obtain a car for a smaller amount of money using
the moves available (why?). In other words, (−22, 0, 0, 1) is the unique
vector of the form (−x, 0, 0, 1) which lies in the span of the vectors
(−2, 0, 1, 0), (−3, 1, 0, 0), and (0,−4,−5, 1).

• Of course, the above example was so simple that we could have worked
out the price of a car directly. But in more complicated situations
(where there aren’t so many zeroes in the vector entries) one really has
to start computing the span of various vectors. [Actually, things get
more complicated than this because in real life there are often other
constraints. For instance, one may be able to buy labor for money, but
one cannot sell labor to get the money back - so the scalar in front of
(−3, 1, 0, 0) can be positive but not negative. Or storage constraints
might limit how much metal can be purchased at a time, etc. This
passes us from linear algebra to the more complicated theory of linear
programming, which is beyond the scope of this course. Also, due to
such things as the law of diminishing returns and the law of economies
of scale, in real life situations are not quite as linear as presented in
this simple model. This leads us eventually to non-linear optimization
and control theory, which is again beyond the scope of this course.]

• This leads us to ask the following question: How can we tell when one
given vector v is in the span of some other vectors v1, v2, . . . vn? For
instance, is the vector (0, 1, 2) in the span of (1, 1, 1), (3, 2, 1), (1, 0, 1)?
This is the same as asking for scalars a1, a2, a3 such that

(0, 1, 2) = a1(1, 1, 1) + a2(3, 2, 1) + a3(1, 0, 1).

We can multiply out the left-hand side as

(a1 + 3a2 + a3, a1 + 2a2, a1 + a2 + a3)
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and so we are asking to find a1, a2, a3 that solve the equations

a1 +3a2 +a3 = 0
a1 +2a2 = 1
a1 +a2 a3 = 2.

This is a linear system of equations; “system” because it consists of
more than one equation, and “linear” because the variables a1, a2, a3
only appear as linear factors (as opposed to quadratic factors such as
a21 or a2a3, or more non-linear factors such as sin(a1)). Such a system
can also be written in matrix form 1 3 1

1 2 0
1 1 1

 a1
a2
a3

 =

 0
1
2


or schematically as  1 3 1

1 2 0
1 1 1

∣∣∣∣∣∣
0
1
2

 .

To actually solve this system of equations and find a1, a2, a3, one of
the best methods is to use Gaussian elimination. The idea of Gaussian
elimination is to try to make as many as possible of the numbers in
the matrix equal to zero, as this will make the linear system easier to
solve. There are three basic moves:

• Swap two rows: Since it does not matter which order we display the
equations of a system, we are free to swap any two rows of the sys-
tem. This is mostly a cosmetic move, useful in making the system look
prettier.

• Multiply a row by a constant: We can multiply (or divide) both sides
of an equation by any constant (although we want to avoid multiplying
a row by 0, as that reduces that equation to the trivial 0=0, and the
operation cannot be reversed since division by 0 is illegal). This is
again a mostly cosmetic move, useful for setting one of the co-efficients
in the matrix to 1.
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• Subtract a multiple of one row from another: This is the main move.
One can take any row, multiply it by any scalar, and subtract (or
add) the resulting object from a second row; the original row remains
unchanged. The main purpose of this is to set one or more of the matrix
entries of the second row to zero.

We illustrate these moves with the above system. We could use the
matrix form or the schematic form, but we shall stick with the linear
system form for now:

a1 +3a2 +a3 = 0
a1 +2a2 = 1
a1 +a2 +a3 = 2.

We now start zeroing the a1 entries by subtracting the first row from
the second:

a1 +3a2 +a3 = 0
−a2 −a3 = 1

a1 +a2 +a3 = 2

and also subtracting the first row from the third:

a1 +3a2 +a3 = 0
−a2 −a3 = 1
−2a2 = 2.

The third row looks simplifiable, so we swap it up

a1 +3a2 +a3 = 0
−2a2 = 2
−a2 −a3 = 1

and then divide it by -2:

a1+ 3a2 +a3 = 0
a2 = −1
−a2 −a3 = 1.

Then we can zero the a2 entries by subtracting 3 copies of the second
row from the first, and adding one copy of the second row to the third:

a1 +a3 = 3
a2 = −1
−a3 = 0.

29



If we then multiply the third row by −1 and then subtract it from the
first, we obtain

a1 = 3
a2 = −1

a3 = 0

and so we have found the solution, namely a1 = 3, a2 = −1, a3 = 0.
Getting back to our original problem, we have indeed found that (0, 1, 2)
is in the span of (1, 1, 1), (3, 2, 1), (1, 0, 1):

(0, 1, 2) = 3(1, 1, 1) + (−1)(3, 2, 1) + 0(1, 0, 1).

In the above case we found that there was only one solution for a1,
a2, a3 - they were exactly determined by the linear system. Sometimes
there can be more than one solution to a linear system, in which case
we say that the system is under-determined - there are not enough
equations to pin down all the variables exactly. This usually happens
when the number of unknowns exceeds the number of equations. For
instance, suppose we wanted to show that (0, 1, 2) is in the span of the
four vectors (1, 1, 1), (3, 2, 1), (1, 0, 1), (0, 0, 1):

(0, 1, 2) = a1(1, 1, 1) + a2(3, 2, 1) + a3(1, 0, 1) + a4(0, 0, 1).

This is the system

a1 +3a2 +a3 = 0
a1 +2a2 = 1
a1 +a2 +a3 +a4 = 2.

Now we do Gaussian elimination again. Subtracting the first row from
the second and third:

a1 +3a2 +a3 = 0
−a2 −a3 = 1
−2a2 +a4 = 2.

Multiplying the second row by −1, then eliminating a2 from the first
and third rows:

a1 −2a3 = 3
a2 +a3 = −1

2a3 +a4 = 0.
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At this stage the system is in reduced normal form, which means that,
starting from the bottom row and moving upwards, each equation intro-
duces at least one new variable (ignoring any rows which have collapsed
to something trivial like 0 = 0). Once one is in reduced normal form,
there isn’t much more simplification one can do. In this case there is
no unique solution; one can set a4 to be arbitrary. The third equation
then allows us to write a3 in terms of a4:

a3 = −a4/2

while the second equation then allows us to write a2 in terms of a3 (and
thus of a4:

a2 = −1− a3 = −1 + a4/2.

Similarly we can write a1 in terms of a4:

a1 = 3 + 2a3 = 3− a4.

Thus the general way to write (0, 1, 2) as a linear combination of (1, 1, 1),
(3, 2, 1), (1, 0, 1), (0, 0, 1) is

(0, 1, 2) = (3−a4)(1, 1, 1)+(−1+a4/2)(3, 2, 1)+(−a4/2)(1, 0, 1)+a4(0, 0, 1);

for instance, setting a4 = 4, we have

(0, 1, 2) = −(1, 1, 1) + (3, 2, 1)− 2(1, 0, 1) + 4(0, 0, 1)

while if we set a4 = 0, then we have

(0, 1, 2) = 3(1, 1, 1)− 1(3, 2, 1) + 0(1, 0, 1) + 0(0, 0, 1)

as before. Thus not only is (0, 1, 2) in the span of (1, 1, 1), (3, 2, 1),
(1, 0, 1), and (0, 0, 1), it can be written as a linear combination of such
vectors in many ways. This is because some of the vectors in this set are
redundant - as we already saw, we only needed the first three vectors
(1, 1, 1), (3, 2, 1) and (1, 0, 1) to generate (0, 1, 2); the fourth vector
(0, 0, 1) was not necessary. As we shall see, this is because the four
vectors (1, 1, 1), (3, 2, 1), (1, 0, 1), and (0, 0, 1) are linearly dependent.
More on this later.

31



• Of course, sometimes a vector will not be in the span of other vectors
at all. For instance, (0, 1, 2) is not in the span of (3, 2, 1) and (1, 0, 1).
If one were to try to solve the system

(0, 1, 2) = a1(3, 2, 1) + a2(1, 0, 1)

one would be solving the system

3a1+ a2 = 0
2a1 = 1
a1+ a2 = 2.

If one swapped the first and second rows, then divided the first by two,
one obtains

a1 = 1/2
3a1+ a2 = 0
a1 +a2 = 2.

Now zeroing the a1 coefficient in the second and third rows gives

a1 = 1/2
a2 = −3/2
a2 = 3/2.

.

Subtracting the second from the third, we get an absurd result:

a1 = 1/2
a2 = −3/2
0 = 3.

Thus there is no solution, and (0, 1, 2) is not in the span.

* * * * *
Spanning sets

• Definition. A set S is said to span a vector space V if span(S) = V;
i.e. every vector in V is generated as a linear combination of elements
of S. We call S a spanning set for V . (Sometimes one uses the verb
“generated” instead of “spanned”, thus V is generated by S and S is a
generating set for V .)

32



• A model example of a spanning set is the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
in R3; every vector in R3 can clearly be written as a linear combination
of these three vectors, e.g.

(3, 7, 13) = 3(1, 0, 0) + 7(0, 1, 0) + 13(0, 0, 1).

There are of course similar examples for other vector spaces. For in-
stance, the set {1, x, x2, x3} spans P3(R) (why?).

• One can always add additional vectors to a spanning set and still get a
spanning set. For instance, the set {(1, 0, 0), (0, 1, 0), (0, 0, 1), (9, 14, 23), (15, 24, 99)}
is also a spanning set for R3, for instance

(3, 7, 13) = 3(1, 0, 0)+7(0, 1, 0)+13(0, 0, 1)+0(9, 14, 23)+0(15, 24, 99).

Of course the last two vectors are not playing any significant role here,
and are just along for the ride. A more extreme example: every vector
space V is a spanning set for itself, span(V) = V.

• On the other hand, removing elements from a spanning set can cause it
to stop spanning. For instance, the two-element set {(1, 0, 0), (0, 1, 0)}
does not span, because there is no way to write (3, 7, 13) (for instance)
as a linear combination of (1, 0, 0), (0, 1, 0).

• Spanning sets are useful because they allow one to describe all the vec-
tors in a space V in terms of a much smaller space S. For instance,
the set S := {(1, 0, 0), (0, 1, 0), (0, 0, 1)} only consists of three vectors,
whereas the space R3 which S spans consists of infinitely many vec-
tors. Thus, in principle, in order to understand the infinitely many
vectors R3, one only needs to understand the three vectors in S (and
to understand what linear combinations are).

• However, as we see from the above examples, spanning sets can contain
“junk” vectors which are not actually needed to span the set. Such junk
occurs when the set is linearly dependent. We would like to now remove
such junk from the spanning sets and create a “minimal” spanning set
- a set whose elements are all linearly independent. Such a set is known
as a basis. In the rest of this series of lecture notes we discuss these
related concepts of linear dependence, linear independence, and being
a basis.
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* * * * *
Linear dependence and independence

• Consider the following three vectors in R3: v1 := (1, 2, 3), v2 := (1, 1, 1),
v3 := (3, 5, 7). As we now know, the span span({v1, v2, v3}) of this set
is just the set of all linear combinations of v1, v2, v3:

span({v1, v2, v3}) := {a1v1 + a2v2 + a3v3 : a1, a2, a3 ∈ R}.

Thus, for instance 3(1, 2, 3) + 4(1, 1, 1) + 1(3, 5, 7) = (10, 15, 20) lies in
the span. However, the (3, 5, 7) vector is redundant because it can be
written in terms of the other two:

v3 = (3, 5, 7) = 2(1, 2, 3) + (1, 1, 1) = 2v1 + v2

or more symmetrically

2v1 + v2 − v3 = 0.

Thus any linear combination of v1, v2, v3 is in fact just a linear combi-
nation of v1 and v2:

a1v1+a2v2+a3v3 = a1v1+a2v2+a3(2v1+v2) = (a1+2a3)v1+(a2+a3)v2.

• Because of this redundancy, we say that the vectors v1, v2, v3 are linearly
dependent. More generally, we say that any collection S of vectors in a
vector space V are linearly dependent if we can find distinct elements
v1, . . . , vn ∈ S, and scalars a1, . . . , an, not all equal to zero, such that

a1v1 + a2v2 + . . .+ anvn = 0.

• (Of course, 0 can always be written as a linear combination of v1, . . . , vn
in a trivial way: 0 = 0v1+ . . .+0vn. Linear dependence means that this
is not the only way to write 0 as a linear combination, that there exists
at least one non-trivial way to do so). We need the condition that the
v1, . . . , vn are distinct to avoid silly things such as 2v1 + (−2)v1 = 0.

• In the case where S is a finite set S = {v1, . . . , vn}, then S is linearly
dependent if and only if we can find scalars a1, . . . , an not all zero such
that

a1v1 + . . .+ anvn = 0.

(Why is the same as the previous definition? It’s a little subtle).
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• If a collection of vectors S is not linearly dependent, then they are said
to be linearly independent. An example is the set {(1, 2, 3), (0, 1, 2)}; it
is not possible to find a1, a2, not both zero for which

a1(1, 2, 3) + a2(0, 1, 2) = 0,

because this would imply

a1 = 0
2a1 +a2 = 0
3a1 +2a2 = 0

,

which can easily be seen to only be true if a1 and a2 are both 0. Thus
there is no non-trivial way to write the zero vector 0 = (0, 0, 0) as a
linear combination of (1, 2, 3) and (0, 1, 2).

• By convention, an empty set of vectors (with n = 0) is always linearly
independent (why is this consistent with the definition?)

• As indicated above, if a set is linearly dependent, then we can remove
one of the elements from it without affecting the span.

• Theorem. Let S be a subset of a vector space V . If S is linearly
dependent, then there exists an element v of S such that the smaller
set S − {v} has the same span as S:

span(S− {v}) = span(S).

Conversely, if S is linearly independent, then every proper subset S ′ (
S of S will span a strictly smaller set than S:

span(S′) ( span(S).

• Proof. Let’s prove the first claim: if S is a linearly dependent subset
of V , then we can find v ∈ S such that span(S− {v}) = span(S).

• Since S is linearly dependent, then by definition there exists distinct
v1, . . . , vn and scalars a1, . . . , an, not all zero, such that

a1v1 + . . .+ anvn = 0.
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We know that at least one of the aj are non-zero; without loss of gen-
erality we may assume that a1 is non-zero (since otherwise we can just
shuffle the vj to bring the non-zero coefficient out to the front). We
can then solve for v1 by dividing by a1:

v1 = −a2
a1
v2 − . . .−

an
a1
vn.

Thus any expression involving v1 can instead be written to involve
v2, . . . , vn instead. Thus any linear combination of v1 and other vectors
in S not equal to v1 can be rewritten instead as a linear combination
of v2, . . . , vn and other vectors in S not equal to v1. Thus every linear
combination of vectors in S can in fact be written as a linear combina-
tion of vectors in S−{v1}. On the other hand, every linear combination
of S − {v1} is trivially also a linear combination of S. Thus we have
span(S) = span(S− {v1}) as desired.

• Now we prove the other direction. Suppose that S ⊆ V is linearly
independent. And le S ′ ( S be a proper subset of S. Since every
linear combination of S ′ is trivially a linear combination of S, we have
that span(S′) ⊆ span(S). So now we just need argue why span(S′) 6=
span(S).

Let v be an element of S which is not contained in S ′; such an element
must exist because S ′ is a proper subset of S. Since v ∈ S, we have
v ∈ span(S). Now suppose that v were also in span(S′). This would
mean that there existed vectors v1, . . . , vn ∈ S ′ (which in particular
were distinct from v) such that

v = a1v1 + a2v2 + . . .+ anvn,

or in other words

(−1)v + a1v1 + a2v2 + . . .+ anvn = 0.

But this is a non-trivial linear combination of vectors in S which sum to
zero (it’s nontrivial because of the −1 coefficient of v). This contradicts
the assumption that S is linearly independent. Thus v cannot possibly
be in span(S′). But this means that span(S′) and span(S) are different,
and we are done. �
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* * * * *
Bases

• A basis of a vector space V is a set S which spans V , while also being
linearly independent. In other words, a basis consists of a bare mini-
mum number of vectors needed to span all of V ; remove one of them,
and you fail to span V .

• Thus the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for R3, because it
both spans and is linearly independent. The set {(1, 0, 0), (0, 1, 0), (0, 0, 1), (9, 14, 23)}
still spans R3, but is not linearly independent and so is not a basis.
The set {(1, 0, 0), (0, 1, 0)} is linearly independent, but does not span
all of R3 so is not a basis. Finally, the set {(1, 0, 0), (2, 0, 0)} is neither
linearly independent nor spanning, so is definitely not a basis.

• Similarly, the set {1, x, x2, x3} is a basis for P3(R), while the set {1, x, 1+
x, x2, x2 + x3, x3} is not (it still spans, but is linearly dependent). The
set {1, x+ x2, x3} is linearly independent, but doesn’t span.

• One can use a basis to represent a vector in a unique way as a collection
of numbers:

• Lemma. Let {v1, v2, . . . , vn} be a basis for a vector space V . Then
every vector in v can be written uniquely in the form

v = a1v1 + . . .+ anvn

for some scalars a1, . . . , an.

• Proof. Because {v1, . . . , vn} is a basis, it must span V , and so every
vector v in V can be written in the form a1v1+. . .+anvn. It only remains
to show why this representation is unique. Suppose for contradiction
that a vector v had two different representations

v = a1v1 + . . .+ anvn

v = b1v1 + . . .+ bnvn

where a1, . . . , an are one set of scalars, and b1, . . . , bn are a different set
of scalars. Subtracting the two equations we get

(a1 − b1)v1 + . . .+ (an − bn)vn = 0.
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But the v1, . . . , vn are linearly independent, since they are a basis. Thus
the only representation of 0 as a linear combination of v1, . . . , vn is the
trivial representation, which means that the scalars a1− b1, . . . , an− bn
must be equal. That means that the two representations a1v1 + . . . +
anvn, b1v1 + . . . + bnvn must in fact be the same representation. Thus
v cannot have two distinct representations, and so we have a unique
representation as desired. �

• As an example, let v1 and v2 denote the vectors v1 := (1, 1) and v2 :=
(1,−1) in R2. One can check that these two vectors span R2 and are
linearly independent, and so they form a basis. Any typical element,
e.g. (3, 5), can be written uniquely in terms of v1 and v2:

(3, 5) = 4(1, 1)− (1,−1) = 4v1 − v2.

In principle, we could write all vectors in R2 this way, but it would
be a rather non-standard way to do so, because this basis is rather
non-standard. Fortunately, most vector spaces have “standard” bases
which we use to represent them:

• The standard basis of Rn is {e1, e2, . . . , en}, where ej is the vector whose
jth entry is 1 and all the others are 0. Thus for instance, the standard
basis of R3 consists of e1 := (1, 0, 0), e2 := (0, 1, 0), and e2 := (0, 0, 1).

• The standard basis of the space Pn(R) is {1, x, x2, . . . , xn}. The stan-
dard basis of P (R) is the infinite set {1, x, x2, . . .}.

• One can concoct similar standard bases for matrix spaces Mm×n(R)
(just take those matrices with a single coefficient 1 and all the others
zero). However, there are other spaces (such as C(R)) which do not
have a reasonable standard basis.

38



Math 115A - Week 2
Textbook sections: 1.6-2.1

Topics covered:

• Properties of bases

• Dimension of vector spaces

• Lagrange interpolation

• Linear transformations

* * * * *
Review of bases

• In last week’s notes, we had just defined the concept of a basis. Just
to quickly review the relevant definitions:

• Let V be a vector space, and S be a subset of V . The span of S is the
set of all linear combinations of elements in S; this space is denoted
span(S) and is a subspace of V . If span(S) is in fact equal to V , we say
that S spans V .

• We say that S is linearly dependent if there is some non-trivial way to
write 0 as a linear combination of elements of S. Otherwise we say that
S is linearly independent.

• We say that S is a basis for V if it spans V and is also linearly inde-
pendent.

• Generally speaking, the larger the set is, the more likely it is to span,
but also the less likely it is to remain linearly independent. In some
sense, bases form the boundary between the “large” sets which span
but are not independent, and the “small” sets which are independent
but do not span.

* * * * *
Examples of bases
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• Why are bases useful? One reason is that they give a compact way to
describe vector spaces. For instance, one can describe R3 as the vector
space spanned by the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} :

R3 = span({(1, 0, 0), (0, 1, 0), (0, 0, 1)}).

In other words, the three vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) are linearly
independent, and R3 is precisely the set of all vectors which can be
written as linear combinations of (1, 0, 0), (0, 1, 0), and (0, 0, 1).

• Similarly, one can describe P (R) as the vector space spanned by the ba-
sis {1, x, x2, x3, . . .}. Or Peven(R), the vector space of even polynomials,
is the vector space spanned by the basis {1, x2, x4, x6, . . .} (why?).

• Now for a more complicated example. Consider the space

V := {(x, y, z) ∈ R3 : x+ y + z = 0};

in other words, V consists of all the elements in R3 whose co-ordinates
sum to zero. Thus for instance (3, 5,−8) lies in V , but (3, 5,−7) does
not. The space V describes a plane in R3; if you remember your Math
32A, you’ll recall that this is the plane through the origin which is
perpendicular to the vector (1, 1, 1). It is a subspace of R3, because it
is closed under vector addition and scalar multiplication (why?).

• Now let’s try to find a basis for this space. A straightforward, but slow,
procedure for doing so is to try to build a basis one vector at a time:
we put one vector in V into the (potential) basis, and see if it spans.
If it doesn’t, we throw another (linearly independent) vector into the
basis, and then see if it spans. We keep repeating this process until
eventually we get a linearly independent set spanning the entire space
- i.e. a basis. (Every time one adds more vectors to a set S, the span
span(S) must get larger (or at least stay the same size) - why?).

• To begin this algorithm, let’s pick an element of the space V . We can’t
pick 0 - any set with 0 is automatically linearly dependent (why?), but
there are other, fairly simple vectors in V ; let’s pick v1 := (1, 0,−1).
This vector is in V , but it doesn’t span V : the linear combinations of v1
are all of the form (a, 0,−a), where a ∈ R is a scalar, but this doesn’t
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include all the vectors in V . For instance, v2 := (1,−1, 0) is clearly not
in the span of v1. So now we take both v1 and v2 and see if they span.
A typical linear combination of v1 and v2 is

a1v1 + a2v2 = a1(1, 0,−1) + a2(1,−1, 0) = (a1 + a2,−a2,−a1)

and so the question we are asking is: can every element (x, y, z) of V be
written in the form (a1 + a2,−a2,−a1)? In other words, can we solve
the system

a1 +a2 = x
−a2 = y

−a1 = z

for every (x, y, z) ∈ V ? Well, one can solve for a1 and a2 as

a1 := −z, a2 := −y.

The first equation then becomes −z− y = x, but this equation is valid
because we are assuming that (x, y, z) ∈ V , so that x + y + z = 0.
(This is not all that of a surprising co-incidence: the vectors v1 and
v2 were chosen to be in V , which explains why the linear combination
a1v1+a2v2 must also be in V ). Thus every vector in V can be written as
a linear combination of v1 and v2. Also, these two vectors are linearly
independent (why?), and so {v1, v2} = {(1, 0,−1), (1,−1, 0)} is a basis
for V .

• It is clear from the above that this is not the only basis available for V ;
for instance, {(1, 0,−1), (0, 1,−1)} is also a basis. In fact, as it turns
out, any two linearly independent vectors in V can be used to form
a basis for V . Because of this, we say that V is two-dimensional. It
turns out (and this is actually a rather deep fact) that many of the
vector spaces V we will deal with have some finite dimension d, which
means that any d linearly independent vectors in V automatically form
a basis; more on this later.

• A philosophical point: we now see that there are (at least) two ways
to construct vector spaces. One is to start with a “big” vector space,
say R3, and then impose constraints such as x + y + z = 0 to cut the
vector space down in size to obtain the target vector space, in this case
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V . An opposing way to make vector spaces is to start with nothing,
and throw in vectors one at a time (in this case, v1 and v2) to build
up to the target vector space (which is also V ). A basis embodies this
second, “bottom-up” philosophy.

* * * * *
Rigorous treatment of bases

• Having looked at some examples of how to construct bases, let us now
introduce some theory to make the above algorithm rigorous.

• Theorem 1. Let V be a vector space, and let S be a linearly indepen-
dent subset of V . Let v be a vector which does not lie in S.

• (a) If v lies in span(S), then S∪{v} is linearly dependent, and span(S∪
{v}) = span(S).

• (b) If v does not lie in span(S), then S ∪ {v} is linearly independent,
and span(S ∪ {v}) ) span(S).

• This theorem justifies our previous reasoning: if a linearly independent
set S does not span V , then one can make the span bigger by adding
a vector outside of span(S); this will also keep S linearly independent.

• Proof We first prove (a). If v lies in span(S), then by definition of
span, v must be a linear combination of S, i.e. there exists vectors
v1, . . . , vn in S and scalars a1, . . . , an such that

v = a1v1 + . . .+ anvn

and thus
0 = (−1)v + a1v1 + . . .+ anvn.

Thus 0 is a non-trivial linear combination of v, v1, . . . , vn (it is non-
trivial because the co-efficient −1 in front of v is non-zero. Note that
since v 6∈ S, this coefficient cannot be cancelled by any of the vj).
Thus S ∪ {v} is linearly dependent. Furthermore, since v is a linear
combination of v1, . . . , vn, any linear combination of v and v1, . . . , vn
can be re-expressed as a linear combination just of v1, . . . , vn (why?).
Thus span(S∪{v}) does not contain any additional elements which are
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not already in span(S). On the other hand, every element in span(S)
is clearly also in span(S ∪ {v}). Thus span(S ∪ {v}) and span(S) have
precisely the same set of elements, i.e. span(S ∪ {v}) = span(S).

• Now we prove (b). Suppose v 6∈ span(S). Clearly span(S∪{v}) contains
span(S), since every linear combination of S is automatically a linear
combination of S ∪ {v}. But span(S ∪ {v}) clearly also contains v,
which is not in span(S). Thus span(S ∪ {v}) ) span(S).

• Now we prove that S∪{v} is linearly independent. Suppose for contra-
diction that S ∪ {v} was linearly dependent. This means that there is
some non-trivial way to write 0 as a linear combination of v and some
vectors v1, . . . , vn in S:

0 = av + a1v1 + . . .+ anvn.

If a were zero, then we would be writing 0 as a non-trivial linear combi-
nation of elements v1, . . . , vn in S, but this contradicts the hypothesis
that S is linearly independent. Thus a is non-zero. But then we may
divide by a and conclude that

v = (−a1
a

)v1 + . . .+ (−an
a

)vn,

so that v is a linear combination of v1, . . . , vn, so it is in the span of S,
a contradiction. Thus S ∪ {v} is linearly independent. �

* * * * *
Dimension

• As we saw in previous examples, a vector space may have several
bases. For instance, if V := {(x, y, z) ∈ R3 : x + y + z = 0}, then
{(1, 0,−1), (1,−1, 0)} is a basis, but so is {(1, 0,−1), (0, 1,−1)}.

• If V was the line {(t, t, t) : t ∈ R}, then {(1, 1, 1)} is a basis, but
so is {(2, 2, 2)}. (On the other hand, {(1, 1, 1), (2, 2, 2)} is not a basis
because it is linearly dependent).

• If V was the zero vector space {0}, then the empty set {} is a basis
(why?), but {0} is not (why?).
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• In R3, the three vectors {(1, 0, 0), (0, 1, 0), (0, 0, 1)} form a basis, and
there are many other examples of three vectors which form a basis in
R3 (for instance, {(1, 1, 0), (1,−1, 0), (0, 0, 1)}. As we shall see, any set
of two or fewer vectors cannot be a basis for R3 because they cannot
span all of R3, while any set of four or more vectors cannot be a basis
for R3 because they become linearly dependent.

• One thing that one sees from these examples is that all the bases of a
vector space seem to contain the same number of vectors. For instance,
R3 always seems to need exactly three vectors to make a basis, and so
forth. The reason for this is in fact rather deep, and we will now give the
proof. The first step is to prove the following rather technical result,
which says that one can “edit” a spanning set by inserting a fixed
linearly independent set, while removing an equal number of vectors
from the previous spanning set.

• Replacement Theorem. Let V be a vector space, and let S be a
finite subset of V which spans V (i.e. span(S) = V). Suppose that S
has exactly n elements. Now let L be another finite subset of V which is
linearly independent and has exactly m elements. Then m is less than
or equal to n. Furthermore, we can find a subset S ′ of S containing
exactly n−m elements such that S ′ ∪ L also spans V .

• This theorem is not by itself particularly interesting, but we can use it
to imply a more interesting Corollary, below.

• Proof We induct on m. The base case is m = 0. Here it is obvious
that n ≥ m. Also, if we just set S ′ equal to S, then S ′ has exactly
n − m elements, and S ′ ∪ L is equal to S (since L is empty) and so
obviously spans V by hypothesis.

• Now suppose inductively that m > 0, and that we have already proven
the theorem for m− 1. Since L has m elements, we may write it as

L = {v1, . . . , vm}.

Since {v1, . . . , vm} is linearly independent, the set L̃ := {v1, . . . , vm−1}
is also linearly independent (why?). We can now apply the induction
hypothesis with m replaced by m− 1 and L replaced by L̃. This tells
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us that n ≥ m− 1, and also there is some subset S̃ ′ of S with exactly
n−m+ 1 elements, such that S̃ ′ ∪ L̃ spans V .

• Write S̃ ′ = {w1, . . . , wn−m+1}. To prove that n ≥ m, we have to exclude
the possibility that n = m − 1. We do this as follows. Consider the
vector vm, which is in L but not in L̃. Since the set

S̃ ′ ∪ L̃ = {v1, . . . , vm−1, w1, . . . , wn−m+1}

spans V , we can write vm as a linear combination of S̃ ′ ∪ L̃. In other
words, we have

vm = a1v1 + . . .+ am−1vm−1 + b1w1 + . . .+ bn−m+1wn−m+1 (0.2)

for some scalars a1, . . . , am−1, b1, . . . , bn−m+1.

• Suppose for contradiction that n = m−1. Then S̃ ′ is empty, and there
are no vectors w1, . . . , wn−m+1. We thus have

vm = a1v1 + . . .+ am−1vm−1 (0.3)

so that
0 = a1v1 + . . .+ am−1vm−1 + (−1)vm

but this contradicts the hypothesis that {v1, . . . , vm} is linearly inde-
pendent. Thus n cannot equal m− 1, and so must be greater than or
equal to m.

• We now have n ≥ m, so that there is at least one vector in w1, . . . , wn−m+1.
Since we know the set

S̃ ′ ∪ L̃ = {v1, . . . , vm−1, w1, . . . , wn−m+1}

spans V , it is clear that

S̃ ′ ∪ L = {v1, . . . , vm, w1, . . . , wn−m+1}

also spans V (adding an element cannot decrease the span). To finish
the proof we need to eliminate one of the vectors wj, to cut S̃ ′ down to
a set S ′ of size n−m, while still making S ′ ∪ L span V .
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• We first observe that the b1, . . . , bn−m+1 cannot all be zero, otherwise
we would be back to equation (0.3) again, which leads to contradiction.
So at least one of the b’s must be non-zero; since the order of the vectors
wj is irrelevant, let’s say that b1 is the one which is non-zero. But then
we can divide by b1, and use (0.2) to solve for w1:

w1 =
1

b1
vm −

a1
b1
v1 − . . .−

am−1
b1

vm−1 −
b2
b1
w2 − . . .−

bn−m+1

b1
wn−m+1.

Thus w1 is a linear combination of {v1, . . . , vm, w2, . . . , wn−m+1}. In
other words, if we write S ′ := {w2, . . . , wn−m+1}, then w1 is a linear
combination of S ′ ∪ L. Thus by Theorem 1,

span(S′ ∪ L) = span(S′ ∪ L ∪ {w1}).

But S ′ ∪L∪ {w1} is just S̃ ′ ∪L, which spans V . Thus S ′ ∪L spans V .
Since S ′ has exactly n−m elements, we are done. �

• Corollary 1 Suppose that a vector space V contains a finite basis B
which consists of exactly d elements. Then:

• (a) Any set S ⊆ V consisting of fewer than d elements cannot span
V . (In other words, every spanning set of V must contain at least d
elements).

• (b) Any set S ⊂ V consisting of more than d elements must be linearly
dependent. (In other words, every linearly independent set in V can
contain at most d elements).

• (c) Any basis of V must consist of exactly d elements.

• (d) Any spanning set of V with exactly d elements, forms a basis.

• (e) Any set of d linearly independent elements of V forms a basis.

• (f) Any set of linearly independent elements of V is contained in a
basis.

• (g) Any spanning set of V contains a basis.
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• Proof We first prove (a). Let S have d′ elements for some d′ < d.
Suppose for contradiction that S spanned V . Since B is linearly in-
dependent, we may apply the Replacement Theorem (with B playing
the role of L) to conclude that d′ ≥ d, a contradiction. Thus S cannot
span V .

• Now we prove (b). First suppose that S is finite, so that S has d′

elements for some d′ > d. Suppose for contradiction that S is linearly
independent. Since B spans V , we can apply the Replacement theorem
(with B playing the role of S, while S instead plays the role of L) to
conclude that d ≥ d′, a contradiction. So we’ve proven (b) when S
is finite. When S is infinite, we can find a finite subset S ′ of S with,
say, d + 1 elements; since we’ve already proven (b) for finite subsets,
we know that S ′ is linearly dependent. But this implies that S is also
linearly dependent.

• Now we prove (c). Let B′ be any basis of V . Since B′ spans, it must
contain at least d elements, by (a). Since B′ is linearly independent, it
must contain at most d elements, by (b). Thus it must contain exactly
d elements.

• Now we prove (d). Let S be a spanning set of V with exactly d ele-
ments. To show that S is a basis, we need to show that S is linearly
independent. Suppose for contradiction that S was linearly dependent.
Then by a theorem in page 34 of last week’s notes, there exists a vector
v in S such that span(S−{v}) = span(S). Thus S−{v} also spans V ,
but it has fewer than d elements, contradicting (a). Thus S must be
linearly independent.

• Now we prove (e). Let L be a linearly independent set in V with exactly
d elements. To show that L is a basis, we need to show that L spans.
Suppose for contradiction that L did not span, then there must be some
vector v which is not in the span of L. But by Theorem 1 in this week’s
notes, L ∪ {v} is linearly independent. But this set has more than d
elements, contradicting (b). Thus L must span V .

• Now we prove (f). Let L be a linearly independent set in V ; by (a),
we know it has d′ elements for some d′ ≤ d. Applying the Replacement
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theorem (with B playing the role of the spanning set S), we see that
there is some subset S ′ of B with d−d′ elements such that S ′∪L spans
V . Since S ′ has d− d′ elements and L has d′ elements, S ′ ∪L can have
at most d elements; actually it must have exactly d, else it would not
span by (a). But then by (d) it must be a basis. Thus L is contained
in a basis.

• Now we prove (g). Let S be a spanning set in V . To build a basis
inside S, we see by (e) that we just need to find d linearly independent
vectors in S. Suppose for contradiction that we can only find at most
d′ linearly independent vectors in S for some d′ < d. Let v1, . . . , vd′ be
d′ such linearly independent vectors in S. Then every other vector v in
S must be a linear combination of v1, . . . , vd′ , otherwise we could add
v to {v1, . . . , vd′} and obtain a larger collection of linearly independent
vectors in S (see Theorem 1). But if every vector in S is a linear
combination of v1, . . . , vd′ , and S spans V , then v1, . . . , vd′ must span
V . By (a) this means that d′ ≥ d, contradiction. Thus we must be able
to find d linearly independent vectors in S, and so S contains a basis.
�

• Definition We say that V has dimension d if it contains a basis of d
elements (and so that all the consequences of the Corollary 1 follow).
We say that V is finite-dimensional if it has dimension d for some finite
number d, otherwise we say that V is infinite-dimensional.

• From Corollary 1 we see that all bases have the same number of ele-
ments, so a vector space cannot have two different dimensions. (e.g.
a vector space cannot be simultaneously two-dimensional and three-
dimensional). We sometimes use dim(V ) to denote the dimension of
V . One can think of dim(V ) as the number of degrees of freedom inher-
ent in V (or equivalently, the number of possible linearly independent
vectors in V ).

• Example The vector space R3 has a basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
and thus has dimension 3. Thus any three linearly independent vectors
in R3 will span R3 and form a basis.

• Example The vector space Pn(R) of polynomials of degree ≤ n has
basis {1, x, x2, . . . , xn} and thus has dimension n+ 1.
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• Example The zero vector space {0} has a basis {} and thus has di-
mension zero. (It is the only vector space with dimension zero - why?)

• Example The vector space P (R) of all polynomials is infinite dimen-
sional. To see this, suppose for contradiction that it had some finite
dimension d. But then one could not have more than d linearly inde-
pendent elements. But the set {1, x, x2, . . . , xd} contains d+1 elements
which are linearly independent (why?), contradiction. Thus P (R) is
infinite dimensional.

• As we have seen, every finite dimensional space has a basis. It is also
true that infinite-dimensional spaces also have bases, but this is signif-
icantly harder to prove and beyond the scope of this course.

* * * * *
Subspaces and dimension

• We now prove an intuitively obvious statement about subspaces and
dimension:

• Theorem 2. Let V be a finite-dimensional vector space, and let W
be a subspace of V . Then W is also finite-dimensional, and dim(W ) ≤
dim(V ). Furthermore, the only way that dim(W ) can equal dim(V ) is
if W = V .

• Proof. We first construct a finite basis for W via the following algo-
rithm. If W = {0}, then we can use the empty set as a basis. Now
suppose that W 6= {0}. Then we can find a non-zero vector v1 in W .
If v1 spans W , then we have found a basis for W . If v1 does not span
W , then we can find a vector v2 which does not lie in span({v1}); by
Theorem 1, {v1, v2} is linearly independent. If this set spans W , then
we can found a basis for W . Otherwise, we can find a vector v3 which
does not lie in span({v1, v2}). By Theorem 1, {v1, v2, v3} is linearly in-
dependent. We continue in this manner until we finally span W . Note
that we must stop before we exceed dim(V ) vectors, since from part (b)
of the dimension theorem we cannot make a linearly independent set
with more than dim(V ) vectors. Thus this algorithm must eventually
generate a basis of W which consists of at most dim(V ) vectors, which
implies that W is finite-dimensional with dim(W ) ≤ dim(V ).
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• Now suppose that dim(W ) = dim(V ). Then W has a basis B which
consists of dim(V ) estimates; B is of course linearly independent. But
then by part (e) of Corollary 1, B is also a basis for V . Thus span(B) =
V and span(B) = W, which implies that W = V as desired. �

* * * * *
Lagrange interpolation

• We now give an application of this abstract theory to a basic problem:
how to fit a polynomial to a specified number of points.

• Everyone knows that given two points in the plane, one can find a line
joining them. A more precise way of saying this is that given two data
points (x1, y1) and (x2, y2) in R2, with x1 6= x2, then we can find a line
y = mx+ b which passes through both these points. (We need x1 6= x2
otherwise the line will have infinite slope).

• Now suppose we have three points (x1, y1), (x2, y2), (x3, y3) in the plane,
with x1, x2, x3 all distinct. Then one usually cannot fit a line which goes
exactly through these three data points. (One can still do a best fit to
these data points by a straight line, e.g. by using the least squares fit;
this is an important topic but not one we will address now). However,
it turns out that one can still fit a parabola y = ax2 + bx + c to these
three points. With four points, one cannot always fit a parabola, but
one can always fit a cubic. More generally:

• Theorem 3 (Lagrange interpolation formula) Let n ≥ 1, and
let (x1, y1), . . . , (xn, yn) be n points in R2 such that x1, x2, . . . , xn are
all distinct. Then there exists a unique polynomial f ∈ PPn(R) of
degree ≤ n − 1 such that the curve y = f(x) passes through all n
points (x1, y1), . . . , (xn, yn). In other words, we have yj = f(xj) for all
j = 1, . . . , n. Furthermore, f is given by the formula

f(x) =
n∑
j=1

∏
1≤k≤n:k 6=j(x− xk)∏
1≤k≤n:k 6=j(xj − xk)

yj.

• The polynomial f is sometimes called the interpolating polynomial for
the points (x1, y1), . . . (xn, yn); in some sense it is the simplest object
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that can pass through all n points. These interpolating polynomials
have several uses, for instance in taking a sequence of still images, and
finding a smooth sequence of intermediate images to fit between these
images.

• To prove this theorem, we first proceed by considering some simple
examples.

• First suppose that y1 = y2 = . . . = yn = 0. Then the choice of interpo-
lating polynomial is obvious: just take the zero polynomial f(x) = 0.

• Now let’s take the next simplest case, when y1 = 1 and y2 = y3 = . . . =
yn = 0. The interpolating polynomial f that we need here must obey
the conditions f(x1) = 1, and f(x2) = . . . = f(xn) = 0.

• Since f has zeroes at x2, . . . , xn, it must have factors of (x− x2), (x−
x3), . . . , (x− xn). So it must look like

f = Q(x)(x− x2) . . . (x− xn).

Since (x − x2) . . . (x − xn) has degree n − 1, and we want f to have
degree at most n− 1, Q(x) must be constant, say Q(x) = c:

f = c(x− x2) . . . (x− xn).

To find out what c is, we use the extra fact that f(x1) = 1, so

1 = c(x1 − x2) . . . (x1 − xn).

Thus the interpolating polynomial is given by f1, where

f1(x) :=
(x− x2) . . . (x− xn)

(x1 − x2) . . . (x1 − xn)

or equivalently

f1(x) :=

∏n
k=2(x− xk)∏n
k=2(x1 − xk)

One can see by inspection that indeed f1(x1) is equal to 1, while
f1(x2) = . . . = f1(xn) = 0.
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• Now consider the case when yj = 1 for some 1 ≤ j ≤ n, and yk = 0
for all other k 6= j (the earlier case being the special case when j = 1).
Then a similar argument gives that f must equal fj, where fj is the
polynomial

fj(x) :=

∏
1≤k≤n:k 6=j(x− xk)∏
1≤k≤n:k 6=j(xj − xk)

.

For instance, if n = 4 and j = 2, then

f2(x) :=
(x− x1)(x− x3)(x− x4)

(x2 − x1)(x2 − x3)(x2 − x4)
.

• To summarize, for each 1 ≤ j ≤ n, we can find a polynomial fj ∈
Pn−1(R) such that fj(xj) = 1 and fj(xk) = 0 for k 6= j. Thus, for
instance, when n = 4, then we have

f1(x1) = 1, f1(x2) = f1(x3) = f1(x4) = 0

f2(x2) = 1, f2(x1) = f2(x3) = f2(x4) = 0

f3(x3) = 1, f3(x1) = f3(x2) = f3(x4) = 0

f4(x4) = 1, f4(x1) = f4(x2) = f4(x3) = 0.

• To proceed further we need a key lemma.

• Lemma 4. The set {f1, f2, . . . , fn} is a basis for Pn−1(R).

• Proof. We already know that Pn−1 is n-dimensional, since it has a
basis {1, x, x2, . . . , xn−1} of n elements. Since {f1, . . . , fn} also has n
elements, to show that it is a basis it will suffice by part (e) of Corollary
1 to show that {f1, . . . , fn} is linearly independent.

• Suppose for contradiction that {f1, . . . , fn} was linearly dependent.
This means that there exists scalars a1, . . . , an, not all zero, such that
a1f1 + a2f2 + . . .+ anfn is the zero polynomial i.e.

a1f1(x) + a2f2(x) + . . .+ anfn(x) = 0 for all x.

In particular, we have

a1f1(x1) + a2f2(x1) + . . .+ anfn(x1) = 0.
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But since f1(x1) = 1 and f2(x1) = . . . = fn(x1) = 0, we thus have

a1 × 1 + a2 × 0 + . . .+ an × 0 = 0,

i.e. a1 = 0. A similar argument gives that a2 = 0, a3 = 0, . . . - contra-
dicting the assumption that the aj were not all zero. Thus {f1, . . . , fn}
is linearly independent, and is thus a basis by Corollary 1. �

• From Lemma 4 we know that {f1, . . . , fn} spans Pn−1. Thus every
polynomial f ∈ Pn−1 can be written in the form

f = a1f1 + . . .+ anfn (0.4)

for some scalars a1, . . . , an. In particular, the interpolating polynomial
between the data points (x1, y1), . . . , (xn, yn) must have this form. So
to work out what the interpolating polynomial is, we just have to work
out what the scalars a1, . . . , an are.

• In order for f to be an interpolating polynomial, we need f(x1) = y1,
f(x2) = y2, etc. Let’s look at the first condition f(x1) = y1. Using
(0.4), we have

f(x1) = a1f1(x1) + . . .+ anfn(x1) = y1.

But by arguing as in the lemma, we have

a1f1(x1) + . . .+ anfn(x1) = a1 × 1 + a2 × 0 + . . .+ an × 0 = a1.

Thus we must have a1 = y1. More generally, we see that a2 = y2,
a3 = y3, . . .. Thus the only possible choice of interpolating polynomial
is

f := y1f1 + . . .+ ynfn =
n∑
j=1

yjfj (0.5)

which is the Lagrange interpolation formula. Conversely, it is easy
to check that if we define f by the formula (0.5), then f(x1) = y1,
f(x2) = y2, etc. so f is indeed the unique interpolating polynomial
between the data points (x1, y1), . . . , (x3, y3). �
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• As an example, suppose one wants to interpolate a quadratic poly-
nomial between the points (1, 0), (2, 2), and (3, 1), so that x1 := 1,
x2 := 2, x3 := 3, y1 := 0, y2 := 2, y3 := 1. The formulae for f1, f2, f3
are

f1 :=
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
=

(x− 2)(x− 3)

(1− 2)(1− 3)

f2 :=
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
=

(x− 1)(x− 3)

(2− 1)(2− 3)

f3 :=
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
=

(x− 1)(x− 2)

(3− 1)(3− 2)

and so the interpolating polynomial is

f = 0f1 + 2f2 + 1f3 = 2
(x− 1)(x− 3)

(2− 1)(2− 3)
+

(x− 1)(x− 2)

(3− 1)(3− 2)
.

You can check by direct substitution that f(1) = 0, f(2) = 2, and
f(3) = 1 as desired. After a lot of algebra one can simplify f to a more
standard form

f = −3x2/2 + 13x/2− 5.

• If one were to interpolate a single point (x1, y1), one would just get the
constant polynomial f = y1, which is of course the only polynomial of
degree 0 which passes through (x1, y1).

• The Lagrange interpolation formula says that there is exactly one poly-
nomial of degree at most n − 1 which passes through n given points.
However, if one is willing to use more complicated polynomials (i.e.
polynomials of degree higher than n−1) then there are infinitely many
more ways to interpolate those data points. For instance, take the
points (0, 0) and (1, 1). There is only one linear polynomial which
interpolates these points - the polynomial f(x) := x. But there are
many quadratic polynomials which also interpolate these two points:
f(x) = x2 will work, as will f(x) = 1

2
x2 + 1

2
x, or in fact any polynomial

of the form (1− θ)x2 + θx. And with cubic polynomials there are even
more possibilities. The point is that each degree you add to the poly-
nomial adds one more degree of freedom (remember that the dimension
of Pn(R) is n+ 1), and is it comes increasingly easier to satisfy a fixed
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number of constraints (in this example there are only two constraints,
one for each data point). This is part of a more general principle: when
the number of degrees of freedom exceeds the number of constraints,
then usually one has many solutions to a problem. When the number
of constraints exceeds the number of degrees of freedom, one usually
has no solutions to a problem. When the number of constraints exactly
equals the number of degrees of freedom, one usually has exactly one
solution to a problem. We will make this principle more precise later
in this course.

* * * * *
Linear transformations

• Up until now we have studied each vector space in isolation, and looked
at what one can do with the vectors in that vector space. However,
this is only a very limited portion of linear algebra. To appreciate
the full power of linear algebra, we have to not only understand each
vector space individually, but also all the various linear transformations
between one vector space and another.

• A transformation from one set X to another set Y is just a function
f : X → Y whose domain is X and whose range is in Y . The set
of all possible transformations is extremely large. In linear algebra,
however, we are not concerned with all types of transformations, but
only a very special type known as linear transformations. These are
transformations from one vector space to another which preserves the
additive and scalar multiplicative structure:

• Definition. Let X, Y be vector spaces. A linear transformation T
from X to Y is any transformation T : X → Y which obeys the fol-
lowing two properties:

• (T preserves vector addition) For any x, x′ ∈ X, T (x+x′) = Tx+Tx′.

• (T preserves scalar multiplication) For any x ∈ X and any scalar c ∈ R,
T (cx) = cTx.

• Note that there are now two types of vectors: vectors in X and vectors
in Y . In some cases, X and Y will be the same space, but other times
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they will not. So one should take a little care; for instance one cannot
necessarily add a vector in X to a vector in Y . In the above definition, x
and x′ were vectors in X, so x+x′ used the X vector addition rule, but
Tx and Tx′ were vectors in Y , so Tx+ Tx′ used the Y vector addition
rule. (An expression like x + Tx would not necessarily make sense,
unless X and Y were equal, or at least contained inside a common
vector space).

• The two properties of a linear transformation can be described as fol-
lows: if you combine two inputs, then the outputs also combine (the
whole is equal to the sum of its parts); and if you amplify an input by a
constant, the output also amplifies by the same constant (another way
of saying this is that the transformation is homogeneous).

• To test whether a transformation is linear, you have to check separately
whether it is closed under vector addition, and closed under scalar
multiplication. It is possible to combine the two checks into one: if
you can check that for every scalar c ∈ R and vectors x, x′ ∈ X,
that T (cx + x′) = cTx + Tx′, then you are automatically a linear
transformation (See homework)

• Scalar multiplication as a linear transformation. A very simple
example of a linear transformation is the map T : R → R defined
by Tx := 3x - it maps a scalar to three times that scalar. It is clear
that this map preserves addition and multiplication. An example of a
non-linear transformation is the map T : R→ R defined by Tx := x2.

• Dilations as a linear transformation As a variation of this theme,
given any vector space V , the map T : V → V given by Tx := 3x is
a linear transformation (why?). This transformation takes vectors and
dilates them by 3.

• The identity as a linear transformation A special case of dilations
is the dilation by 1: Ix = x. This is a linear transformation from V to
V , known as the identity transformation, and is usually called I or IV .

• Zero as a linear transformation Another special case is dilation by
0: Tx = 0. This is a linear transformation from V to V , called the zero
transformation.
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• Another example of a linear transformation is the map T : R2 → R3

defined by

Tx :=

 1 2
3 4
5 6

x,

where we temporarily think of the vectors in R2 and R3 as column
vectors. In other words,

T

(
x1
x2

)
=

 1 2
3 4
5 6

( x1
x2

)
=

 x1 + 2x2
3x1 + 4x2
5x1 + 6x2

 .

• Let’s check that T preserves vector addition. If x, x′ are two vectors in
R2, say

x :=

(
x1
x2

)
; x′ :=

(
x′1
x′2

)
then

T (x+ x′) = T

(
x1 + x′1
x2 + x′2

)

=

 (x1 + x′1) + 2(x2 + x′2)
3(x1 + x′1) + 4(x2 + x′2)
5(x1 + x′1) + 6(x2 + x′2)


while

Tx+ Tx′ = T

(
x1
x2

)
+ T

(
x′1
x′2

)

=

 x1 + 2x2
3x1 + 4x2
5x1 + 6x2

+

 x′1 + 2x′2
3x′1 + 4x′2
5x′1 + 6x′2

 .

One can then see by inspection that T (x+ x′) and Tx+Tx′ are equal.
A similar computation shows that T (cx) = cTx; we leave this as an
exercise.

• More generally, any m×n matrix (m rows and n columns) gives rise to
a linear transformation from Rn to Rm. Later on, we shall see that the
converse is true: every linear transformation from Rn to Rm is given
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by a m × n matrix. For instance, the transformation T : R3 → R3

given by Tx := 5x corresponds to the matrix 5 0 0
0 5 0
0 0 5


(why?), while the identity transformation on R3 corresponds to the
identity matrix  1 0 0

0 1 0
0 0 1


(why?). (What matrix does the zero transformation correspond to?)

• Thus matrices provide a good example of linear transformations; but
they are not the only type of linear transformation (just as row and
column vectors are not the only type of vectors we study). We now
give several more examples.

• Reflections as linear transformations Let R2 be the plane, and let
T : R2 → R2 denote the operation of reflection through the x-axis:

T (x1, x2) := (x1,−x2).

(Now we once again view vectors in Rn as row vectors). It is straight-
forward to verify that this is a linear transformation; indeed, it corre-
sponds to the matrix (

1 0
0 −1

)
(why? - note we are confusing row and column vectors here. We will
clear this confusion up later.). More generally, given any line in R2

through the origin (or any plane in R3 through the origin), the oper-
ation of reflection through that line (resp. plane) is a linear transfor-
mation from R2 to R2 (resp. R3 to R3), as can be seen by elementary
geometry.

• Rotations as linear transformations Let T : R2 → R2 denote the
operation of rotation anticlockwise by 90 degrees. A little geometry
shows that

T (x1, x2) := (−x2, x1).
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This is a linear transformation, corresponding to the matrix(
0 −1
1 0

)
.

More generally, given any angle θ, the rotation anticlockwise or clock-
wise around the origin gives rise to a linear transformation from R2

to R2. In R3, it doesn’t quite make sense to rotate around the ori-
gin (which way would it spin?), but given any line through the origin
(called the axis of rotation), one can rotate around that line by an angle
θ (though there are two ways one can do it, clockwise or anticlockwise).
We will not cover rotation and reflection matrices in detail here - that’s
a topic for 115B.

• Permutation as a linear transformation Let’s take a standard
vector space, say R4, and consider the operation of switching the first
and third components:

T (x1, x2, x3, x4) = (x3, x2, x1, x4).

This is a linear transformation (why?) It corresponds to the matrix
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


(why?). This type of operation - the rearranging of the co-ordinates -
is known as a permutation, and the corresponding matrix is known as
a permutation matrix. One property of permutation matrices is that
every row and column contains exactly one 1, with the rest of the entries
being 0.

• Differentiation as a linear transformation Here’s a more interest-
ing transformation: Consider the transformation T : Pn(R)→ Pn−1(R)
defined by differentiation:

Tf :=
df

dx
.
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Thus, for instance, if n = 3, then T would send the vector x3 + 2x +
4 ∈ P3(R) to the vector 3x2 + 2 ∈ P2(R). To show that T preserves
vector addition, pick two polynomials f , g in R. We have to show that
T (f + g) = Tf + Tg, i.e.

d

dx
(f + g) =

df

dx
+
dg

dx
.

But this is just the sum rule for differentiation. A similar argument
shows that T preserves scalar multiplication.

• The right-shift as a linear transformation Recall that R∞ is the
space of all sequences, e.g. R∞ contains

(x1, x2, x3, x4, . . .)

as a typical vector. Define the right-shift operator U : R∞ → R∞ by

U(x1, x2, x3, x4, . . .) := (0, x1, x2, x3, x4, . . .)

i.e. we shift all the entries right by one, and add a zero at the be-
ginning. This is a linear transformation (why?). However, it cannot
be represented by a matrix since R∞ is infinite dimensional (unless
you are willing to consider infinite-dimensional matrices, but that is
another story).

• The left-shift as a linear transformation There is a companion
operator to the right-shift, namely the left-shift operator U∗ : R∞ →
R∞ defined by

U∗(x1, x2, x3, x4, . . .) := (x2, x3, x4, . . .),

i.e. we shift all the entries left by one, with the x1 entry disappear-
ing entirely. It is almost, but not quite, the inverse of the right-shift
operator; more on this later.

• Inclusion as a linear transformation Strictly speaking, the spaces
R3 and R2 are not related: R2 is not a subspace of R3, because two-
dimensional vectors are not three-dimensional vectors. Nevertheless,
we can “force” R2 into R3 by adding an extra zero on the end of each

60



two-dimensional vector. The formal way of doing this is introducing
the linear transformation ι : R2 → R3 defined by

ι(x1, x2) := (x1, x2, 0).

Thus R2 is not directly contained in R3, but we can make a linear trans-
formation which embeds R2 into R3 anyway via the transformation ι,
which is often called an “inclusion” or “embedding” transformation.
The transformation ι corresponds to the matrix 1 0

0 1
0 0

 .

• Projection as a linear transformation Conversely, we can squish a
three-dimensional vector into a two-dimensional one by leaving out the
third component. More precisely, we may consider the linear transfor-
mation π : R3 → R2 defined by

π(x1, x2, x3) := (x1, x2).

This is a linear transformation (why?). It is almost, but not quite, the
inverse of ι; more on this later.

• Conversions as a linear transformation Linear transformations
arise naturally when converting one type of unit to another. A simple
example is, say, converting yards to feet: x yards becomes 3x feet, thus
demonstrating the linear transformation Tx = 3x. A more sophisti-
cated example comes from converting a number of atoms - let’s take
hydrogen, carbon, and oxygen - to elementary particles (electrons, pro-
tons, and neutrons). Let’s say that the vector (NH , NC , NO) represents
the number of hydrogen, carbon, and oxygen atoms in a compound,
and (Ne, Np, Nn) represents the number of electrons, protons, and neu-
trons. Since hydrogen consists of one proton and one electron, carbon
consists of six protons, six neutrons, and six electrons, and oxygen con-
sists of eight protons, eight neutrons, and eight electrons, the conversion
formula is

Ne = NH + 6NC + 8NO

Np = NH + 6NC + 8NO

Nn = 6NC + 8NO
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or in other words Ne

Np

Nn

 =

 1 6 8
1 6 8
0 6 8

 NH

NC

NO

 .

The matrix

 1 6 8
1 6 8
0 6 8

 is thus the conversion matrix from the hydrogen-

carbon-oxygen vector space to the electron-proton-neutron vector space.
(A philosophical question: why are conversions always linear?)

• Population growth as a linear transformation Linear transfor-
mations are well adapted to handle the growth of heterogeneous pop-
ulations - populations consisting of more than one type of species or
creature. A basic example is that of Fibonacci’s rabbits. These are
pairs of rabbits which reach maturity after one year, and then produce
one pair of juvenile rabbits for every year after that. Thus, if at one
year there are A pairs of juvenile rabbits and B pairs of adult rabbits,
in the next year there will be B pairs of juvenile rabbits (because each
pair of adult rabbits gives birth to a juvenile pair), and A + B pairs
of adult rabbits. Thus one can describe the passage of one year by a
linear transformation:

T (A,B) := (B,A+B).

Thus, for instance, if in the first year there is one pair of juvenile rabbits,
(1, 0), in the next year the population vector will be T (1, 0) = (0, 1).
Then in the year after that it will be T (0, 1) = (1, 1). Then T (1, 1) =
(1, 2), then T (1, 2) = (2, 3), then T (2, 3) = (3, 5), and so forth. (We
will return to this example and analyze it more carefully much later in
this course).

• Electrical circuits as a linear transformation Many examples of
analog electric circuits, such as amplifiers, capacitors and filters, can
be thought of as linear transformations: they take in some input (ei-
ther a voltage or a current) and return an output (also a voltage or a
current). Often the input is not a scalar, but is a function of time (e.g.
for AC circuits), and similarly for the output. Thus a circuit can be

62



viewed as a transformation from F(R,R) (which represents the input
as a function or time) to F(R,R) (which represents the output as a
function of time). Usually this transformation is linear, provided that
your input is below a certain threshhold. (Too much current or voltage
and your circuit might blow out or short-circuit - both very non-linear
effects!). To actually write down what this transformation is mathe-
matically, though, one usually has to solve a differential equation; this
is important stuff, but is beyond the scope of this course.

• As you can see, linear transformations exist in all sorts of fields. (You
may amuse yourself by finding examples of linear transformations in
finance, physics, computer science, etc.)
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Math 115A - Week 3
Textbook sections: 2.1-2.3

Topics covered:

• Null spaces and nullity of linear transformations

• Range and rank of linear transformations

• The Dimension Theorem

• Linear transformations and bases

• Co-ordinate bases

• Matrix representation of linear transformations

• Sum, scalar multiplication, and composition of linear transformations

* * * * *
Review of linear transformations

• A linear transformation is any map T : V → W from one vector space
V to another W such that T preserves vector addition (i.e. T (v+v′) =
Tv + Tv′ for all v, v′ ∈ V ) and T preserves scalar multiplication (i.e.
T (cv) = cTv for all scalars c and all v ∈ V ).

• A map which preserves vector addition is sometimes called additive; a
map which preserves scalar multiplication is sometimes called homoge-
neous.

• We gave several examples of linear transformations in the previous
notes; here are a couple more.

• Sampling as a linear transformation Recall that F(R,R) is the
space of all functions from R to R. This vector space might be used
to represent, for instance, sound signals f(t). In practice, a measuring
device cannot capture all the information in a signal (which contains
an infinite amount of data); instead it only samples a finite amount, at
some fixed times. For instance, a measuring device might only sample
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f(t) for t = 1, 2, 3, 4, 5 (this would correspond to sampling at 1Hz for
five seconds). This operation can be described by a linear transforma-
tion S : F(R,R)→ R5, defined by

Sf := (f(1), f(2), f(3), f(4), f(5));

i.e. S transforms a signal f(t) into a five-dimensional vector, consisting
of f sampled at five times. For instance,

S(x2) = (1, 4, 9, 16, 25)

S(
√
x) = (

√
1,
√

2,
√

3,
√

4,
√

5)

etc. (Why is this map linear?)

• One can similarly sample polynomial spaces. For instance, the map
S : P2(R)→ R3 defined by

Sf := (f(0), f(1), f(2))

is linear.

• Interpolation as a linear transformation Interpolation can be
viewed as the reverse of sampling. For instance, given three numbers
y1, y2, y3, the Lagrange interpolation formula gives us a polynomial
f ∈ P2(R) such that f(0) = y1, f(1) = y2, and f(2) = y3:

f(x) = y1
(x− 1)(x− 2)

(0− 1)(0− 2)
+ y2

(x− 0)(x− 2)

(1− 0)(1− 2)
+ y3

(x− 0)(x− 1)

(2− 0)(2− 1)
.

One can view this as a linear transformation S : R3 → P2(R) defined
by S(y1, y2, y3) := f , e.g.

S(3, 4, 7) = y1
(x− 1)(x− 2)

(0− 1)(0− 2)
+ y2

(x− 0)(x− 2)

(1− 0)(1− 2)
+ y3

(x− 0)(x− 1)

(2− 0)(2− 1)
.

(Why is this linear?). This is the inverse of the transformation S
defined in the previous paragraph - but more on that later.
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• Linear combinations as a linear transformation Let V be a vector
space, and let v1, . . . , vn be a set of vectors in V . Then the transforma-
tion T : Rn → V defined by

T (a1, . . . , an) := a1v1 + . . .+ anvn

is a linear transformation (why?). Also, one can express many of the
statements from previous notes in terms of this transformation T . For
instance, span({v1, . . . , vn}) is the same thing as the image T (Rn) of
T ; thus {v1, . . . , vn} spans V if and only if T is onto. On the other
hand, T is one-to-one if and only if {v1, . . . , vn} is linearly independent
(more on this later). Thus T is a bijection if and only if {v1, . . . , vn} is
a basis.

* * * * *
Null spaces and nullity

• A note on notation: in this week’s notes, we shall often be dealing with
two different vector spaces V and W , so we have two different types of
vectors. We will try to reserve the letter v to denote vectors in V , and
w to denote vectors in W , in what follows.

• Not all linear transformations are alike; for instance, the zero trans-
formation T : V → W defined by Tv := 0 behaves rather differently
from, say, the identity transformation T : V → V defined by Tv := v.
Now we introduce some characteristics of linear transformations to start
telling them apart.

• Definition Let T : V → W be a linear transformation. The null space
of T , called N(T ), is defined to be the set

N(T ) := {v ∈ V : Tv = 0}.

• In other words, the null space consists of all the stuff that T sends
to zero (this is the zero vector 0W of W , not the zero vector 0V of
V ): N(T ) = T−1({0}). Some examples: if T : V → W is the zero
transformation Tv := 0, then the null space N(T ) = V . If instead
T : V → V is the identity transformation Tv := v, then N(T ) = {0}.
If T : R3 → R is the linear transformation T (x, y, z) = x+ y + z, then
N(T ) is the plane {(x, y, z) ∈ R3 : x+ y + z = 0}.
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• The null space of T is sometimes also called the kernel of T , and is some-
times denoted ker(T ); but we will use the notation N(T ) throughout
this course.

• The null space N(T ) is always a subspace of V ; this is an exercise.
Intuitively, the larger the null space, the more T resembles the 0 trans-
formation. The null space also measures the extent to which T fails to
be one-to-one:

• Lemma 1. Let T : V → W be a linear transformation. Then T is
one-to-one if and only if N(T ) = {0}.

• Proof. First suppose that T is one-to-one; we have to show that
N(T ) = {0}. First of all, it is clear that 0 ∈ N(T ), because T0 = 0.
Now we show that no other element is in N(T ). Suppose for contra-
diction that there was a non-zero vector v ∈ V such that v ∈ N(T ),
i.e. that Tv = 0. Then Tv = T0. But T is one-to-one, so this forces
v = 0, contradiction.

• Now suppose that N(T ) = {0}; we have to show that T is one-to-one.
In other words, we need to show that whenever Tv = Tv′, then we
must have v = v′. So suppose that Tv = Tv′. Then Tv − Tv′ = 0, so
that T (v − v′) = 0. Thus v − v′ ∈ N(T ), which means by hypothesis
that v − v′ = 0, so v = v′, as desired. �

• Example: Take the transformation T : Rn → V defined by

T (a1, . . . , an) := a1v1 + . . .+ anvn

which we discussed earlier. If {v1, . . . , vn} is linearly dependent, then
there is a non-zero n-tuple (a1, . . . , an) such that 0 = a1v1 + . . .+ anvn;
i.e. N(T ) will consist of more than just the 0 vector. Conversely, if
N(T ) 6= {0}, then {v1, . . . , vn} is linearly dependent. Thus by Lemma
1, T is injective if and only if {v1, . . . , vn} is linearly independent.

• Since N(T ) is a vector space, it has a dimension. We define the nullity
of T to be the dimension of N(T ); this may be infinite, if N(T ) is
infinite dimensional. The nullity of T will be denoted nullity(T ), thus
nullity(T ) = dim(N(T )).
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• Example: let π : R5 → R5 be the operator

π(x1, x2, x3, x4, x5) := (x1, x2, x3, 0, 0)

(Why is this linear?). Then

N(π) = {(0, 0, 0, x4, x5) : x4, x5 ∈ R}

(why?); this is a two-dimensional space (it has a basis consisting of
(0, 0, 0, 1, 0) and (0, 0, 0, 0, 1) and so nullity(π) = 2.

• Example: By Lemma 1, a transformation is injective if and only if it
has a nullity of 0.

• The nullity of T measures how much information (or degrees of free-
dom) is lost when applying T . For instance, in the above projection,
two degrees of freedom are lost: the freedom to vary the x4 and x5 co-
ordinates are lost after applying π. An injective transformation does
not lose any information (if you know Tv, then you can reconstruct v).

* * * * *
Range and rank

• You may have noticed that many concepts in this field seem to come
in complementary pairs: spanning set versus linearly independent set,
one-to-one versus onto, etc. Another such pair is null space and range,
or nullity and rank.

• Definition The range R(T ) of a linear transformation T : V → W is
defined to be the set

R(T ) := {Tv : v ∈ V }.

• In other words, R(T ) is all the stuff that T maps into: R(T ) = T (V ).
(Unfortunately, the space W is also sometimes called the range of T ;
to avoid confusion we will try to refer to W instead as the target space
for T ; V is the initial space or domain of T .)

• Just as the null space N(T ) is always a subspace of V , it can be shown
that R(T ) is a subspace of W (this is part of an exercise).
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• Examples: If T : V → W is the zero transformation Tv := 0, then
R(T ) = {0}. If T : V → V is the identity transformation Tv := v,
then R(T ) = V . If T : Rn → V is the transformation

T (a1, . . . , an) := a1v1 + . . .+ anvn

discussed earlier, then R(T ) = span({v1, . . . , vn}).

• Example: A map T : V → W is onto if and only if R(T ) = W .

• Definition The rank rank(T ) of a linear transformation T : V → W
is defined to be the dimension of R(T ), thus rank(T ) = dim(R(T )).

• Examples: The zero transformation has rank 0 (and indeed these are
the only transformations with rank 0). The transformation

π(x1, x2, x3, x4, x5) := (x1, x2, x3, 0, 0)

defined earlier has range

R(π) = {(x1, x2, x3, 0, 0) : x1, x2, x3 ∈ R}

(why?), and so has rank 3.

• The rank measures how much information (or degrees of freedom) is
retained by the transformation T . For instance, with the example of
π above, even though two degrees of freedom have been lost, three
degrees of freedom remain.

* * * * *
The dimension theorem

• Let T : V → W be a linear transformation. Intuitively, nullity(T ) mea-
sures how many degrees of freedom are lost when applying T ; rank(T )
measures how many degrees of freedom are retained. Since the ini-
tial space V originally has dim(V ) degrees of freedom, the following
theorem should not be too surprising.

• Dimension Theorem Let V be a finite-dimensional space, and let
T : V → W be a linear transformation. Then

nullity(T ) + rank(T ) = dim(V ).
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• The proof here will involve a lot of shuttling back and forth between
V and W using T ; and is an instructive example as to how to analyze
linear transformations.

• Proof. By hypothesis, dim(V ) is finite; let’s define n := dim(V ). Since
N(T ) is a subspace of V , it must also be finite-dimensional; let’s call
k := dim(N(T )) = nullity(T ). Then we have 0 ≤ k ≤ n. Our task is to
show that k+ rank(T ) = n, or in other words that dim(R(T )) = n− k.

• By definition of dimension, the spaceN(T ) must have a basis {v1, . . . , vk}
of k elements. (Probably it has many such bases, but we just need one
such for this argument). This set of k elements lies in N(T ), and thus
in V , and is linearly independent; thus by part (f) of Corollary 1 of last
week’s notes, it must be part of a basis of V , which must then have
n = dim(V ) elements (by part (c) of Corollary 1). Thus we may add
n−k extra elements vk+1, . . . , vn to our N(T )-basis to form an V -basis
{v1, . . . , vn}.

• Since vk+1, . . . , vn lie in V , the elements Tvk+1, . . . , T vn lie in R(T ). We
now claim that {Tvk+1, . . . , T vn} are a basis for R(T ); this will imply
that R(T ) has dimension n− k, as desired.

• To verify that {Tvk+1, . . . , T vn} form a basis, we must show that they
span R(T ) and that they are linearly independent. First let’s show
they span R(T ). This means that every vector in R(T ) is a linear
combination of Tvk+1, . . . , T vn. So let’s pick a typical vector w in R(T );
our job is to show that w is a linear combination of Tvk+1, . . . , T vn. By
definition of R(T ), w must equal Tv for some v in V .

• On the other hand, we know that {v1, . . . , vn} spans V , thus we must
have

v = a1v1 + . . .+ anvn

for some scalars a1, . . . , an. Applying T to both sides and using the
fact that T is linear, we obtain

Tv = a1Tv1 + . . .+ anTvn.
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• Now we use the fact that v1, . . . , vk lie in N(T ), so Tv1 = . . . = Tvk = 0.
Thus

Tv = ak+1Tvk+1 + . . .+ anTvn.

Thus w = Tv is a linear combination of Tvk+1, . . . , T vn, as dsired.

• Now we show that {Tvk+1, . . . , T vn} is linearly independent. Suppose
for contradiction that this set was linearly dependent, thus

ak+1Tvk+1 + . . .+ anTvn = 0

for some scalars ak+1, . . . , an which were not all zero. Then by the
linearity of T again, we have

T (ak+1vk+1 + . . .+ anvn) = 0

and thus by definition of null space

ak+1vk+1 + . . .+ anvn ∈ N(T ).

Since N(T ) is spanned by {v1, . . . , vk}, we thus have

ak+1vk+1 + . . .+ anvn = a1v1 + . . . akvk

for some scalars a1, . . . , ak. We can rearrange this as

−a1v1 − . . .− akvk + ak+1vk+1 + . . .+ anvn = 0.

But the set {v1, . . . , vn} is linearly independent, which means that all
the a’s must then be zero. But that contradicts our hypothesis that
not all of the ak+1, . . . , an were zero. Thus {Tvk+1, . . . , T vn} must have
been linearly independent, and we are done. �.

• Example Let T : R2 → R2 denote the linear transformation

T (x, y) := (x+ y, 2x+ 2y).

The null space of this transformation is

N(T ) = {(x, y) ∈ R2 : x+ y = 0}
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(why?); this is a line in R2, and thus has dimension 1 (for instance, it
has {(1,−1)} as a basis). The range of this transformation is

R(T ) = {(t, 2t) : t ∈ R}

(why?); this is another line in R2 and has dimension 1. Since 1+1=2,
the Dimension Theorem is verified in this case.

• Example For the zero transformation Tx := 0, we have nullity(T ) =
dim(X) and rank(T ) = 0 (so all the degrees of freedom are lost); while
for the identity transformation Tx := x we have nullity(T ) = 0 and
rank(T ) = dim(X) (so all the degrees of freedom are retained). In both
cases we see that the Dimension Theorem is verified.

• One important use of the Dimension Theorem is that it allows us to
discover facts about the range of T just from knowing the null space of
T , and vice versa. For instance:

• Example Let T : P5(R)→ P4(R) denote the differentiation map

Tf := f ′;

thus for instance T (x3+2x) = 3x2+2. The null space of T consists of all
polynomials f in P5(R) for which f ′ = 0; i.e. the constant polynomials

N(T ) = {c : c ∈ R} = P0(R).

Thus N(T ) has dimension 1 (it has {1} as a basis). Since P5(R) has
dimension 6, we thus see from the dimension theorem that R(T ) must
have dimension 5. But R(T ) is a subspace of P4(R), and P4(R) has
dimension 5. Thus R(T ) must equal all of P4(R). In other words, every
polynomial of degree at most 4 is the derivative of some polynomial of
degree at most 5. (This is of course easy to check by integration, but
the amazing fact was that we could deduce this fact purely from linear
algebra - using only a very small amount of calculus).

• Here is another example:

• Lemma 2 Let V and W be finite-dimensional vector spaces of the
same dimension (dim(V ) = dim(W )), and let T : V → W be a linear
transformation from V to W . Then T is one-to-one if and only if T is
onto.
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• Proof If T is one-to-one, then nullity(T ) = 0, which by the dimension
theorem implies that rank(T ) = dim(V ). Since dim(V ) = dim(W ), we
thus have dimR(T ) = dim(W ). But R(T ) is a subspace of W , thus
R(T ) = W , i.e. T is onto. The reverse implication then follows by
reversing the above steps (we leave as an exercise to verify that all the
steps are indeed reversible). �

• Exercise: re-interpret Corollary 1(de) from last week’s notes using this
Lemma, and the linear transformation

T (a1, . . . , an) := a1v1 + . . .+ anvn

discussed earlier.

Linear transformations and bases

• Let T : V → W be a linear transformation, and let {v1, . . . , vn} be
a collection of vectors in V . Then {Tv1, . . . , T vn} is a collection of
vectors in W . We now study how similar these two collections are; for
instance, if one is a basis, does this mean the other one is also a basis?

• Theorem 3 If T : V → W is a linear transformation, and {v1, . . . , vn}
spans V , then {Tv1, . . . , T vn} spans R(T ).

• Proof. Let w be any vector in R(T ); our job is to show that w is a
linear combination of Tv1, . . . , T vn. But by definition of R(T ), w = Tv
for some v ∈ V . Since {v1, . . . , vn} spans V , we thus have v = a1v1 +
. . . + anvn for some scalars a1, . . . , an. Applying T to both sides, we
obtain Tv = a1Tv1 + . . . + anTvn. Thus we can write w = Tv as a
linear combination of Tv1, . . . , T vn, as desired. �

• Theorem 4 If T : V → W is a linear transformation which is one-to-
one, and {v1, . . . , vn} is linearly independent, then {Tv1, . . . , T vn} is
also linearly independent.

• Proof Suppose we can write 0 as a linear combination of {Tv1, . . . , T vn}:

0 = a1Tv1 + . . .+ anTvn.
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Our job is to show that the a1, . . . , an must all be zero. Using the
linearity of T , we obtain

0 = T (a1v1 + . . .+ anvn).

Since T is one-to-one, N(T ) = {0}, and thus

0 = a1v1 + . . .+ anvn.

But since {v1, . . . , vn} is linearly independent, this means that a1, . . . , an
are all zero, as desired. �

• Corollary 5 If T : V → W is both one-to-one and onto, and {v1, . . . , vn}
is a basis for V , then {Tv1, . . . , T vn} is a basis for W . (In particular,
we see that dim(V ) = dim(W )).

• Proof Since {v1, . . . , vn} is a basis for V , it spans V ; and hence, by
Theorem 3, {Tv1, . . . , T vn} spansR(T ). ButR(T ) = W since T is onto.
Next, since {v1, . . . , vn} is linearly independent and T is one-to-one, we
see from Theorem 4 that {Tv1, . . . , T vn} is also linearly independent.
Combining these facts we see that {Tv1, . . . , T vn} is a basis for W . �

• The converse is also true: if T : V → W is one-to-one, and {Tv1, . . . , T vn}
is a basis, then {v1, . . . , vn} is also a basis; we leave this as an exercise
(it’s very similar to the previous arguments).

• Example The map T : P3(R)→ R4 defined by

T (ax3 + bx2 + cx+ d) := (a, b, c, d)

is both one-to-one and onto (why?), and is also linear (why?). Thus we
can convert every basis of P3(R) to a basis of R4 and vice versa. For
instance, the standard basis {1, x, x2, x3} of P3(R) can be converted to
the basis {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)} of R4. In princi-
ple, this allows one to convert many problems about the vector space
P3(R) into one about R4, or vice versa. (The formal way of saying this
is that P3(R) and R4 are isomorphic; more about this later).

* * * * *
Using a basis to specify a linear transformation
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• In this section we discuss one of the fundamental reasons why bases
are important; one can use them to describe linear transformations in
a compact way.

• In general, to specify a function f : X → Y , one needs to describe the
value f(x) for every point x in X; for instance, if f : {1, 2, 3, 4, 5} →
R, then one needs to specify f(1), f(2), f(3), f(4), f(5) in order to
completely describe the function. Thus, when X gets large, the amount
of data needed to specify a function can get quite large; for instance,
to specify a function f : R2 → R3, one needs to specify a vector
f(x) ∈ R3 for every single point x in R2 - and there are infinitely
many such points! The remarkable thing, though, is that if f is linear,
then one does not need to specify f at every single point - one just
needs to specify f on a basis and this will determine the rest of the
function.

• Theorem 6 Let V be a finite-dimensional vector space, and let {v1, . . . , vn}
be a basis for V . Let W be another vector space, and let w1, . . . , wn be
some vectors in W . Then there exists exactly one linear transformation
T : V → W such that Tvj = wj for each j = 1, 2, . . . , n.

• Proof We need to show two things: firstly, that there exists a linear
transformation T with the desired properties, and secondly that there
is at most one such transformation.

• Let’s first show that there is at most one transformation. Suppose
for contradiction that we had two different linear transformations T :
V → W and U : V → W such that Tvj = wj and Uvj = wj for each
j = 1, . . . , n. Now take any vector v ∈ V , and consider Tv and Uv.

• Since {v1, . . . , vn} is a basis of V , we have a unique representation

v = a1v1 + a2v2 + . . .+ anvn

where a1, . . . , an are scalars. Thus, since T is linear

Tv = a1Tv1 + a2Tv2 + . . .+ anTvn

but since Tvj = wj, we have

Tv = a1w1 + a2w2 + . . .+ anwn.
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Arguing similarly with U instead of T , we have

Uv = a1w1 + a2w2 + . . .+ anwn.

so in particular Tv = Uv for all vectors v. Thus T and U are exactly
the same linear transformation, a contradiction. Thus there is at most
one linear transformation.

• Now we need to show that there is at least one linear transformation T
for which Tvj = wj. To do this, we need to specify Tv for every vector
v ∈ V , and then verify that T is linear. Well, guided by our previous
arguments, we know how to find Tv: we first decompose v as a linear
combination of v1, . . . , vn

v = a1v1 + . . .+ anvn

and then define Tv by the formula above:

Tv := a1w1 + . . .+ anwn.

This is a well-defined construction, since the scalars a1, . . . , an are
unique (see the Lemma on page 36 of week 1 notes). To check that
Tvj = wj, note that

vj = 0v1 + . . .+ 0vj−1 + 1vj + 0vj+1 + . . .+ 0vn

and thus by definition of T

Tvj = 0w1 + . . .+ 0wj−1 + 1wj + 0vj+1 + . . .+ 0wn = wj

as desired.

• It remains to verify that T is linear; i.e. that T (v+ v′) = Tv+Tv′ and
that T (cv) = cTv for all vectors v, v′ ∈ V and scalars c.

• We’ll just verify that T (v + v′) = Tv + Tv′, and leave T (cv) = cTv as
an exercise. Fix any v, v′ ∈ V . We can decompose

v = a1v1 + . . .+ anvn
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and
v′ = b1v1 + . . .+ bnvn

for some scalars a1, . . . , an, b1, . . . , bn. Thus, by definition of T ,

Tv = a1w1 + . . .+ anwn

and
Tv′ = b1w1 + . . .+ bnwn

and thus

Tv + Tv′ = (a1 + b1)w1 + . . .+ (an + bn)wn.

On the other hand, adding our representations of v and v′ we have

v + v′ = (a1 + b1)v1 + . . .+ (an + bn)vn

and thus by the definition of T again

T (v + v′) = (a1 + b1)w1 + . . .+ (an + bn)wn

and so T (v+ v′) = Tv+Tv′ as desired. The derivation of T (cv) = cTv
is similar and is left as an exercise. This completes the construction of
T and the verification of the desired properties. �

• Example: We know that R2 has {(1, 0), (0, 1)} as a basis. Thus, by
Theorem 6, for any vector space W and any vectors w1, w2 in W , there
is exactly one linear transform T : R2 → W such that T (1, 0) = w1

and T (0, 1) = w2. Indeed, this transformation is given by

T (x, y) := xw1 + yw2

(why is this transformation linear, and why does it have the desired
properties?).

• Example: Let θ be an angle. Suppose we want to understand the
operation Rotθ : R2 → R2 of anti-clockwise rotation of R2 by θ. From
elementary geometry one can see that this is a linear transformation.
By some elementary trigonometry we see that Rotθ(1, 0) = (cos θ, sin θ)
and Rotθ(0, 1) = (− sin θ, cos θ). Thus from the previous example, we
see that

Rotθ(x, y) = x(cos θ, sin θ) + y(− sin θ, cos θ).
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* * * * *
Co-ordinate bases

• Of all the vector spaces, Rn is the easiest to work with; every vector v
consists of nothing more than n separate scalars - the n co-ordinates of
the vector. Vectors from other vector spaces - polynomials, matrices,
etc. - seem to be more complicated to work with. Fortunately, by us-
ing co-ordinate bases, one can convert every (finite-dimensional) vector
space into a space just like Rn.

• Definition. Let V be a finite dimensional vector space. An ordered
basis of V is an ordered sequence (v1, . . . , vn) of vectors in V such that
the set {v1, . . . , vn} is a basis.

• Example The sequence ((1, 0, 0), (0, 1, 0), (0, 0, 1)) is an ordered basis
of R3; the sequence ((0, 1, 0), (1, 0, 0), (0, 0, 1)) is a different ordered
basis of R3. (Thus sequences are different from sets; rearranging the
elements of a set does not affect the set).

• More generally, if we work in Rn, and we let ej be the vector with jth co-
ordinate 1 and all other co-ordinates 0, then the sequence (e1, e2, . . . , en)
is an ordered basis of Rn, and is known as the standard ordered basis
for Rn. In a similar spirit, (1, x, x2, . . . , xn) is known as the standard
ordered basis for Pn(R).

• Ordered bases are also called co-ordinate bases; we shall often give
bases names such as β. The reason why we need ordered bases is so
that we can refer to the first basis vector, second basis vector, etc.
(In a set, which is unordered, one cannot refer to the first element,
second element, etc. - they are all jumbled together and are just plain
elements).

• Let β = (v1, . . . , vn) be an ordered basis for V , and let v be a vector in
V . From the Lemma on page 36 of Week 1 notes, we know that v has
a unique representation of the form

v = a1v1 + . . .+ anvn.
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The scalars a1, . . . , an will be referred to as the co-ordinates of v with
respect to β, and we define the co-ordinate vector of v relative to β,
denoted [v]β, by

[v]β :=

 a1
...
an

 .

(In the textbook, [v]β is used instead of [v]β. I believe this is a mistake
- there is a convention that superscripts should refer to column vectors
and subscripts to row vectors - although this distinction is of course very
minor. This convention becomes very useful in physics, especially when
one begins to study tensors - a generalization of vectors and matrices
- but for this course, please don’t worry too much about whether an
index should be a subscript or superscript.)

• Example Let’s work in R3, and let v := (3, 4, 5). If β is the standard
ordered basis β := ((1, 0, 0), (0, 1, 0), (0, 0, 1)), then

[v]β =

 3
4
5


since

(3, 4, 5) = 3(1, 0, 0) + 4(0, 1, 0) + 5(0, 0, 1).

On the other hand, if we use the ordered basis β′ := ((0, 1, 0), (1, 0, 0), (0, 0, 1)),
then

[v]β
′
=

 4
3
5


since

(3, 4, 5) = 4(0, 1, 0) + 3(1, 0, 0) + 5(0, 0, 1).

If instead we use the basis β′′ := ((3, 4, 5), (0, 1, 0), (0, 0, 1)), then

[v]β
′
=

 1
0
0


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since
(3, 4, 5) = 1(3, 4, 5) + 0(0, 1, 0) + 0(0, 0, 1).

For more general bases, one would probably have to do some Gaussian
elimination to work out exactly what the co-ordinate vector is (similar
to what we did in Week 1).

• Example Now let’s work in P2(R), and let f = 3x2 + 4x + 6. If β is
the standard ordered basis β := (1, x, x2), then

[f ]β =

 6
4
3


since

f = 6× 1 + 4× x+ 3× x2.

Or using the reverse standard ordered basis β′ := (x2, x, 1), we have

[f ]β
′
=

 3
4
6


since

f = 3× x2 + 4× x+ 6× 1.

Note that while

 6
4
3

 and

 3
4
6

 are clearly different column vectors,

they both came from the same object f . It’s like how one person may
perceive a pole as being 12 feet long and another may perceive it as
being 4 yards long; both are correct, even though 12 is not equal to
4. It’s just that one person is using feet as a basis for length and the
other is using yards as a basis for length. (Units of measurement are
to scalars as bases are to vectors. To be pedantic, the space V of all
possible lengths is a one-dimensional vector space, and both (yard)
and (foot) are bases. A length v might be equal to 4 yards, so that
[v](yard) = (4), while also being equal to 12 feet, so [v](foot) = 12).
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• Given any vector v and any ordered basis β, we can construct the
co-ordinate vector [v]β. Conversely, given the co-ordinate vector

[v]β =

 a1
...
an


and the ordered basis β = (v1, . . . , vn), one can reconstruct v by the
formula

v = a1v1 + . . .+ anvn.

Thus, for any fixed basis, one can go back and forth between vectors v
and column vectors [v]β without any difficulty.

• Thus, the use of co-ordinate vectors gives us a way to represent any
vector as a familiar column vector, provided that we supply a basis
β. The above examples show that the choice of basis β is important;
different bases give different co-ordinate vectors.

• A philosophical point: This flexibility in choosing bases underlies a ba-
sic fact about the standard Cartesian grid structure, with its x and y
axes, etc: it is artificial! (though of course very convenient for com-
putations). The plane R2 is a very natural object, but our Cartesian
grid is not (the ancient Greeks were working with the plane back in
300 BC, but Descartes only introduced the grid in the 1700s). Why
couldn’t we make, for instance, the x-axis point northwest and the y-
axis point northeast? This would correspond to a different basis (for
instance, using ((1, 1), (1,−1)) instead of ((1, 0), (0, 1)) but one could
still do all of geometry, calculus, etc. perfectly well with this grid.

• (The way mathematicians describe this is: the plane is canonical, but
the Cartesian co-ordinate system is non-canonical. Canonical means
that there is a natural way to define this object uniquely, without
recourse to any artificial convention.)

• As we will see later, it does make sense every now and then to shift
one’s co-ordinate system to suit the situation - for instance, the above
basis ((1, 1), (1,−1)) might be useful in dealing with shapes which were

81



always at 45 degree angles to the horizontal (i.e. diamond-shaped ob-
jects). But in the majority of cases, the standard basis suffices, if for
no reason other than tradition.

• The very operation of sending a vector v to its co-ordinate vector [v]β is
itself a linear transformation, from V to Rn: see this week’s homework.

* * * * *
The matrix representation of linear transformations

• We have just seen that by using an ordered basis of V , we can represent
vectors in V as column vectors. Now we show that by using an ordered
basis of V and another ordered basis of W , we can represent linear
transformations from V to W as matrices. This is a very fundamental
observation in this course; it means that from now on, we can study
linear transformations by focusing on matrices, which is exactly what
we will be doing for the rest of this course.

• Specifically, let V and W be finite-dimensional vector spaces, and let
β := (v1, . . . , vn) and γ = (w1, . . . , wm) be ordered bases for V and W
respectively; thus {v1, . . . , vn} is a basis for V and {w1, . . . , wm} is a
basis for W , so that V is n-dimensional and W is m-dimensional. Let
T be a linear transformation from V to W .

• Example Let V = P3(R), W = P2(R), and T : V → W be the
differentiation map Tf := f ′. We use the standard ordered basis β :=
(1, x, x2, x3) for V , and the standard ordered basis γ := (1, x, x2) for
W . We shall continue with this example later.

• Returning now to the general situation, let us take a vector v in V and
try to compute Tv using our bases. Since v is in V , it has a co-ordinate
representation

[v]β =

 x1
...
xn


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with respect to β. Similarly, since Tv is in W , it has a co-ordinate
representation

[Tv]γ =

 y1
...
ym


with respect to γ. Our question is now: how are the column vectors
[v]β and [Tv]γ related? More precisely, if we know the column vector
[v]β, can we work out what [Tv]γ will be? Of course, the answer will
depend on T ; but as we shall see, we can quantify this more precisely, by
saying that the answer will depend on a certain matrix representation
of T with respect to β and γ.

• Example Continuing our previous example, let’s pick a v ∈ P3(R) at
random, say v := 3x2 + 7x+ 5, so that

[v]β =


5
7
3
0

 .

Then we have Tv = 6x+ 7, so that

[Tv]γ =

 7
6
0

 .

The question here is this: starting from the column vector


5
7
3
0

 for

v, how does one work out the column vector

 7
6
0

 for Tv?

• Return now to the general case. From our formula for [v]β, we have

v = x1v1 + x2v2 + . . .+ xnvn,
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so if we apply T to both sides we obtain

Tv = x1Tv1 + x2Tv2 + . . .+ xnTvn. (0.6)

while from our formula for [Tv]γ we have

Tv = y1w1 + y2w2 + . . .+ ymwm. (0.7)

Now to connect the two formulae. The vectors Tv1, . . . , T vn lie in W ,
and so they are linear combinations of w1, . . . , wm:

Tv1 = a11w1 + a21w2 + . . .+ am1wm
Tv2 = a12w1 + a22w2 + . . .+ am2wm

...
Tvn = a1nw1 + a2nw2 + . . .+ amnwm;

note that the numbers a11, . . . , anm are scalars that only depend on T ,
β, and γ (the vector v is only relevant for computing the x’s and y’s).

Substituting the above formulae into (0.6) we obtain

Tv = x1(a11w1 + . . .+ am1wm)
+x2(a12w1 + . . .+ am2wm)
...
+xn(a1nw1 + . . .+ amnwm)

Collecting coefficients and comparing this with (0.7) (remembering that
{w1, . . . , wm} is a basis, so there is only one way to write Tv as a linear
combination of w1, . . . , wm) - we obtain

y1 = a11x1 + a12x2 + . . .+ a1nxn
y2 = a21x1 + a22x2 + . . .+ a2nxn

...
ym = am1x1 + am2x2 + . . .+ amnxn.

This may look like a mess, but it becomes cleaner in matrix form: y1
...
ym

 =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn


 x1

...
xn


84



• Thus, if we define [T ]γβ to be the matrix

[T ]γβ :=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn


then we have answered our question of how to link [v]β with [Tv]γ:

[Tv]γ = [T ]γβ[v]β.

(If you like, the β subscript on the T has “cancelled” the β superscript
on the v. This is part of a more general rule, known as the Einstein
summation convention, which you might encounter in advanced physics
courses when dealing with things called tensors).

• It is no co-incidence that matrices were so conveniently suitable for this
problem; in fact matrices were initially invented for the express purpose
of understanding linear transformations in co-ordinates.

• Example. We return to our previous example. Note

Tv1 = T1 = 0 = 0w1 + 0w2 + 0w3

Tv2 = Tx = 1 = 1w1 + 0w2 + 0w3

Tv3 = Tx2 = 2x = 0w1 + 2w2 + 0w3

Tv4 = Tx3 = 3x2 = 0w1 + 0w2 + 3w3

and hence

[T ]γβ :=

 0 1 0 0
0 0 2 0
0 0 0 3

 .

Thus [v]β and [Tv]γ are linked by the equation

[Tv]γ =

 0 1 0 0
0 0 2 0
0 0 0 3

 [v]β,
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thus for instance returning to our previous example 7
6
0

 =

 0 1 0 0
0 0 2 0
0 0 0 3




5
7
3
0

 .

• The matrix [T ]γβ is called the matrix representation of T with respect

to the bases β and γ. Notice that the jth column of [T ]γβ is just the
co-ordinate vector of Tvj with respect to γ:

[T ]γβ = ([Tv1]
γ [Tv2]

γ . . . [Tvn]γ)

(see for instance the previous Example).

• In many cases, V will be equal to W , and β equal to γ; in that case we
may abbreviate [T ]γβ as [T ]β.

• Just like a vector v can be reconstructed from its co-ordinate vector
[v]β and vice versa (provided one knows what β is, of course), a linear
transformation T can be reconstructed from its co-ordinate matrix [T ]γβ
and vice versa (provided β and γ are given). Indeed, if one knows [T ]γβ,
then one can work out the rule to get from v to Tv as follows: first
write v in terms of β, obtaining the co-ordinate vector [v]β; multiply
this column vector by [T ]γβ to obtain [Tv]γ, and then use γ to convert
this back into the vector Tv.

• The scalar case All this stuff may seem very abstract and foreign, but
it is just the vector equivalent of something you are already familiar
with in the scalar case: conversion of units. Let’s give an example.
Suppose a car is travelling in a straight line at a steady speed T for
a period v of time (yes, the letters are strange, but this is deliberate).
Then the distance that this car traverses is of course Tv. Easy enough,
but now let’s do everything with units.

• Let’s say that the period of time v was half an hour, or thirty minutes.
It is not quite accurate to say that v = 1/2 or v = 30; the precise
statement (in our notation) is that [v](hour) = (1/2), or [v](minute) =
(30). (Note that (hour) and (minute) are both ordered bases for time,
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which is a one-dimensional vector space). Since our bases just have one
element, our column vector has only one row, which makes it a rather
silly vector in our case.

• Now suppose that the speed T was twenty miles an hour. Again, it is
not quite accurate to say that T = 20; the correct statement is that

[T ]
(mile)
(hour) = (20)

since we clearly have

T (1× hour) = 20×mile.

We can also represent T in other units:

[T ]
(mile)
(minute) = (1/3)

[T ]
(kilometer)
(hour) = (32)

etc. In this case our “matrices” are simply 1 × 1 matrices - pretty
boring!

Now we can work out Tv in miles or kilometers:

[Tv](mile) = [T ]
(mile)
(hour)[v](hour) = (20)(1/2) = (10)

or to do things another way

[Tv](mile) = [T ]
(mile)
(minute)[v](minute) = (1/3)(30) = (10).

Thus the car travels for 10 miles - which was of course obvious from the
problem. The point here is that these strange matrices and bases are
not alien objects - they are simply the vector versions of things that
you have seen even back in elementary school mathematics.

• A matrix example Remember the car company example from Week
1? Let’s run an example similar to that. Suppose the car company
needs money and labor to make cars. To keep things very simple, let’s
suppose that the car company only makes exteriors - doors and wheels.
Let’s say that there are two types of cars: coupes, which have two doors
and four wheels, and sedans, which have four doors and four wheels.
Let’s say that a wheel requires 2 units of money and 3 units of labor,
while a door requires 4 units of money and 5 units of labor.
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• We’re going to have two vector spaces. The first vector space, V , is the
space of orders - the car company may have an order v of 2 coupes and
3 sedans, which translates to 16 doors and 20 wheels. Thus

[v](coupe,sedan) =

(
2
3

)
and

[v](door,wheel) =

(
16
20

)
;

both (coupe, sedan) and (door, wheel) are ordered bases for V . (One
could also make other bases, such as (coupe, wheel), although those are
rather strange).

• The second vector space, W , is the space of resources - in this case,
just money and labor. We’re only going to use one ordered basis here:
(money, labor).

• There is an obvious linear transformation T from V to W - the cost
(actually, price is a more accurate name for T ; cost should really refer
to Tv). Thus, for any order v in V , Tv is the amount of resources
required to create v. By our hypotheses,

T (door) = 4×money + 5× labor

and
T (wheel) = 2×money + 3× labor

so

[T ]
(money,labor)
(door,wheel) =

(
4 2
5 3

)
.

You may also check that

[T ]
(money,labor)
(coupe,sedan) =

(
16 24
22 32

)
.

Thus, for our order v, the cost to make v can be computed as

[Tv](money,labor) = [T ]
(money,labor)
(door,wheel) [v](door,wheel) =

(
4 2
5 3

)(
16
20

)
=

(
104
140

)
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or equivalently as

[Tv](money,labor) = [T ]
(money,labor)
(coupe,sedan) [v](coupe,sedan) =

(
16 24
22 32

)(
2
3

)
=

(
104
140

)
−

i.e. one needs 104 units of money and 140 units of labor to com-
plete the order. (Can you explain why these two apparently distinct
computations gave exactly the same answer, and why this answer is
actually the correct cost of this order?). Note how the different bases
(coupe, sedan) and (door, wheel) have different advantages and disad-
vantages; the (coupe, sedan) basis makes the co-ordinate vector for v
nice and simple, while the (door, wheel) basis makes the co-ordinate
matrix for T nice and simple.

* * * * *
Things to do with linear transformations

• We know that certain operations can be performed on vectors; they can
be added together, or multiplied with a scalar. Now we will observe
that there are similar operations on linear transformations; they can
also be added together and multiplied by a scalar, but also (under
certain conditions) can also be multiplied with each other.

• Definition. Let V and W be vector spaces, and let S : V → W and
T : V → W be two linear transformations from V to W . We define
the sum S + T of these transformations to be a third transformation
S + T : V → W , defined by

(S + T )(v) := Sv + Tv.

• Example. Let S : R2 → R2 be the doubling transformation, defined
by Sv := 2v. Let T : R2 → R2 be the identity transformation, defined
by Tv := v. Then S + T is the tripling transformation

(S + T )v = Sv + Tv = 2v + v = 3v.

• Lemma 7 The sum of two linear transformations is again a linear
transformation.
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• Proof Let S : V → W , T : V → W be linear transformations. We
need to show that S + T : V → W is also linear; i.e. it preserves
addition and preserves scalar multiplication. Let’s just show that it
preserves scalar multiplication, i.e. for any v ∈ V and scalar c, we have
to show that

(S + T )(cv) = c(S + T )v.

But the left-hand side, by definition, is

S(cv) + T (cv) = cSv + cTv

since S, T are linear. Similarly, the right-hand side is

c(Sv + Tv) = cSv + cTv

by the axioms of vector spaces. Thus the two are equal. The proof
that S + T preserves addition is similar and is left as an exercise. �

• Note that we can only add two linear transformations S, T if they have
the same domain and target space; for instance it is not permitted to
add the identity transformation on R2 to the identity transformation
on R3. This is similar to how vectors can only be added if they belong
to the same space; a vector in R2 cannot be added to a vector in R3.

• Definition. Let T : V → W be a linear transformation, and let c be
a scalar. We define the scalar multiplication cT of c and T to be the
transformation cT : V → W , defined by

(cT )(v) = c(Tv).

• It is easy to verify that cT is also a linear transformation; we leave this
as an exercise.

• Example Let S : R2 → R2 be the doubling transformation, defined
by Sv := 2v. Then 2S : R2 → R2 is the quadrupling transformation,
defined by 2Sv := 4v.

• Definition Let L(V,W ) be the space of linear transformations from V
to W .
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• Example In the examples above, the transformations S, T , S+T , and
2S all belonged to L(R2,R2).

• Lemma 8 The space L(V,W ) is a subspace of F(V,W ), the space of
all functions from V to W . In particular, L(V,W ) is a vector space.

• Proof Clearly L(V,W ) is a subset of F(V,W ), since every linear trans-
formation is a transformation. Also, we have seen that the space
L(V,W ) of linear transformations from V to W is closed under addition
and scalar multiplication. Hence, it is a subspace of the vector space
F(V,W ), and is hence itself a vector space. (Alternatively, one could
verify each of the vector space axioms (I-VIII) in turn for L(V,W ); this
is a tedious but not very difficult exercise). �

• The next basic operation is that of multiplying or composing two linear
transformations.

• Definition Let U , V , W be vector spaces. Let S : V → W be a
linear transformation from V to W , and let T : U → V be a linear
transformation from U to V . Then we define the product or composition
ST : U → W to be the transformation

ST (u) := S(T (u)).

• Example Let U : R∞ → R∞ be the right shift operator

U(x1, x2, . . .) := (0, x1, x2, . . .).

Then the operator UU = U2 is given by

U2(x1, x2, . . .) := U(U(x1, x2, . . .)) = U(0, x1, x2, . . .) = (0, 0, x1, x2, . . .),

i.e. the double right shift.

• Example Let U∗ : R∞ → R∞ be the left-shift operator

U∗(x1, x2, . . .) := (x2, x3, . . .).

Then U∗U is the identity map:

U∗U(x1, x2, . . .) = U∗(0, x1, x2, . . .) = (x1, x2, . . .)
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but UU∗ is not:

UU∗(x1, x2, . . .) = U(x2, . . .) = (0, x2, . . .).

Thus multiplication of operators is not commutative.

• Note that in order for ST to be defined, the target space of T has
to match the initial space of S. (This is very closely related to the
fact that in order for matrix multiplication AB to be well defined, the
number of columns of A must equal the number of rows of B).

* * * * *
Addition and multiplication of matrices

• We have just defined addition, scalar multiplication, and composition
of linear transformations. On the other hand, we also know how to
add, scalar multiply, and multiply matrices. Since linear transforma-
tions can be represented (via bases) as matrices, it is thus a natural
question as to whether the linear transform notions of addition, scalar
multiplication, and composition are in fact compatible with the matrix
notions of addition, scalar multiplication, and multiplication. This is
indeed the case; we will now show this.

• Lemma 9 Let V,W be finite-dimensional spaces with ordered bases β,
γ respectively. Let S : V → W and T : V → W be linear transforma-
tions from V to W , and let c be a scalar. Then

[S + T ]γβ = [S]γβ + [T ]γβ

and
[cT ]γβ = c[T ]γβ.

• Proof. We’ll just prove the second statement, and leave the first as an
exercise. Let’s write β = (v1, . . . , vn) and γ = (w1, . . . , wn), and denote
the matrix [T ]γβ by

[T ]γβ :=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

 .
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Thus
Tv1 = a11w1 + a21w2 + . . .+ am1wm
Tv2 = a12w1 + a22w2 + . . .+ am2wm

...
Tvn = a1nw1 + a2nw2 + . . .+ amnwm;

Multiplying by c, we obtain

(cT )v1 = ca11w1 + ca21w2 + . . .+ cam1wm
(cT )v2 = ca12w1 + ca22w2 + . . .+ cam2wm

...
(cT )vn = ca1nw1 + ca2nw2 + . . .+ camnwm

and thus

[cT ]γβ :=

ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n

...
cam1 cam2 . . . camn

,

i.e. [cT ]γβ = c[T ]γβ as desired. �

• We’ll leave the corresponding statement connecting composition of lin-
ear transformations with matrix multiplication for next week’s notes.
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Math 115A - Week 4
Textbook sections: 2.3-2.4

Topics covered:

• A quick review of matrices

• Co-ordinate matrices and composition

• Matrices as linear transformations

• Invertible linear transformations (isomorphisms)

• Isomorphic vector spaces

* * * * *
A quick review of matrices

• An m × n matrix is a collection of mn scalars, organized into m rows
and n columns:

A =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

Am1 Am2 . . . Amn

 .

If A is a matrix, then Ajk refers to the scalar entry in the jth row and
kth column. Thus if

A :=

(
1 2
3 4

)
then A11 = 1, A12 = 2, A21 = 3, and A22 = 4.

• (The word “matrix” is late Latin for “womb”; it is the same root as
maternal or matrimony. The idea being that a matrix is a receptacle
for holding numbers. Thus the title of the recent Hollywood movie “the
Matrix” is a play on words).
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• A special example of a matrix is the n × n identity matrix In, defined
by

In :=


1 0 . . . 0
0 1 . . . 0

...
0 0 . . . 1


or equivalently that (In)jk := 1 when j = k and (In)jk := 0 when j 6= k.

• If A and B are two m× n matrices, the sum A + B is another m× n
matrix, defined by adding each component separately, for instance

(A+B)11 := A11 +B11

and more generally

(A+B)jk := Ajk +Bjk.

If A and B have different shapes, then A+B is left undefined.

• The scalar product cA of a scalar c and a matrix A is defined by mul-
tiplying each component of the matrix by c:

(cA)jk := cAjk.

• If A is an m × n matrix, and B is an l × m matrix, then the matrix
product BA is an l × n matrix, whose co-ordinates are given by the
formula

(BA)jk = Bj1A1k +Bj2A2k + . . .+BjmAmk =
m∑
i=1

BjiAik.

Thus for instance if

A :=

(
A11 A12

A21 A22

)
and

B :=

(
B11 B12

B21 B22

)
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then

(BA)11 = B11A11 +B12A21; (BA)12 = B11A12 +B12A22

(BA)21 = B21A11 +B22A21; (BA)22 = B21A12 +B22A22

and so

BA =

(
B11A11 +B12A21 B11A12 +B12A22

B21A11 +B22A21 B21A12 +B22A22

)
or in other words(
B11 B12

B21 B22

)(
A11 A12

A21 A22

)
=

(
B11A11 +B12A21 B11A12 +B12A22

B21A11 +B22A21 B21A12 +B22A22

)
.

If the number of columns of B does not equal the number of rows of
A, then BA is left undefined. Thus for instance it is possible for BA
to be defined while AB remains undefined.

• This matrix multiplication rule may seem strange, but we will explain
why it is natural below.

• It is an easy exercise to show that if A is an m × n matrix, then
ImA = A and AIn = A. Thus the matrices Im and In are multiplicative
identities, assuming that the shapes of all the matrices are such that
matrix multiplication is defined.

* * * * *
Co-ordinate matrices and composition

• Last week, we introduced the notion of a linear transformation T :
X → Y . Given two linear transformations T : X → Y and S : Y → Z,
where the target space of T matches up with the initial space of S,
their composition ST : X → Z, defined by

ST (v) = S(Tv)

is also a linear transformation; this is easy to check and I’ll leave it as
an exercise. Also, if IX : X → X is the identity on X and IY : Y → Y
is the identity on Y , it is easy to check that TIX = T and IY T = T .
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• Example Suppose we are considering combinations of two molecules:
methane CH4 and water H2O. Let X be the space of all linear com-
binations of such molecules, thus X is a two-dimensional space with
α := (methane, water) as an ordered basis. (A typical element of X
might be 3 × methane + 2 × water). Let Y be the space of all lin-
ear combinations of Hydrogen, Carbon, and Oxygen atoms; this is a
three-dimensional space with β := (hydrogen, carbon, oxygen) as an
ordered basis. Let Z be the space of all linear combinations of elec-
trons, protons, and neutrons, thus it is a three-dimensional space with
γ := (electron, proton, neutron) as a basis. There is an obvious linear
transformation T : X → Y , defined by starting with a collection of
molecules and breaking them up into component atoms. Thus

T (methane) = 4× hydrogen+ 1× carbon

T (water) = 2× hydrogen+ 1× oxygen

and so T has the matrix

[T ]βα = [T ]
(hydrogen,carbon,oxygen)
(methane,water) =

 4 2
1 0
0 1

 .

Similarly, there is an obvious linear transformation S : Y → Z, de-
fined by starting with a collection of atoms and breaking them up into
component particles. Thus

S(hydrogen) = 1× electron+ 1× proton

S(carbon) = 6× electron+ 6× proton+ 6× neutron

S(oxygen) = 8× electron+ 8× proton+ 8× neutron.

Thus

[S]γβ = [S]
(electron,proton,neutron)
(hydrogen,carbon,oxygen) =

 1 6 8
1 6 8
0 6 8

 .

The composition ST : X → Z of S and T is thus the transformation
which sends molecules to their component particles. (Note that even
though S is to the left of T , the operation T is applied first. This
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rather unfortunate fact occurs because the conventions of mathematics
place the operator T before the operand x, thus we have T (x) instead
of (x)T . Since all the conventions are pretty much entrenched, there’s
not much we can do about it). A brief calculation shows that

ST (methane) = 10× electron+ 10× proton+ 6× neutron

ST (water) = 10× electron+ 10× proton+ 8× neutron

and hence

[ST ]γα = [ST ]
(electron,proton,neutron)
(methane,water) =

 10 10
10 10
6 8

 .

Now we ask the following question: how are these matrices [T ]βα, [S]γβ,
and [ST ]γα related?

• Let’s consider the 10 entry on the top left of [ST ]γα. This number
measures how many electrons there are in a methane molecule. From
the matrix of [T ]βα we see that each methane molecule has 4 hydrogen, 1
carbon, and 0 oxygen atoms. Since hydrogen has 1 electron, carbon has
6, and oxygen has 8, we see that the number of electrons in methane is

4× 1 + 1× 6 + 0× 8 = 10.

Arguing similarly for the other entries of [ST ]γα, we see that

[ST ]γα =

 4× 1 + 1× 6 + 0× 8 2× 1 + 0× 6 + 1× 8
4× 1 + 1× 6 + 0× 8 2× 1 + 0× 6 + 1× 8
4× 0 + 1× 6 + 0× 8 2× 0 + 0× 6 + 1× 8

 .

But this is just the matrix product of [S]γβ and [T ]βα:

[ST ]γα =

 1 6 8
1 6 8
0 6 8

 4 2
1 0
0 1

 = [S]γβ[T ]βα.

• More generally, we have
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• Theorem 1. Suppose that X is l-dimensional and has an ordered basis
α = (u1, . . . , ul), Y is m-dimensional and has an ordered basis β =
(v1, . . . , vm), and Z is n-dimensional and has a basis γ of n elements.
Let T : X → Y and S : Y → Z be linear transformations. Then

[ST ]γα = [S]γβ[T ]βα.

• Proof. The transformation T has a co-ordinate matrix [T ]βα, which is
an m× l matrix. If we write

[T ]βα =:=


a11 a12 . . . a1l
a21 a22 . . . a2l

...
am1 am2 . . . aml


then we have

Tu1 = a11v1 + a21v2 + . . .+ am1vm
Tu2 = a12v1 + a22v2 + . . .+ am2vm

...
Tul = a1lv1 + a2lv2 + . . .+ amlvm

We write this more compactly as

Tui =
m∑
j=1

ajivj for i = 1, . . . , l.

• Similarly, S has a co-ordinate matrix [S]γβ, which is an n ×m matrix.
If

[S]γβ :=


b11 b12 . . . b1m
b21 b22 . . . b2m

...
bn1 bm2 . . . bnm

 .

then

Svj =
n∑
k=1

bkjwk for j = 1, . . . ,m.
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Now we try to understand how ST acts on the basis u1, . . . , ul. Ap-
plying S to both sides of the T equations, and using the fact that S is
linear, we obtain

STui =
m∑
j=1

ajiSvj.

Applying our formula for Svj, we obtain

STui =
m∑
j=1

aji

n∑
k=1

bkjwk

which we can rearrange as

STui =
n∑
k=1

(
m∑
j=1

bkjaji)wk.

Thus if we define

cki :=
m∑
j=1

bkjaji = bk1a1i + bk2a2i + . . .+ bkmami

then we have

STui =
n∑
k=1

ckiwk

and hence

[ST ]γα =


c11 c12 . . . c1l
c21 c22 . . . c2l

...
cn1 cm2 . . . cnl

 .

However, if we perform the matrix multiplication
b11 b12 . . . b1m
b21 b22 . . . b2m

...
bn1 bm2 . . . bnm




a11 a12 . . . a1l
a21 a22 . . . a2l

...
am1 am2 . . . aml


we get exactly the same matrix (this is because of our formula for cki
in terms of the b and a co-efficients). This proves the theorem. �
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• This theorem illustrates why matrix multiplication is defined in that
strange way - multiplying rows against columns, etc. It also explains
why we need the number of columns of the left matrix to equal the
number of rows of the right matrix; this is like how to compose two
transformations T : X → Y and S : Y → Z to form a transformation
ST : X → Z, we need the target space of T to equal to the initial space
of S.

* * * * *
Comparison between linear transformations and matrices

• To summarize what we have done so far:

• Given a vector space X and an ordered basis α for X, one can write
vectors v in V as column vectors [v]α. Given two vector spaces X, Y ,
and ordered bases α, β for X and Y respectively, we can write linear
transformations T : X → Y as matrices [T ]βα. The action of T then
corresponds to matrix multiplication by [T ]γβ:

[Tv]β = [T ]βα[v]α;

i.e. we can “cancel” the basis α. Similarly, composition of two linear
transformations corresponds to matrix multiplication: if S : Y → Z
and γ is an ordered basis for Z, then

[ST ]γα = [S]γβ[T ]βα

i.e. we can “cancel” the basis β.

• Thus, by using bases, one can understand the behavior of linear trans-
formations in terms of matrix multiplication. This is not quite saying
that linear transformations are the same as matrices, for two reasons:
firstly, this correspondence only works for finite dimensional spaces X,
Y , Z; and secondly, the matrix you get depends on the basis you choose
- a single linear transformation can correspond to many different ma-
trices, depending on what bases one picks.

• To clarify the relationship between linear transformations and matrices
let us once again turn to the scalar case, and now consider currency
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conversions. Let X be the space of US currency - this is the one-
dimensional space which has (dollar) as an (ordered) basis; (cent) is
also a basis. Let Y be the space of British currency (with (pound) or
(penny) as a basis; pound = 100 × penny), and let Z be the space of
Japanese currency (with (yen) as a basis). Let T : X → Y be the
operation of converting US currency to British, and S : Y → Z the
operation of converting British currency to Japanese, thus ST : X → Z
is the operation of converting US currency to Japanese (via British).

• Suppose that one dollar converted to half a pound, then we would have

[T ]
(pound)
(dollar) = (0.5),

or in different bases

[T ]
(pound)
(cent) = (0.005); [T ]

(penny)
(cent) = (0.5); [T ]

(penny)
(dollar) = (50).

Thus the same linear transformation T corresponds to many different
1×1 matrices, depending on the choice of bases both for the domain X
and the range Y . However, conversion works properly no matter what
basis you pick (as long as you are consistent), e.g.

[v](dollar) = (6)⇒[Tv](pound) = [T ]
(pound)
(dollar) [v](dollar) = (0.5)(6) = (3).

Furthermore, if each pound converted to 200 yen, so that

[S]
(yen)
(pound) = (200)

then we can work out the various matrices for ST by matrix multipli-
cation (which in the 1× 1 case is just scalar multiplication):

[ST ]
(yen)
(dollar) = [S]

(yen)
(pound)[T ]

(pound)
(dollar) = (200)(0.5) = (100).

One can of course do this computation in different bases, but still get
the same result, since the intermediate basis just cancels itself out at
the end:

[ST ]
(yen)
(dollar) = [S]

(yen)
(penny)[T ]

(penny)
(dollar) = (2)(50) = (100)

etc.
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• You might amuse yourself concocting a vector example of currency
conversion - for instance, suppose that in some country there was more
than one type of currency, and they were not freely interconvertible.
A US dollar might then convert to x amounts of one currency plus y
amounts of another, and so forth. Then you could repeat the above
computations except that the scalars would have to be replaced by
various vectors and matrices.

• One basic example of a linear transformation is the identity transfor-
mation IV : V → V on a vector space V , defined by IV v = v. If we
pick any basis β = (v1, . . . , vn) of V , then of course we have

IV v1 = 1× v1 + 0× v2 + . . .+ 0× vn

IV v2 = 0× v1 + 1× v2 + . . .+ 0× vn
. . .

IV vn = 0× v1 + 0× v2 + . . .+ 1× vn
and thus

[IV ]ββ =


1 0 . . . 0
0 1 . . . 0

...
0 0 . . . 1

 = In.

Thus the identity transformation is connected to the identity matrix.

* * * * *
Matrices as linear transformations.

• We have now seen how linear transformations can be viewed as matrices
(after selecting bases, etc.). Conversely, every matrix can be viewed as
a linear transformation.

• Definition Let A be an m × n matrix. Then we define the linear
transformation LA : Rn → Rm by the rule

LAx := Ax for all x ∈ Rn,

where we think of the vectors in Rn and Rm as column vectors.
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• Example Let A be the matrix

A :=

 1 2
3 4
5 6

 .

Then LA : R2 → R3 is the linear transformation

LA

(
x1
x2

)
=

 1 2
3 4
5 6

( x1
x2

)
=

 x1 + 2x2
3x1 + 4x2
5x1 + 6x2

 .

• It is easily checked that LA is indeed linear. Thus for every m×n matrix
A we can associate a linear transformation LA : Rn → Rm. Conversely,
if we let α be the standard basis for Rn and β be the standard basis
for Rm, then for every linear transformation T : Rn → Rm we can
associate an m × n matrix [T ]βα. The following simple lemma shows
that these two operations invert each other:

• Lemma 2. Let the notation be as above. If A is an m×n matrix, then
[LA]βα = A. If T : Rn → Rm is a linear transformation, then L[T ]βα

= T .

• Proof Let α = (e1, e2, . . . , en) be the standard basis of Rn. For any
column vector

x =

 x1
. . .
xn


in Rn, we have

x = x1e1 + . . . xnen

and thus

[x]α =

 x1
. . .
xn

 = x.

Thus [x]α = x for all x ∈ Rn. Similarly we have [y]β = y for all y ∈ Rm.

• Now let A be an m× n matrix, and let x ∈ Rn. By definition

LAx = Ax
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On the other hand, we have

[LAx]β = [LA]βα[x]α

and hence (by the previous discussion)

LAx = [LA]βαx.

Thus
[LA]βαx = Ax for all x ∈ Rn.

If we apply this with x equal to the first basis vector


1
0
...
0

, we see that

the first column of the matrices [LA]βα and A are equal. Similarly we
see that all the other columns of [LA]βα and A match, so that [LA]βα = A
as desired.

• Now let T : Rn → Rm be a linear transformation. Then for any x ∈ Rn

[Tx]β = [T ]βα[x]α

which by previous discussion implies that

Tx = [T ]βαx = L[T ]βα
x.

Thus T and L[T ]βα
are the same linear transformation, and the lemma

is proved. �

• Because of the above lemma, any result we can say about linear trans-
formations, one can also say about matrices. For instance, the following
result is trivial for linear transformations:

• Lemma 3. (Composition is associative) Let T : X → Y , S :
Y → Z, and R : Z → W be linear transformations. Then we have
R(ST ) = (RS)T .

• Proof. We have to show that R(ST )(x) = (RS)T (x) for all x ∈ X.
But by definition

R(ST )(x) = R((ST )(x)) = R(S(T (x)) = (RS)(T (x)) = (RS)T (x)

as desired. �
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• Corollary 4. (Matrix multiplication is associative) Let A be an
m × n matrix, B be a l ×m matrix, and C be a k × l matrix. Then
C(BA) = (CB)A.

• Proof Since LA : Rn → Rm, LB : Rm → Rl, and LC : Rl → Rk are
linear transformations, we have from the previous Lemma that

LC(LBLA) = (LCLB)LA.

Let α, β, γ, δ be the standard bases of Rn, Rm, Rl, and Rk respectively.
Then we have

[LC(LBLA)]δα = [LC ]δγ[LBLA]γα = [LC ]δγ([LB]γβ[LA]βα) = C(BA)

while

[(LCLB)LA]δα = [LCLB]δβ[LA]βα = ([LC ]δγ[LB]γβ)[LA]βα = (CB)A

using Lemma 2. Combining these three identities we see that C(BA) =
(CB)A. �

• The above proof may seem rather weird, but it managed to prove the
matrix identity C(BA) = (CB)A without having to do lots and lots of
matrix multiplication. Exercise: try proving C(BA) = (CB)A directly
by writing out C, B, A in co-ordinates and expanding both sides!

• We have just shown that matrix multiplication is associative. In fact,
all the familiar rules of algebra apply to matrices (e.g. A(B + C) =
AB+AC, and A times the identity is equal to A) provided that all the
matrix operations make sense, of course. (The shapes of the matrices
have to be compatible before one can even begin to add or multiply
them together). The one important caveat is that matrix multiplication
is not commutative: AB is usually not the same as BA! Indeed there
is no guarantee that these two matrices are the same shape (or even
that they are both defined at all).

• Some other properties of A and LA are stated below. As you can see,
the proofs are similar to the ones above.
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• If A is an m× n matrix and B is an l×m matrix, then LBA = LBLA.
Proof: Let α, β, γ be the standard bases of Rn, Rm, Rl respectively.
Then LBLA is a linear transformation from Rn to Rl, and so

[LBLA]γα = [LB]γβ[LA]βα = BA,

and so by taking L of both sides and using Lemma 2, we obtain LBLA =
LBA as desired.

• If A is an m× n matrix, and B is another m× n matrix, then LA+B =
LA + LB. Proof: LA + LB is a linear transformation from Rn to Rm.
Let α, β be the standard bases of Rn and Rm respectiely. Then

[LA + LB]βα = [LA]βα + [LB]βα = A+B

and so by taking L of both sides and using Lemma 2, we obtain LA+B =
LA + LB as desired.

* * * * *
Invertible linear transformations

• We have already dealt with the concepts of a linear transformation be-
ing one-to-one, and of being onto. We now combine these two concepts
to that of a transformation being invertible.

• Definition. Let T : V → W be a linear transformation. We say that
a linear transformation S : W → V is the inverse of T if TS = IW and
ST = IV . We say that T is invertible if it has an inverse, and call the
inverse T−1; thus TT−1 = IW and T−1T = IV .

• Example Let T : R3 → R3 be the doubling transformation Tv := 2v.
Let S : R3 → R3 be the halving transformation Sv := v/2. Then
S is the inverse of T : ST (v) = S(2v) = (2v)/2 = v, while TS(v) =
T (v/2) = 2(v/2) = v, thus both ST and TS are the identity on R3.

• Note that this definition is symmetric: if S is the inverse of T , then T
is the inverse of S.

• Why do we call S the inverse of T instead of just an inverse? This is
because every transformation can have at most one inverse:
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• Lemma 6. Let T : V → W be a linear transformation, and let
S : W → V and S ′ : W → V both be inverses of T . Then S = S ′.

• Proof
S = SIW = S(TS ′) = (ST )S ′ = IV S

′ = S ′.

�

• Not every linear transformation has an inverse:

• Lemma 7. If T : V → W has an inverse S : W → V , then T must be
one-to-one and onto.

• Proof Let’s show that T is one-to-one. Suppose that Tv = Tv′; we
have to show that v = v′. But by applying S to both sides we get
STv = STv′, thus IV v = IV v

′, thus v = v′ as desired. Now let’s show
that T is onto. Let w ∈ W ; we have to find v such that Tv = w. But
w = IWw = TSw = T (Sw), so if we let v := Sw then we have Tv = w
as desired. �.

• Thus, for instance, the zero transformation T : R3 → R3 defined by
Tv = 0 is not invertible.

• The converse of Lemma 7 is also true:

• Lemma 8. If T : V → W is a one-to-one and onto linear transfor-
mation , then it has an inverse S : W → V , which is also a linear
transformation.

• Proof Let T : V → W be one-to-one and onto. Let w be any element
of W . Since T is onto, we have w = Tv for some v in V ; since T is
one-to-one; this v is unique (we can’t have two different elements v, v′

of V such that Tv and Tv′ are both equal to w). Let us define Sw
as equal to this v, thus S is a transformation from W to V . For any
w ∈ W , we have w = Tv and Sw = v for some v ∈ V , and hence
TSw = w; thus TS is the identity IW .

• Now we show that ST = IV , i.e. that for every v ∈ V , we have STv = v.
Since we already know that TS = IW , we have that TSw = w for all
w ∈ W . In particular we have TSTv = Tv, since Tv ∈ W . But since
T is injective, this implies that STv = v as desired.
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• Finally, we show that S is linear, i.e. that it preserves addition and
scalar multiplication. We’ll just show that it preserves addition, and
leave scalar multiplication as an exercise. Let w,w′ ∈ W ; we need to
show that S(w + w′) = Sw + Sw′. But we have

T (S(w+w′)) = (TS)(w+w′) = IW (w+w′) = IWw+IWw
′ = TSw+TSw′ = T (Sw+Sw′);

since T is one-to-one, this implies that S(w+w′) = Sw+Sw′ as desired.
The preservation of scalar multiplication is proven similarly. �

• Thus a linear transformation is invertible if and only if it is one-to-one
and onto. Invertible linear transformations are also known as isomor-
phisms.

• Definition Two vector spaces V and W are said to be isomorphic if
there is an invertible linear transformation T : V → W from one space
to another.

• Example The map T : R3 → P2(R) defined by

T (a, b, c) := ax2 + bx+ c

is easily seen to be linear, one-to-one, and onto, and hence an isomor-
phism. Thus R3 and P2(R) are isomorphic.

• Isomorphic spaces tend to have almost identical properties. Here is an
example:

• Lemma 9. Two finite-dimensional spaces V and W are isomorphic if
and only if dim(V ) = dim(W ).

• Proof If V and W are isomorphic, then there is an invertible linear
transformation T : V → W from V to W , which by Lemma 7 is one-
to-one and onto. Since T is one-to-one, nullity(T ) = 0. Since T is
onto, rank(T ) = dim(W ). By the dimension theorem we thus have
dim(V ) = dim(W ).

• Now suppose that dim(V ) and dim(W ) are equal; let’s say that dim(V ) =
dim(W ) = n. Then V has a basis {v1, . . . , vn}, and W has a basis

109



{w1, . . . , wn}. By Theorem 6 of last week’s notes, we can find a lin-
ear transformation T : V → W such that Tv1 = w1, . . . , T vn = wn.
By Theorem 3 of last week’s notes, w1, . . . , wn must then span R(T ).
But since w1, . . . , wn span W , we have R(T ) = W , i.e. T is onto. By
Lemma 2 of last week’s notes, T is therefore one-to-one, and hence is
an isomorphism. Thus V and W are isomorphic. �

• Every basis leads to an isomorphism. If V has a finite basis β =
(v1, . . . , vn), then the co-ordinate map φβ : V → Rn defined by

φβ(x) := [x]β

is a linear transformation (see last week’s homework), and is invertible
(this was discussed in last week’s notes, where we noted that we can
reconstruct x from [x]β and vice versa). Thus φβ is an isomorphism be-
tween V to Rn. In the textbook φβ is called the standard representation
of V with respect to β.

• Because of all this theory, we are able to essentially equate finite-
dimensional vector spaces V with the standard vector spaces Rn, to
equate vectors v ∈ V with their co-ordinate vectors [v]α ∈ Rn (pro-
vided we choose a basis α for V ) and linear transformations T : V → W
from one finite-dimensional space to another, with n×m matrices [T ]βα.
This means that, for finite-dimensional linear algebra at least, we can
reduce everything to the study of column vectors and matrices. This
is what we will be doing for the rest of this course.

* * * * *
Invertible linear transformations and invertible matrices

• An m×n matrix A has an inverse B, if B is an n×m matrix such that
BA = In and AB = Im. In this case we call A an invertible matrix,
and denote B by A−1.

• Example. If

A =

 2 0 0
0 3 0
0 0 4


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then

A−1 =

 1/2 0 0
0 1/3 0
0 0 1/4


is the inverse of A, as can be easily checked.

• The relationship between invertible linear transformations and invert-
ible matrices is the following:

• Theorem 10. Let V be a vector space with finite ordered basis α,
and let W be a vector space with finite ordered basis β. Then a linear
transformation T : V → W is invertible if and only if the matrix [T ]βα
is invertible. Furthermore, ([T ]βα)−1 = [T−1]αβ

• Proof. Suppose that V is n-dimensional and W is m-dimensional; this
makes [T ]βα an m× n matrix.

• First suppose that T : V → W has an inverse T−1 : W → V . Then

[T ]βα[T−1]αβ = [TT−1]ββ = [IW ]ββ = Im

while
[T−1]αβ [T ]βα = [T−1T ]αα = [IV ]αα = In,

thus [T−1]αβ is the inverse of [T ]βα and so [T ]βα is invertible.

• Now suppose that [T ]βα is invertible, with inverse B. We’ll prove shortly
that there exists a linear transformation S : W → V with [S]αβ = B.
Assuming this for the moment, we have

[ST ]αα = [S]αβ [T ]βα = B[T ]βα = In = [IV ]αα

and hence ST = IV . A similar argument gives TS = IW , and so S is
the inverse of T and so T is invertible.

• It remains to show that we can in fact find a transformation S : W → V
with [S]αβ = B. Write α = (v1, . . . , vn) and β = (w1, . . . , wm). Then we
want a linear transformation S : W → V such that

Sw1 = B11v1 + . . .+B1nvn
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Sw2 = B21v1 + . . .+B2nvn
...

Swm = Bm1v1 + . . .+Bmnvn.

But we can do this thanks to Theorem 6 of last week’s notes. �

• Corollary 11. An m×n matrix A is invertible if and only if the linear
transformation LA : Rn → Rm is invertible. Furthermore, the inverse
of LA is LA−1 .

• Proof. If α is the standard basis for Rn and β is the standard basis
for Rm, then

[LA]βα = A.

Thus by Theorem 10, A is invertible if and only if LA is. Also, from
Theorem 10 we have

[L−1A ]αβ = ([LA]αβ)−1 = A−1 = [LA−1 ]αβ

and hence
L−1A = LA−1

as desired. �

• Corollary 12. In order for a matrix A to be invertible, it must be
square (i.e. m = n).

• Proof. This follows immediately from Corollary 11 and Lemma 9. �

• On the other hand, not all square matrices are invertible; for instance
the zero matrix clearly does not have an inverse. More on this in a
later week.
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Math 115A - Week 5
Textbook sections: 1.1-2.5

Topics covered:

• Co-ordinate changes

• Stuff about the midterm

* * * * *
Changing the basis

• In last week’s notes, we used bases to convert vectors to co-ordinate
vectors, and linear transformations to matrices. We have already men-
tioned that if one changes the basis, then the co-ordinate vectors and
matrices also change. Now we study this phenomenon more carefully,
and quantify exactly how changing the basis changes these co-ordinate
vectors and matrices.

• Let’s begin with co-ordinate vectors. Suppose we have a vector space
V and two ordered bases β, β′ of that vector space. Suppose we also
have a vector v in V . Then one can write v as a co-ordinate vector
either with respect to β - thus obtaining [v]β - or with respect to [v]β

′
.

The question is now: how are [v]β and [v]β
′

related?

• Fortunately, this question can easily be resolved with the help of the
identity operator IV : V → V on V . By definition, we have

IV v = v.

We now convert this equation to matrices, but with a twist: we measure
the domain V using the basis β, but the range V using the basis β′!
This gives

[IV ]β
′

β [v]β = [v]β
′
.

Thus we now know how to convert from basis β to basis β′:

[v]β
′
= [IV ]β

′

β [v]β. (0.8)

(If you like, the two bases β have “cancelled each other” on the right-
hand side).
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• Example. Let V = R2, and consider both the standard ordered basis
β := ((1, 0), (0, 1)) and a non-standard ordered basis β′ := ((1, 1), (1,−1)).
Let’s pick a vector v ∈ R2 at random; say v := (5, 3). Then one can

easily check that [v]β =

(
5
3

)
and [v]β

′
=

(
4
1

)
(why?).

• Now let’s work out [IV ]β
′

β . Thus we are applying IV to elements of β
and writing them in terms of β′. Since

IV (1, 0) = (1, 0) =
1

2
(1, 1) +

1

2
(1,−1)

and

IV (0, 1) = (0, 1) =
1

2
(1, 1)− 1

2
(1,−1)

we thus see that

[IV ]β
′

β =

(
1
2

1
2

1
2
−1

2

)
.

We can indeed verify the formula (0.8), which in this case becomes(
4
−1

)
=

(
1
2

1
2

1
2
−1

2

)(
5
3

)
.

Note that [IV ]β
′

β is different from [IV ]ββ, [IV ]β
′

β′ , or [IV ]ββ′ . For instance,
we have

[IV ]ββ = [IV ]β
′

β′ =

(
1 0
0 1

)
(why?), while

[IV ]ββ′ =

(
1 1
1 −1

)
(why?). Note also that [IV ]ββ′ is the inverse of [IV ]β

′

β (can you see why
this should be the case, without doing any matrix multiplication?)

• A scalar example. Let V be the space of all lengths; this has a basis
β := (yard), and a basis β′ := (foot). Since the identity IV applied to
a yard yields three feet, we have

[IV ]
(foot)
(yard) = (3)
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(i.e. the identity on lengths is three feet per yard). Thus for any length
v,

[v](foot) = [IV ]
(foot)
(yard)[v](yard) = (3)[v](yard).

Thus for instance, if [v](yard) = (4) (so v is four yards), then [v](foot)

must equal (3)(4) = (12) (i.e. v is also twelve feet).

• Conversely, we have [IV ]
(yard)
(foot) = (1/3) (i.e. we have 1/3 yards per foot).

• The matrix [IV ]β
′

β is called the change of co-ordinate matrix from β to
β′; it is the matrix we use to multiply by when we want to convert β
co-ordinates to β′. Very loosely speaking, [IV ]β

′

β measures how much of

β′ lies in β (just as [IV ]
(foot)
(yard) measures how many feet lie in a yard).

• Change of co-ordinate matrices are always square (why?) and always
invertible (why?).

• Example Let V := P2(R), and consider the two bases β := (1, x, x2)
and β′ := (x2, x, 1) of V . Then

[IV ]β
′

β =

 0 0 1
0 1 0
1 0 0


(why?).

• Example Suppose we have a mixture of carbon dioxide CO2 and car-
bon monoxide CO molecule. Let V be the vector space of all such
mixtures, so it has an ordered basis β := (CO2, CO). One can also
use just the basis β′ = (C,O) of carbon and oxygen atoms (where we
are ignoring the chemical bonds, etc., and treating each molecule as
simply the sum of its components, thus CO2 = 1 × C + 2 × O and
CO = 1× C + 1×O). Then we have

[IV ]β
′

β =

(
1 1
2 1

)
;

this can be interpreted as saying that CO2 contains 1 atoms of carbon
and 2 atoms of oxygen, while CO contains 1 atom of carbon and 1
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atom of oxygen. The inverse change of co-ordinate matrix is

[IV ]ββ′ = ([IV ]β
′

β )−1 =

(
−1 1
2 −1

)
;

this can be interpreted as saying that an atom of carbon is equivalent to
−1 molecules of CO2 and +2 molecules of CO, while an atom of oxygen
is equivalent to 1 molecule of CO2 and −1 molecules of CO. Note how
the inverse matrix does not quite behave the way one might naively
expect; for instance, given the factor of 2 in the conversion matrix [IV ]β

′

β ,

one might expect a factor of 1/2 in the inverse conversion matrix [IV ]ββ′ ;
instead we get strange negative numbers all over the place. (To put it
another way, since CO2 contains two atoms of oxygen, why shouldn’t
oxygen consist of 1

2
of a molecule of CO2? Think about it).

• Example (This rather lengthy example is only for physics-oriented
students who have some exposure to special relativity; everyone else
can safely skip this example). One of the fundamental concepts of
special relativity is that space and time should be treated together as
a single vector space, and that different observers use different bases to
measure space and time.

• For simplicity, let us assume that space is one-dimensional; people can
move in only two directions, which we will call right and left. Let’s say
that observers measure time in years, and space in light-years.

• Let’s say there are two observers, Alice and Bob. Alice is an inertial
observer, which means that she is not accelerating. Bob is another
inertial observer, but travelling at a fixed speed 3

5
c to the right, as

measured by Alice; here c is of course the speed of light.

• An event is something which happens at a specific point in space and
time. Any two events are separated by some amount of time and some
amount of distance; however the amount of time and distance that
separates them depends on which observer is perceiving. For instance,
Alice might measure that event Y occurred 8 years later and 4 light-
years to the right of event X, while Bob might measure the distance
and duration between the two events differently. (In this case, it turns
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out that B measures Y as occurring 7 years later and 1 light-year to
the left of event X).

• Let V denote the vector space of all possible displacements in both
space and time; this is a two-dimensional vector space, because we
are assuming space to be one-dimensional. (In real life, space is three
dimensional, and so spacetime is four dimensional). To measure things
in this vector space, Alice has a unit of length - let’s call it the Alice-
light-year, and a unit of time - the Alice-year. Thus in the above
example, if we call v the vector from event X to event Y , then v =
8×Alice−year+4×Alice− light−year. (We’ll adopt the convention
that a displacement of length in the right direction is positive, while
a displacement in the left direction is negative). Thus Alice uses the
ordered basis (Alice− light− year, Alice− year) to span the space V .

• Similarly, Bob has the ordered basis (Bob− light− year,Bob− year).
These bases are related by the Lorentz transformations

Alice− light− year =
5

4
Bob− light− year − 3

4
Bob− year

Alice− year = −3

4
Bob− light− year +

5

4
Bob− year

(this is because of Bob’s velocity 3
5
c; different velocities give different

transformations, of course. A derivation of the Lorentz transformations
from Einstein’s postulates of relativity is not too difficult, but is beyond
the scope of this course). In other words, we have

[IV ]
(Bob−light−year,Bob−year)
(Alice−light−year,Alice−year) =

(
5/4 −3/4
−3/4 5/4

)
.

• Some examples. Suppose Alice emits a flash of light (event X), waits
for one year without moving, and emits another flash of light (event
Y ). Let v denote the vector from X to Y . Then from Alice’s point of
view, v consists of one year and 0 light-years (because she didn’t move
between events):

[v](Alice−light−year,Alice−year) =

(
1
0

)
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and thus

[v](Bob−light−year,Bob−year) =

(
5/4 −3/4
−3/4 5/4

)(
1
0

)
=

(
5/4
−3/4

)
;

in other words, Bob perceives event Y occurring 5/4 years afterward
and 3/4 light-years to the left of event X. This is consistent with the
assumption that Bob was moving to the right at 3

5
c with respect to

Alice, so that from Bob’s point of view Alice is receding to the left
at −3

5
c. This also illustrates the phenomenon of time dilation - what

appears to be a single year from Alice’s point of view becomes 5/4 years
when measured by Bob.

• Another example. Suppose a beam of light was emitted by some source
(event A) in a left-ward direction and absorbed by some receiver (event
B) some time later. Suppose that Alice perceives event B as occurring
one year after, and one light-year to the left of, event A; this is of course
consistent with light traveling at 1c. Thus if w is the vector from A to
B, then

[v](Alice−light−year,Alice−year) =

(
1
−1

)
and thus

[v](Bob−light−year,Bob−year) =

(
5/4 −3/4
−3/4 5/4

)(
1
−1

)
=

(
2
−2

)
.

Thus Bob views event B as occurring two years after and two light-years
to the left of event A. Thus Bob still measures the speed of light as 1c
(indeed, one of the postulates of relativity is that the speed of light is
always a constant c to all inertial observers), but the light is “stretched
out” over two years instead of one, resulting in Bob seeing the light
at half the frequency that Alice would. This is the famous Doppler
red shift effect in relativity (receding light has lower frequency and is
red-shifted; approaching light has higher frequency and is blue-shifted).

• It may not seem like it, but this situation is symmetric with respect to
Alice and Bob. We have

[IV ]
(Bob−light−year,Bob−year)
(Alice−light−year,Alice−year) = ([IV ]

(Bob−light−year,Bob−year)
(Alice−light−year,Alice−year))

−1
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=

(
5/4 −3/4
−3/4 5/4

)−1
=

(
5/4 3/4
3/4 5/4

)
,

as one can verify by multiplying the above two matrices together (we
will discuss matrix inversion in more detail next week). In other words,

Bob− light− year =
5

4
Alice− light− year +

3

4
Alice− year

Bob− year =
3

4
Alice− light− year +

5

4
Alice− year.

Thus for instance, just as Alice’s years are time-dilated when measured
by Bob, Bob’s years are time-dilated when measured by Bob: if Bob
emits light (event X ′), waits for one year without moving (though of
course still drifting at 3

5
c as measured by Alice), and emits more light

(event Y ′), then Alice will perceive event Y ′ as occurring 5/4 years
after and 3/4 light-years to the right of event X ′; this is consistent with
Bob travelling at 3

5
c, but Bob’s year has been time dilated to 5

4
years.

(Why is it not contradictory for Alice’s years to be time dilated when
measured by Bob, and for Bob’s years to be time dilated when measured
by Alice? This is similar to the (CO2, CO) versus (C,O) example: one
molecule CO2 contains two atoms of oxygen (plus some carbon), while
an atom of oxygen consists of one molecule of CO2 (minus some CO),
and this is not contradictory. Vectors behave slightly different from
scalars sometimes).

* * * * *
Co-ordinate change and matrices

• Let T : V → V be a linear transformation from a vector space V
to itself. (Such transformations are sometimes called automorphisms,
because they map onto themselves). Given any basis β of V , we can
form a matrix [T ]ββ representing T in the basis β. Of course, if we
change the basis, from β to a different basis, say β′, then the matrix
changes also, to [T ]β

′

β′ . However, the two are related.

• Lemma 1. Let V be a vector space with two bases β′ and β, and let
Q := [IV ]β

′

β be the change of co-ordinates matrix from β to β′. Let
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T : V → V be a linear transformation. Then [T ]ββ and [T ]β
′

β′ are related
by the formula

[T ]β
′

β′ = Q[T ]ββQ
−1.

• Proof We begin with the obvious identity

T = IV TIV

and take bases (using Theorem 1 from last week’s notes) to obtain

[T ]β
′

β′ = [IV ]β
′

β [T ]ββ[IV ]ββ′ .

Substituting [IV ]β
′

β = Q and [IV ]ββ′ = ([IV ]β
′

β )−1 = Q−1 we obtain the
Lemma.

• Example Let’s take a very simple portfolio model, where the portfo-
lio consists of one type of stock (let’s say GM stock), and one type of
cash (let’s say US dollars, invested in a money market fund). Thus
a portfolio lives in a two-dimensional space V , with a basis β :=
(Stock,Dollar). Let’s say that over the course of a year, a unit of
GM stock issues a dividend of two dollars, while a dollar invested in
the money market fund would earn 2 percent, so that 1 dollar becomes
1.02 dollars. We can then define the linear transformation T : V → V ,
which denotes how much a portfolio will appreciate within one year. (If
one wants to do other operations on the portfolio, such as buy and sell
stock, etc., this would require other linear transformations; but in this
example we will just analyze plain old portfolio appreciation). Since

T (1× Stock) = 1× Stock + 2×Dollar

T (1×Dollar) = 1.02×Dollar

we thus see that

[T ]ββ =

(
1 0
2 1.02

)
.

Now let’s measure T in a different basis. Suppose that GM’s stock has
split, so that each old unit of Stock becomes two units of Newstock

120



(so Newstock = 0.5Stock). Also, suppose for some reason (decimal-
ization?) we wish to measure money in cents instead of dollars. So we
now have a new basis β′ = (Newstock, Cent). Then we have

Newstock = 0.5Stock + 0Dollar; Cent = 0Stock + 0.01Dollar,

so

Q = [IV ]β
′

β =

(
0.5 0
0 0.01

)
while similar reasoning gives

Q−1 = [IV ]ββ′ =

(
2 0
0 100

)
.

Thus

[T ]β
′

β′ = Q[T ]ββQ
−1 =

(
0.5 0
0 0.01

)(
1 0
2 1.02

)(
2 0
0 100

)
which simplifies to

[T ]β
′

β′ =

(
1 0
100 1.02

)
.

Thus
T (Newstock) = 1×Newstock + 100× Cent

T (Cent) = 0×Newstock + 1.02× Cent.

This can of course be deduced directly from our hypotheses; it is in-
structive to do so and to compare that with the matrix computation.

• Definition Two n× n matrices A, B are said to be similar if one has
B = QAQ−1 for some invertible n× n matrix Q.

• Thus the two matrices [T ]ββ and [T ]β
′

β′ are similar. Similarity is an
important notion in linear algebra and we will return to this property
later.

* * * * *
Common sources of confusion
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• This course is very much about concepts, and on thinking clearly and
precisely about these concepts. It is particularly important not to
confuse two concepts which are similar but not identical, otherwise this
can lead to one getting hopelessly lost when trying to work one’s way
through a problem. (This is true not just of mathematics, but also of
other languages, such as English. If one confuses similar words - e.g. the
adjective “happy” with the noun “happiness” - then one still might be
able to read and write simple sentences and still be able to communicate
(although you may sound unprofessional while doing so), but complex
sentences will become very difficult to comprehend). Here I will list
some examples of similar concepts that should be distinguished. These
points may appear pedantic, but an inability to separate these concepts
is usually a sign of some more fundamental problem in comprehending
the material, and should be addressed as quickly as possible.

• “Vector” versus “Vector space”. A vector space consists of vectors,
but is not actually a vector itself. Thus questions like “What is the
dimension of (1, 2, 3, 4)?” are meaningless; (1, 2, 3, 4) is a vector, not a
vector space, and only vector spaces have a concept of dimension. A
question such as “What is the dimension of (x1, x1, x1)?” or “What is
the dimension of x1 + x2 + x3 = 0?” is also meaningless for the same
reason, although “What is the dimension of {(x1, x1, x1) : x1 ∈ R}?”
or “What is the dimension of {(x1, x2, x3) : x1 + x2 + x3 = 0}?” are
not.

• In a similar spirit, the zero vector 0 is distinct from the zero vector
space {0}, and is in turn distinct from the zero linear transformation
T0. (And then there is also the zero scalar 0).

• A set S of vectors, versus the span span(S) of that set. This
is a similar problem. A statement such as “What is the dimension of
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}?” is meaningless, because the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
is not a vector space. It is true that this set spans a vector space - R3

in this example - but that is a different object. Similarly, it is not correct
to say that the sets {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and {(1, 1, 0), (1, 0, 1), (0, 0, 1)}
are equal - they may span the same space, but they are certainly not
the same set.
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• For a similar reason, it is not true that if you add (0, 0, 1) to R2, that
you “get” R3. First of all, R2 is not even contained in R3, although
the xy-plane V := {(x, y, 0) : x, y,∈ R}, which is isomorphic to R2, is
contained in R3. But also, if you take the union of V with {(0, 0, 1)},
one just gets the set V ∪{(0, 0, 1)}, which is a plane with an additional
point added to it. The correct statement is that V and (0, 0, 1) together
span or generate R3.

• “Finite” versus “finite-dimensional”. A set is finite if it has
finitely many elements. A vector space is finite-dimensional if it has
a finite basis. The two notions are distinct. For instance, R2 is in-
finite (there are infinitely many points in the plane), but is finite-
dimensional because it has a finite basis {(1, 0), (0, 1)}. The zero vector
space {0} contains just one element, but is zero-dimensional. The set
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} is finite, but it does not have a dimension
because it is not a vector space.

• “Subset” versus “subspace” Let V be a vector space. A sub-
set U of V is any collection of vectors in V . If this subset is also
closed under addition and scalar multiplication, we call U a subspace.
Thus every subspace is a subset, but not conversely. For instance,
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a subset of R3, but is not a subspace (so
it does not have a dimension, for instance).

• “Nullity” versus “null space” The null space N(T ) of a linear trans-
formation T : V → W is defined as the space N(T ) = {v ∈ V : Tv =
0}; it is a subspace of V . The nullity nullity(T ) is the dimension of
N(T ); it is a number. So statements such as “the null space of T is
three” or “the nullity of T is R3” are meaningless. Similarly one should
distinguish “range” and “rank”

• “Range R(T )” versus “final space” This is an unfortunate notation
problem. If one has a transformation T : V → W , which maps elements
in V to elements in W , V is sometimes referred to as the domain and W
is referred to as the range. However, this notation is in conflict with the
range R(T ), defined by R(T ) = {Tv : v ∈ V }. If the transformation
T is onto, then R(T ) and W are the same, but otherwise they are not.
To avoid this confusion, I will try to refer to V as the initial space of
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T , and W as the final space. Thus in the map T : R2 → R3 defined by
T (x1, x2) := (x1, x2, 0), the final space is R3, but the range is only the
xy-plane, which is a subspace of R3.

• To re-iterate, in order to be able to say that a transformation T maps
V to W , it is not required that every element of W is actually covered
by T ; if that is the case, we say that T maps V onto W , and not just
to W . It is also not required that different elements of V have to map
to different elements of W ; that is true for one-to-one transformations,
but not for general transformations. So in particular, if you are given
that T : V → W is a linear transformation, you cannot necessarily
assume that T is one-to-one or onto unless that is explicitly indicated
in the question.

• “Vector” versus “Co-ordinate vector” A vector v in a vector space
V is not the same thing as its co-ordinate vector [v]β with respect to
some basis β of V . For one thing, v needn’t be a traditional vector (a
row or column of numbers) at all; it may be a polynomial, or a matrix,
or a function - these are all valid examples of vectors in a vector space.
Secondly, the co-ordinate vector [v]β depends on the basis β as well
as on the vector v itself; change β and you change the co-ordinate
vector [v]β, even if v itself is kept fixed. For instance, if V = P2(R) and
v = 3x2+4x+5, then v is a vector (even though it’s also a polynomial).

If β := (1, x, x2), then [v]β =

 5
4
3

, but this is not the same object

as 3x2 + 4x+ 5; one is a column vector and the other is a polynomial.
Calling them “the same” will lead to trouble if one then switches to
another basis, such as β′ := (x2, x, 1), since the co-ordinate vector is

now [v]β
′
=

 3
4
5

, which is clearly different from

 5
4
3

.

• There is of course a similar distinction between a linear transformation
T , and the matrix representation [T ]γβ of that transformation T .

• “Closed under addition” versus “preserves addition”. A set U
is closed under addition if, whenever x and y are elements of U , the sum
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x + y is also in U . A transformation T : V → W preserves addition
if, whenever x and y are elements in V , that T (x + y) = Tx + Ty.
The two concepts refer to two different things - one has to do with a
set, and the other with a transformation - but surprisingly it is still
possible to confuse the two. For instance, in one of the homework
questions, one has to show that the set T (U) is closed under addition,
and someone thought this meant that one had to show that T (x+y) =
Tx+Ty for all x in U ; probably what happened was that the presence
of the letter T in the set T (U) caused one to automatically think of the
preserving addition property rather the closed-under-addition property.
Of course, there is a similar distinction between “closed under scalar
multiplication” and “preserves scalar multiplication”.

• A vector v, versus the image Tv of that vector. A linear trans-
formation T : V → W can take any vector v in V , and transform it to
a new vector Tv in W . However, it is dangerous to say things like v
“becomes” Tv, or v “is now” Tv. If one is not careful, one may soon
write that v “is” Tv, or think that every property that v has, auto-
matically also holds for Tv. The correct thing to say is that Tv is the
image of v under T ; this image may preserve some properties of the
original vector v, but it may distort or destroy others. In general, Tv is
not equal to v (except in special cases, such as when T is the identity
transformation).

• Hypothesis versus Conclusion. This is not a confusion specific to
linear algebra, but nevertheless is an important distinction to keep in
mind when doing any sort of “proof” type question. You should always
know what you are currently assuming (the hypotheses), and what you
are trying to prove (the conclusion). For instance, if you are trying to
prove

Show that if T : V → W is linear, then
T (cx+ y) = cTx+ Ty for all x, y ∈ V and all scalars c

then your hypothesis is that T : V → W is a linear transformation (so
that T (x + y) = Tx + Ty and T (cx) = cTx for all x, y ∈ V and all
scalars c, and your objective is to prove that for any vectors x, y ∈ V
and any scalar c, we have T (cx+ y) = cTx+ Ty.

• On the other hand, if you are trying to prove that
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Show that if T : V → W is such that T (cx+ y) = cTx+ Ty
for all x, y ∈ V and all scalars c, then T is linear.

then your hypotheses are that T maps V to W , and that T (cx+ y) =
cTx + Ty for all x, y ∈ V and all scalars c, and your objective is to
prove that T is linear, i.e. that T (x + y) = Tx + Ty for all vectors
x, y ∈ V , and that T (cx) = cTx for all vectors x ∈ V and scalars c.
This is a completely different problem from the previous one. (Part 2.
of Question 7 of 2.2 requires you to prove both of these implications,
because it is an “if and only if” question).

• In your proofs, it may be a good idea to identify which of the statements
that you write down are things that you know from the hypotheses, and
which ones are those that you want. Little phrases like “We are given
that”, “It follows that”, or “We need to show that” in the proof are very
helpful, and will help convince the grader that you actually know what
you are doing! (provided that those phrases are being used correctly,
of course).

• “For all” versus “For some”. Sometimes it is really important to
read the “fine print” of a question - it is all to easy to jump to the
equations without reading all the English words which surround those
equations. For instance, the statements

“Show that Tv = 0 for some non-zero v ∈ V ”

is completely different from
“Show that Tv = 0 for all non-zero v ∈ V ”

In the first case, one only needs to exhibit a single non-zero vector v
in V for which Tv = 0; this is a statement which could be proven by
an example. But in the second case, no amount of examples will help;
one has to show that Tv = 0 for every non-zero vector v. In the second
case, probably what one would have to do is start with the hypotheses
that v ∈ V and that v 6= 0, and somehow work one’s way to proving
that Tv = 0.

• Because of this, it is very important that you read the question carefully
before answering. If you don’t understand exactly what the question

126



is asking, you are unlikely to write anything for the question that the
grader will find meaningful.
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Math 115A - Week 6
Textbook sections: 3.1-5.1

Topics covered:

• Review: Row and column operations on matrices

• Review: Rank of a matrix

• Review: Inverting a matrix via Gaussian elimination

• Review: Determinants

* * * * *
Review: Row and column operations on matrices

• We now quickly review some material from Math 33A which we will
need later in this course. The first concept we will need is that of an
elementary row operation.

• An elementary row operation takes anm×nmatrix as input and returns
a different m × n matrix as output. (In other words, each elementary
row operation is a map from Mm×n(R) to Mm×n(R). There are three
types of elementary row operations:

• Type 1 (row interchange). This type of row operation interchanges
row i with row j for some i, j ∈ {1, 2, . . . ,m}. For instance, the opera-
tion of interchanging rows 2 and 4 in a 4× 3 matrix would change

1 2 3
4 5 6
7 8 9
10 11 12


to 

1 2 3
10 11 12
7 8 9
4 5 6

 .
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Observe that the final matrix can be obtained from the initial matrix
by multiplying on the left by the 4× 4 matrix

E :=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,

which is the identity matrix with rows 2 and 4 switched. (Why?) Thus
for instance

1 2 3
10 11 12
7 8 9
4 5 6

 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 2 3
4 5 6
7 8 9
10 11 12


and more generally, if A is a 4× 3 matrix, then the interchange of rows
2 and 4 replaces A with EA. We refer to E as an 4 × 4 elementary
matrix of type 1.

• Also observe that row interchange is its own inverse; if one replaces A
with EA, and then replaces EA with EEA (i.e. we interchange rows
2 and 4 twice), we get back to where we started, because EE = I4.

• Type 2 (row multiplication) This type of elementary row operation
takes a row i and multiplies it by a non-zero scalar c. For instance, the
elementary row operation that multiplies row 2 by 10 would map

1 2 3
4 5 6
7 8 9
10 11 12


to 

1 2 3
40 50 60
7 8 9
10 11 12

 .
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This operation is the same as multiplying on the left by the matrix

E :=


1 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 ,

which is what one gets by starting with the identity matrix and multi-
plying row 2 by 10. (Why?) We call E an example of a 4×4 elementary
matrix of type 2.

• Row multiplication is invertible; the operation of multiplying a row i
by a non-zero scalar c is inverted by multiplying a row i by the non-zero
scalar 1/c. In the above example, the inverse operation is given by

E−1 :=


1 0 0 0
0 1/10 0 0
0 0 1 0
0 0 0 1


i.e. to invert the operation of multiplying row 2 by 10, we then multiply
row 2 by 1/10.

• Type 3 (row addition) For this row operation we need two rows i,
j, and a scalar c. The row operation adds c multiples of row i to row
j. For instance, if one were to add 10 multiples of row 2 to row 3, then

1 2 3
4 5 6
7 8 9
10 11 12


would become 

1 2 3
4 5 6
47 58 69
10 11 12

 .
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Equivalently, this row operation amounts to multiplying the original
matrix on the left by the matrix

E :=


1 0 0 0
0 1 0 0
0 10 1 0
0 0 0 1

 ,

which is what one gets by starting with the identity matrix and adding
10 copies of row 2 to row 3. (Why?) We call E an example of a 4× 4
elementary matrix of type 3. It has an inverse

E−1 :=


1 0 0 0
0 1 0 0
0 −10 1 0
0 0 0 1

 ;

thus to invert the operation of adding 10 copies of row 2 to row 3, we
subtract 10 copies of row 2 to row 3 instead.

• Thus to summarize: there are special matrices, known as elementary
row matrices, and an elementary row operation amounts to multiply-
ing a given matrix on the left by one of these elementary row matrices.
Each of the elementary row matrices is invertible, and the inverse of an
elementary matrix is another elementary matrix. (In the above discus-
sion, we only verified this for specific examples of elementary matrices,
but it is easy to see that the same is true for general elementary ma-
trices. See the textbook).

• There are also elementary column operations, which are very similar to
elementary row operations, but arise from multiplying a matrix on the
right by an elementary matrix, instead of the left. For instance, if one
multiplies a matrix A with 4 columns on the right by the elementary
matrix

E :=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,
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then this amounts to switching column 2 and column 4 of A (why?).
This is a type 1 (column interchange) elementary column move. Simi-
larly, if one multiplies A on the right by

E :=


1 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 ,

then this amounts to multiplying column 2 of A by 10 (why?). This is
a type 2 (column multiplication) elementary column move. Finally, if
one multiplies A on the right by

E :=


1 0 0 0
0 1 0 0
0 10 1 0
0 0 0 1

 ,

then this amounts to adding 10 copies of column 3 to column 2 (why?).
This is a type 3 (column addition) elementary column move.

• Elementary row (or column) operations have several uses. One impor-
tant use is to simplify systems of linear equations of the form Ax = b,
where A is some matrix and x, b are vectors. If E is an elementary
matrix, then the equation Ax = b is equivalent to EAx = Eb (why are
these two equations equivalent? Hint: E is invertible). Thus one can
simplify the equation Ax = b by performing the same row operation
to both A and b simultaneously (one can concatenate A and b into a
single (artificial) matrix in order to do this). Eventually one can use
row operations to reduce A to row-echelon form (in which each row is
either zero, or begins with a 1, and below each such 1 there are only
zeroes), at which point it becomes straightforward to solve for Ax = b
(or to determine that there are no solutions). We will not review this
procedure here, because it will not be necessary for this course; see
however the textbook (or your Math 33A notes) for more information.
However, we will remark that every matrix can be row-reduced into
row-echelon form (though there is usually more than one way to do
so).
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• Another purpose of elementary row or column operations is to deter-
mine the rank of a matrix, which is a more precise measurement of its
invertibility. This will be the purpose of the next section.

* * * * *
Rank of a matrix

• Recall that the rank of a linear transformation T : V → W is the
dimension of its range R(T ). Rank has a number of uses, for instance
it can be used to tell whether a linear transformation is invertible:

• Lemma. Let V and W be n-dimensional spaces, and let dim(V ) =
dim(W ) = n. Let T : V → W be a linear transformation. Then T is
invertible if and only if rank(T ) = n (i.e. T has the maximum rank
possible).

• Proof. If rank(T ) = n, then R(T ) has the same dimension n as W .
But R(T ) is a subspace of W , so this forces R(T ) to actually equal
W (see Theorem 2 of Week 2 notes). Thus T is onto. Also, from the
dimension theorem we see that nullity(T ) = 0, and so T is one-to-one.
Thus T is invertible.

• Conversely, if T is invertible, then it is one-to-one, hence nullity(T ) = 0,
and hence by the dimension theorem rank(T ) = n. �

• One interesting thing about rank is that if you multiply a linear trans-
formation on the left or right by an invertible transformation, then the
rank doesn’t change:

• Lemma 1. Let T : V → W be a linear transformation from one
finite-dimensional space to another, let S : U → V be an invertible
transformation, and let Q : W → Z be another invertible transforma-
tion. Then

rank(T ) = rank(QT ) = rank(TS) = rank(QTS).

• Proof. First let us show that rank(T ) = rank(TS). To show this,
we first compute the ranges of T : V → W and TS : U → W . By
definition of range, R(T ) = T (V ), the image of V under T . Similarly,
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R(TS) = TS(U). But since S : U → V is invertible, it is onto, and so
S(U) = V . Thus

R(TS) = TS(U) = T (S(U)) = T (V ) = R(T )

and so
rank(TS) = rank(T ).

A similar argument gives that rank(QTS) = rank(QT ) (just replace
T by RT in the above. To finish the argument we need to show that
rank(QT ) = rank(T ). We compute ranges again:

R(QT ) = QT (V ) = Q(T (V )) = Q(R(T )),

so that
rank(QT ) = dim(Q(R(T ))).

But since Q is invertible, we have

dim(Q(R(T ))) = dim(R(T )) = rank(T )

(see Q3 of the midterm!). Thus rank(QT ) = rank(T ) as desired. �.

• Now to compute the rank of an arbitrary linear transformation can get
messy. The best way to do this is to convert the linear transform to a
matrix, and compute the rank of that.

• Definition If A is a matrix, then the rank of A, denoted rank(A), is
defined by rank(A) = rank(LA).

• Example Consider the matrix

A :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .

Then LA is the transformation

LA


x1
x2
x3
x4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0




x1
x2
x3
x4

 =


x1
x2
x3
0

 .
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The range of this operator is thus three-dimensional (why?) and so the
rank of A is 3.

• LetA be anm×nmatrix, so that LA maps Rn to Rm. Let (e1, e2, . . . , en)
be the standard basis for Rn. Since e1, . . . , en span Rn, we see that
LA(e1), LA(e2), . . . , LA(en) spanR(LA) (see Theorem 3 of Week 3 notes).
Thus the rank ofA is the dimension of the space spanned by LA(e1), LA(e2), . . . , LA(en).
But LA(e1) is simply the first column of A (why?), LA(e2) is the second
column of A, etc. Thus we have shown

• Lemma 2. The rank of a matrix A is equal to the dimension of the
space spanned by its columns.

• Example If A is the matrix used in the previous example, then the

rank of A is the dimension of the span of the columns


1
0
0
0

,


0
1
0
0

,


0
0
1
0

,


0
0
0
0

; this span is easily seen to be three-dimensional.

• As one corollary of this Lemma, if only k of the columns of a matrix
are non-zero, then the rank of the matrix can be at most k (though it
could be smaller than k; can you think of an example?).

• This Lemma does not necessarily make computing the rank easy, be-
cause finding the dimension of the space spanned by the columns could
be difficult. However, one can use elementary row or column operations
to simplify things. From Lemma 1 we see that if E is an elementary
matrix and A is a matrix, then EA or AE has the same rank as A
(provided that the matrix multiplication makes sense, of course). Thus
elementary row or column operations do not change the rank. Thus, we
can use these operations to simplify the matrix into row-echelon form.

• Lemma 3. Let A be a matrix in row-echelon form (thus every row is
either zero, or begins with a 1, and each of those 1s has nothing but 0s
below it). Then the rank of A is equal to the number of non-zero rows.
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• Proof. Let’s say that A has k non-zero rows, so that we have to show
that A has rank k. Each column of A can only has the top k entries
non-zero; all entries below that must be zero. Thus the span of the
columns of A is contained in the k-dimensional space

V = {


x1
. . .
xk
0
. . .
0

 : x1, . . . , xk ∈ R},

and so the rank is at most k.

• Now we have to show that the rank is at least k. To do this it will
suffice to show that every vector in V is in the span of the columns of
A, since this will mean that the span of the columns of A is exactly

the k-dimensional space V . So, let us pick a vector v :=


x1
. . .
xk
0
. . .
0

 in

V . Since A is in row-echelon form, the kth row of A must contain a 1
somewhere, which means that there is a column whose kth entry is 1
(with all entries below that equal to 0). If we subtract xk multiples of
this column from v, then we get a new vector whose kth entry (and all
the ones below it) are zero.

• Now we look at the (k − 1)th row. Again, since we are in row-echelon
form, there is a 1 somewhere, with 0s below it; this implies that there is
a column whose (k−1)th entry is 1 (with all entries below that equal to
0). Thus we can subtract a multiple of this vector to get a new vector
whose (k − 1)th entry (and all the ones below it) are zero.

• Continuing in this fashion we can subtract multiples of various columns
of A from v until we manage to zero out all the entries. In other words,
we have expressed v as a linear combination of columns in A, and hence
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v is in the span of the columns. Thus the span of the columns is exactly
V , and we are done. �.

• Thus we now have a procedure to compute the rank of a matrix: we
row reduce (or column reduce) until we reach row-echelon form, and
then just count the number of non-zero rows. (Actually, one doesn’t
necessarily have to reduce all the way to row-echelon form; it may be
that the rank becomes obvious some time before then, because the span
of the columns can be determined by inspection).

• If one only uses elementary row operations, then usually one cannot
hope to make the matrix much simpler than row-echelon form. But if
one is allowed to also use elementary column operations, then one can
get the matrix into a particularly simple form:

• Theorem 4. Let A be an m × n matrix with rank r. Then one can
use elementary row and column matrices to place A in the form(

Ir 0r×n−r
0m−r×r 0m−r×n−r

)
,

where Ir is the r×r identity matrix, and 0m×n is the m×n zero matrix.
(Thus, we have reduced the matrix to nothing but a string of r ones
down the diagonal, with everything else being zero.

• Proof To begin with, we know that we can use elementary row opera-
tions to place A in row-echelon form. Thus the first r rows begin with
a 1, with 0s below the 1, while the remaining m − r rows are entirely
zero.

• Now consider the first row of this reduced matrix; let’s suppose that it is
not identically zero. After some zeroes, it has a 1, and then some other
entries which may or may not be zero. But by subtracting multiples of
the column with 1 in it from the columns with other non-zero entries
(i.e. type 3 column operations), we can make all the other entries in
this row equal to zero. Note that these elementary column operations
only affect the top row, leaving the other rows unchanged, because the
column with 1 in it has 0s everywhere else.
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• A similar argument then allows one to take the second row of the
reduced matrix and make all the entries (apart from the leading 1)
equal to 0. And so on and so forth. At the end of this procedure, we
get that the first r rows each contain one 1 and everything else being
zero. Furthermore, these 1s have 0s both above and below, so they lie
in different columns. Thus by switching columns appropriately (using
type 1 column operations) we can get into the form required for the
Theorem. �

• Let A be an m × n matrix with rank r. Every elementary row opera-
tion corresponds to multiplying A on the left by an m×m elementary
matrix, while every elementary column operation corresponds to multi-
plying A on the right by an n×n elementary matrix. Thus by Theorem
4, we have

E1E2 . . . EaAF1F2 . . . Fb =

(
Ir 0r×n−r
0m−r×r 0m−r×n−r

)
,

where E1, . . . , Ea are elementary m ×m matrices, and F1F2 . . . Fb are
elementary n× n matrices. All the elementary matrices are invertible.
After some matrix algebra, this becomes

A = E−1a . . . E−12 E−11

(
Ir 0r×n−r
0m−r×r 0m−r×n−r

)
F−1b . . . F−12 F−11

(why did the order of the matrices get reversed?). We have thus proven

• Proposition 5. Let A be an m×n matrix with rank r. Then we have
an m×m matrix B which is a product of elementary matrices and an
n× n matrix C, also a product of elementary matrices such that

A = B

(
Ir 0r×n−r
0m−r×r 0m−r×n−r

)
C.

• Note (from Q6 of Assignment 4) that the product of invertible matrices
is always invertible. Thus the matrices B and C above are invertible.

• Proposition 5 is an example of a factorization theorem, which takes a
general matrix and factors it into simpler pieces. There are many other
examples of factorization theorems which you will encounter later in
the 115 sequence, and they have many applications.
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• Some more properties of rank. We know from Lemma 1 that rank of a
linear transformation is unchanged by multiplying on the left or right
by invertible transformations. Given the close relationship between
linear transformations and matrices, it is unsurprising that the same
thing is true for matrices:

• Lemma 6. Let A be an m × n matrix, B be an m × m invertible
matrix, and C be an n× n invertible matrix. Then

rank(A) = rank(BA) = rank(AC) = rank(BAC).

• Proof. Since B is invertible, so is LB (see Theorem 10 from Week 4
notes). Similarly LC is invertible. From Lemma 1 we have

rank(LA) = rank(LBLA) = rank(LALC) = rank(LBLALC).

Since LBLA = LBA, etc. we thus have

rank(LA) = rank(LBA) = rank(LAC) = rank(LBAC).

The claim then follows from the definition of rank for matrices. �

• Note that Lemma 6 is consistent with Proposition 5, since the matrix(
Ir 0r×n−r
0m−r×r 0m−r×n−r

)
has rank r.

• One important consequence of the above theory concerns the rank of
a transpose At of a matrix A. Recall that the transpose of an m × n
matrix is the n×m matrix obtained by reflecting around the diagonal,
so for instance 

1 2
3 4
5 6
7 8


t

=

(
1 3 5 7
2 4 6 8

)
.

Thus transposes swap rows and columns. From the definition of matrix
multiplication it is easy to verify the identity (AB)t = BtAt (why?). In
particular, if A is invertible, then I = I t = (AA−1)t = At(A−1)t, which
implies that At is also invertible.
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• Lemma 7 Let A be an m × n matrix with rank r. Then At has the
same rank as A.

• From Proposition 5 we have

A = B

(
Ir 0r×n−r
0m−r×r 0m−r×n−r

)
C.

Taking transposes of both sides we obtain

At = Ct

(
Ir 0r×m−r
0n−r×r 0n−r×m−r

)
Bt.

The inner matrix on the right-hand side has rank r. Since B and C are
invertible, so are Bt and Ct, and so by Lemma 6 At has rank r, and we
are done. �

• From Lemma 7 and Lemma 2 we thus have

• Corollary 8. The rank of a matrix is equal to the dimension of the
space spanned by its rows.

• As one corollary of this Lemma, if only k of the rows of a matrix are
non-zero, then the rank of the matrix can be at most k.

• Finally, we give a way to compute the rank of any linear transformation
from one finite-dimensional space to another.

• Lemma 9. Let T : V → W be a linear transformation, and let β and γ
be finite bases for V and W respectively. Then rank(T ) = rank([T ]γβ).

• Proof. Suppose V is n-dimensional and W is m-dimensional. Then
the co-ordinate map φβ : V → Rn defined by φβ(v) := [v]β is an
isomorphism, as is the co-ordinate map φγ : W → Rm defined by
φγ(w) := [w]γ. Meanwhile, the map L[T ]γβ

is a linear transformation

from Rn to Rm. The identity

[Tv]γ = [T ]γβ[v]β

can thus be rewritten as

φγ(Tv) = L[T ]γβ
φβ(v)
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and thus
φγT = L[T ]γβ

φβ

and hence (since φβ is invertible)

T = φ−1γ L[T ]γβ
φβ.

Taking rank of both sides and using Lemma 6, we obtain

rank(T ) = rank(L[T ]γβ
) = rank([T ]γβ)

as desired. �

• Example Let T : P3(R)→ P3(R) be the linear transformation

Tf := f − xf ′,

thus for instance
Tx2 = x2 − x(2x) = −x2.

To find the rank of this operator, we let β := (1, x, x2, x3) be the
standard basis for P3(R). A simple calculation shows that

T1 = 1; Tx = 0; Tx2 = −x2; Tx3 = −2x3,

so

[T ]ββ =


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −2

 .

This matrix clearly has rank 3 (row operations can convert it to row-
echelon form with three non-zero rows), so T has rank 3.

• The rank of a matrix measures, in some sense, how close to zero (or
how “degenerate”) a matrix is; the only matrix with rank 0 is the 0
matrix (why). The largest rank an m×n matrix can have is min(m,n)
(why? See Lemma 2 and Corollary 8). For instance, a 3×5 matrix can
have rank at most 3.

* * * * *
Inverting matrices via row operations

141



• Proposition 5 has the following consequence.

• Lemma 10. Let A be an n × n matrix. Then A is invertible if and
only if it is the product of elementary n× n matrices.

• Proof First suppose that A is the product of elementary matrices. We
already know that every elementary matrix is invertible; also from Q6
from the Week 4 homework, we know that the product of two invertible
matrices is also invertible. Applying this fact repeatedly we see that A
is also invertible.

• Now suppose that A is invertible, thus LA : Rn → Rn is invertible, and
in particular is onto. Thus R(LA) = Rn, and so rank(LA) = n, and so
A itself must have rank n. By Proposition 5 we thus have

A = E1E2 . . . EaInF1 . . . Fb

where E1, . . . , Ea, F1, . . . , Fb are elementary n × n matrices. Since the
identity matrix In cancels out, we are done. �

• This gives us a way to use row operations to invert a matrix A. Suppose
we manage to use a sequence of row operations E1, E2, . . . , Ea in turn
a matrix A into the identity, thus

Ea . . . E2E1A = I.

Then by multiplying both sides on the right by A−1 we get

Ea . . . E2E1I = A−1.

Thus, if we concatenate A and I together, and apply row operations on
the concatenated matrix to turn the A component into I, then the I
component will automatically turn to A−1. This is a way of computing
the inverse of A.

• Example. Suppose we want to invert the matrix

A :=

(
1 2
3 4

)
.
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We combine A and the identity I2 into a single matrix:

(A|I2) =

(
1 2
3 4

∣∣∣∣ 1 0
0 1

)
.

Then we row reduce to turn the left matrix into the identity. For
instance, by subtracting three copies of row 1 from row 2 we obtain(

1 2
0 −2

∣∣∣∣ 1 0
−3 1

)
and then by adding row 2 to row 1 we obtain(

1 0
0 −2

∣∣∣∣ −2 1
−3 1

)
.

Dividing the second row by −2 we obtain(
1 0
0 1

∣∣∣∣ −2 1
3/2 −1/2

)
.

This the inverse of A is

A−1 =

(
−2 1
3/2 −1/2

)
,

since the elementary transformations which convert A to I2, also con-
vert I2 to A−1.

* * * * *
Determinants

• We now review a very useful characteristic of matrices - the determi-
nant of a matrix. The determinant of a square (n × n) matrix is a
number which depends in a complicated way on the entries of that
matrix. Despite the complicated definition, it has some very remark-
able properties, especially with regard to matrix multiplication, and
row and column operations. Unfortunately we will not be able to give
the proofs of many of these remarkable properties here; the best way
to understand determinants is by means of something called exterior
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algebra, which is beyond the scope of this course. Without the tools
of exterior algebra (in particular, something called a wedge product),
proving any of the fundamental properties of determinants becomes
very messy. So we will settle just for describing the determinant and
stating its basic properties.

• The determinant of a 1× 1 matrix is just its entry:

det(a) = a.

• The 2× 2 determinant is given by the formula

det

(
a b
c d

)
:= ad− bc.

• The n×n determinant is messier, and is defined in the following strange
way. For any row i and column j, define the minor Ãij of an n × n
matrix A to be the n − 1 × n − 1 matrix which is A with the ith row
and jth column removed. For instance, if

A :=

 a b c
d e f
g h i


then

Ã11 =

(
e f
h i

)
, Ã12 =

(
d f
g i

)
, Ã13 =

(
d e
g h

)
,

etc.

This should not be confused with Aij, which is the entry of A in the
ith row and jth column. FOr instance, in the above example A11 = a
and A12 = b.

• We can now define the n × n determine recursively in terms of the
n−1 determinant by what is called the cofactor expansion. To find the
determinant of an n × n matrix A, we pick a row i (any row will do)
and set

det(A) :=
n∑
j=1

(−1)i+jAij det(Ãij).
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For instance, we have

det(

 a b c
d e f
g h i

 = a det

(
e f
h i

)
−b det

(
d f
g i

)
+c det

(
d e
g h

)
,

or

det(

 a b c
d e f
g h i

 = −d det

(
b c
h i

)
+e det

(
a c
g i

)
−f det

(
a b
g h

)
,

or

det(

 a b c
d e f
g h i

 = g det

(
b c
e f

)
−h det

(
a c
d f

)
+i det

(
a b
d e

)
.

It seems that this definition depends on which row you use to perform
the cofactor expansion, but the amazing thing is that it doesn’t! For
instance, in the above example, any three of the computations will lead
to the same answer, namely

aei− ahf − bdi+ bgf + cdh− cge.

We would like to explain why it doesn’t matter which row (or column;
see below) to perform cofactor expansion, but it would require one to
develop some new material (on the signature of permutations) which
would take us far afield, so we will regretfully skip the derivation.

• The quantities det(Ãij) are sometimes known as cofactors. As one
can imagine, this cofactor formula becomes extremely messy for large
matrices (to compute the determinant of an n × n matrix, the above
formula will eventually require us to add or subtract n! terms together!);
there are easier ways to compute using row and column operations
which we will describe below.

• One can also perform cofactor expansion along a column j instead of
a row i:

det(A) :=
n∑
i=1

(−1)i+jAij det(Ãij).
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This ultimately has to do with a symmetry property det(At) = det(A)
for the determinant, although this symmetry is far from obvious given
the definition.

• A special case of cofactor expansion: if A has the form

A =

(
c 0 . . . 0
... B

)
,

where the 0 . . . 0 are a string of n− 1 zeroes, the
... represent a column

vector of length n− 1, and B is an n− 1×n− 1 matrix, then det(A) =
c det(B). In particular, from this and induction we see that the identity
matrix always has determinant 1: det(In) = 1. Also, we see that
the determinant of a lower-diagonal matrix is just the product of the
diagonal entries; for instance

det(

 a 0 0
d e 0
g h i

 = aei.

Because of the symmetry property we also know that upper-diagonal
matrices work the same way:

det(

 a b c
0 e f
0 0 i

 = aei.

So in particular, diagonal matrices have a determinant which is just
multiplication along the diagonal:

det(

 a 0 0
0 e 0
0 0 i

 = aei.

• An n× n matrix can be thought of as a collection of n row vectors in
Rn, or as a collection of n column vectors in Rn. Thus one can talk
about the determinant det(v1, . . . , vn) of n column vectors in Rn, or
the determinant of n row vectors in Rn, simply by arranging those n
row or column vectors into a matrix. Note that the order in which we
arrange these vectors will be somewhat important.
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• Example: the determinant of the two vectors

(
a
c

)
and

(
b
d

)
is

ad− bc.

• The determinant of n vectors has two basic properties. One is that it
is linear in each column separately. What we mean by this is that

det(v1, . . . , vj−1, vj + wj, vj+1, . . . , vn) =

det(v1, . . . , vj−1, vj, vj+1, . . . , vn) + det(v1, . . . , vj−1, wj, vj+1, . . . , vn)

and

det(v1, . . . , vj−1, cvj, vj+1, . . . , vn) = c det(v1, . . . , vj−1, vj, vj+1, . . . , vn).

This linearity can be seen most easily by cofactor expansion in the
column j.

• The other basic property it has is anti-symmetry: if one switches
two column vectors (not necessarily adjacent), then the determinant
changes sign. For instance, when n = 5,

det(v1, v5, v3, v4, v2) = − det(v1, v2, v3, v4, v5).

This is not completely obvious from the cofactor expansion definition,
although the presence of the factor (−1)i+j does suggest that some sort
of sign change might occur when one switches rows or columns. We
will not prove this anti-symmetry property here.

• (It turns out that the determinant is in fact the only expression which
obeys these two properties, and which also has the property that the
identity matrix has determinant one. But we will not prove that here).

• The same facts hold if we replace columns by rows; i.e. the determinant
is linear in each of the rows separately, and if one switches two rows
then the determinant changes sign.

• We now write down some properties relating to how determinants be-
have under elementary row operations.
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• Property 1 If A is an n× n matrix, and B is the matrix A with two
distinct rows i and j interchanged, then det(B) = − det(A). (I.e. row
operations of the first type flip the sign of the determinant). This is
just a restatement of the antisymmetry property for rows.

• Example:

det

(
c d
a b

)
= − det

(
a b
c d

)
.

• Corollary of Property 1: If two rows of a matrix A are the same, then
the determinant must be zero.

• Property 2 If A is an n× n matrix, and B is the matrix B but with
one row i multiplied by a scalar c, then det(B) = c det(A). (I.e. row
operations of the second type multiply the determinant by whatever
scalar was used in the row operation). This is a special case of the
linearity property for the ith row.

• Example:

det

(
ka kb
c d

)
= k det

(
a b
c d

)
.

• Corollary of Property 2: if a matrix A has one of its rows equal to zero,
then det(A) is zero (just apply this Property with c = 0).

• Property 3 If A is an n×n matrix, and B is the matrix B but with c
copies of one row i added to another row j, then det(B) = det(A). (I.e.
row operations of the third type do not affect the determinant). This is
a consequence of the linearity property for the jth row, combined with
the Corollary to Property 1 (why?).

• Example:

det

(
a+ kc b+ kd
c d

)
= det

(
a b
c d

)
.

• Similar properties hold for elementary column operations (just replace
“row” by “column” throughout in the above three properties).

• We can summarize the above three properties in the following lemma
(which will soon be superceded by a more general statement):
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• Lemma 11. If E is an elementary matrix, then det(EA) = det(E) det(A)
and det(AE) = det(A) det(E).

• This is because the determinant of a type 1 elementary matrix is easily
seen to be -1 (from Property 1 applied to the identity matrix), the
determinant of a type 2 elementary matrix (multiplying a row by c) is
easily seen to be c (from Property 2 applied to the identity matrix),
and the determinant of a type 3 elementary matrix is easily seen to
be 1 (from Property 3 applied to the identity matrix). In particular,
elementary matrices always have non-zero determinant (recall that in
the type 2 case, c must be non-zero).

• We are now ready to state one of the most important properties of a
determinant: it measures how invertible a matrix is.

• Theorem 12. An n× n matrix is invertible if and only if its determi-
nant is non-zero.

• Proof Suppose A is an invertible n×n matrix. Then by Lemma 10, it is
the product of elementary matrices, times the identity In. The identity
In has a non-zero determinant: det(In) = 1. Each elementary matrix
has non-zero determinant (see above), so by Lemma 11 if a matrix has
non-zero determinant, then after multiplying on the left or right by
an elementary matrix it still has non-zero determinant. Applying this
repeatedly we see that A must have non-zero determinant.

Now conversely suppose that A had non-zero determinant. By Lemma
11, we thus see that even after applying elementary row and column
operations to A, one must still obtain a matrix with non-zero deter-
minant. In particular, in row-echelon form A must still have non-zero
determinant, which means in particular that it cannot contain any rows
which are entirely zero. Thus A has full rank n, which means that
LA : Rn → Rn is onto. But then LA would also be one-to-one by the
dimension theorem - see Lemma 2 of Week 3 notes, hence LA would be
invertible and hence A is invertible. �

• Not only does the determinant measure invertibility, it also measures
linear independence.

149



• Corollary 13. Let v1, . . . , vn be n column vectors in Rn. Then
v1, . . . , vn are linearly dependent if and only if det(v1, . . . , vn) = 0.

• Proof Suppose that det(v1, . . . , vn) = 0, so that by Theorem 12 the
n×n matrix (v1, . . . , vn) is not invertible. Then the linear transforma-
tion L(v1,...,vn) cannot be one-to-one, and so there is a non-zero vector

a1
a2
. . .
an

 in the null space, i.e.

(v1, . . . , vn)


a1
a2
. . .
an

 = 0

or in other words
a1v1 + . . .+ anvn = 0,

i.e. v1, . . . , vn are not linearly independent. The converse statement
follows by reversing all the above steps and is left to the reader. �

• Note that if one writes down a typical n× n matrix, then the determi-
nant will in general just be some random number and will usually not
be zero. So “most” matrices are invertible, and “most” collections of n
vectors in Rn are linearly independent (and hence form a basis for Rn,
since Rn is n-dimensional).

• Properties 1,2,3 also give a way to compute the determinant of a ma-
trix - use row and column operations to convert it into some sort of
triangular or diagonal form, for which the determinant is easy to com-
pute, and then work backwards to recover the original determinant of
the matrix.

• Example. Suppose we wish to compute the determinant of

A :=

 1 2 3
2 4 4
3 2 1

 .
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We perform row operations. Subtracting two copies of row 1 from row
2 and using Property 3, we obtain

det(A) = det

 1 2 3
0 0 −2
3 2 1

 .

Similarly subtracting three copies of row 1 from row 2, we obtain

det(A) = det

 1 2 3
0 0 −2
0 −4 −8

 .

Dividing the third row by −1/4 using Property 2, we obtain

−1

4
det(A) = det

 1 2 3
0 0 −2
0 1 2


which after swapping two rows using Property 1, becomes

1

4
det(A) = det

 1 2 3
0 1 2
0 0 −2

 .

But the right-hand side is triangular and has a determinant of −2.
Hence 1

4
det(A) = −2, so that det(A) = −8. (One can check this using

the original formula for determinant. Which approach is less work?
Which approach is less prone to arithmetical error?)

• We now give another important property of a determinant, namely its
multiplicative properties.

• Theorem 14. If A and B are n × n matrices, then det(AB) =
det(A) det(B).

• Proof First suppose that A is not invertible. Then LA is not onto
(cf. Lemma 2 of Week 3 notes), which implies that LALB is not onto
(why? Note that the range of LALB must be contained in the range of
LA), so that AB is not invertible. Then by Theorem 12, both sides of
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det(AB) = det(A) det(B) are zero, and we are done. Similarly, suppose
that B is not invertible. Then LB is not one-to-one, and so LALB is not
one-to-one (why? Note that the null space of LB must be contained in
the null space of LALB). So AB is not invertible. Thus both sides are
again zero.

• The only remaining case is when A and B are both invertible. By
Lemma 10 we may thus write

A = E1E2 . . . Ea; B = F1F2 . . . Fb

where E1, . . . , Ea, F1, . . . , Fb are elementary matrices. By many appli-
cations of Lemma 11 we thus have

det(A) = det(E1) det(E2) . . . det(Ea)

and
det(B) = det(F1) det(F2) . . . det(Fb).

But also
AB = E1 . . . EAF1 . . . Fb

and so by taking det of both sides and using Lemma 11 many times
again we obtain

det(AB) = det(E1) . . . det(EA) det(F1) . . . det(Fb)

and by combining all these equations we obtain det(AB) = det(A) det(B)
as desired. �

• Warning: The corresponding statement for addition is not true in
general, i.e. det(A+B) 6= det(A) + det(B) in general. (Can you think
up a counterexample? Even for diagonal matrices one can see this will
not work. On the other hand, we still have linearity in each row and
column).

• Note that Theorem 14 supercedes Lemma 11, although we needed
Lemma 11 as an intermediate step to prove Theorems 12 and 14.

152



• (Optional) Remember the symmetry property det(At) = det(A) we
stated earlier? It can now be proved using the above machinery. We
sketch a proof as follows. First of all, if A is non-invertible, then At

is also non-invertible (why?), and so both sides are zero. Now if A is
invertible, then by Lemma 10 it is the product of elementary matrices:

A = E1E2 . . . Ea

and so
det(A) = det(E1) . . . det(Ea).

On the other hand, taking transposes (and recalling that transpose
reverses multiplication order) we obtain

At = Et
a . . . E

t
2E

t
1

and so
det(At) = det(Et

a) . . . det(Et
1).

But a direct computation (checking the three types of elementary ma-
trix separately) shows that det(Et) = det(E) for every elementary
matrix, so

det(At) = det(Ea) . . . det(E1).

Thus det(At) = det(A) as desired.

* * * * *
Geometric interpretation of determinants (optional)

• This material is optional, and is also not covered in full detail. It
is intended only for those of you who are interested in the geometric
provenance of determinants.

• Up until now we’ve treated the determinant as a mysterious algebraic
expression which has a lot of remarkable properties. But we haven’t
delved much into what the determinant actually means, and why we
have any right to have such a remarkable characteristic of matrices. It
turns out that the determinant measures something very fundamental
to the geometry of Rn, namely n-dimensional volume. The one caveat is
that determinants can be either positive or negative, while volume can
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only be positive, so determinants are in fact measuring signed volume -
volume with a sign. (This is similar to how a definite integral

∫ b
a
f(x) dx

can be negative if f dips below the x axis, even though the “area under
the curve” interpretation of f(x) seems to suggest that integrals must
always be positive).

• Let’s begin with R1. The determinant det(v1) of a single vector v1 = (a)
in R1 is of course a, which is plus or minus the length |a| of that vector;
plus if the vector is pointing right, and minus if the vector is pointing
left. In the degenerate case v1 = 0, the determinant is of course zero.

• Now let’s look at R2, and think about the determinant det(v1, v2) of
two vectors v1, v2 in R2. This turns out to be (plus or minus) the area of
the parallelogram with sides v1 and v2; plus if v2 is anticlockwise of v1,
and minus if v2 is clockwise of v1. For instance, det((1, 0), (0, 1)) is the
area of the square with sides (1, 0), (0, 1), i.e. 1. On the other hand,
det((0, 1), (1, 0)) is -1 because (0, 1) is clockwise of (1, 0). Similarly,
det((3, 0), (0, 1)) is 3, because the rectangle with sides (3, 0), (0, 1) has
area 3, and det((3, 1), (0, 1)) is also 3, because the parallelogram with
sides (3, 1), (0, 1) has the same area as the previous rectangle.

• This parallelogram property can be proven using cross products (recall
that the cross product can be used to measure the area of a parallel-
ogram). It is also interesting to interpret Properties 1, 2, 3 using this
area interpretation. Property 1 says that if you swap the two vectors
v1 and v2, then the sign of the determinant changes. Property 2 says
that if you dilate one of the vectors by c, then the area of the parallelo-
gram also dilates by c (note that if c is negative, then the determinant
changes sign, even though the area is of course always positive, because
you flip the clockwiseness of v1 and v2). Property 3 says that if you
slide v2 (say) by a constant multiple of v1, then the area of the par-
allelogram doesn’t change. (This is consistent with the familiar “base
× height” formula for parallelograms - sliding v2 by v1 does not affect
either the base or the height).

• Note also that if v1 and v2 are linearly dependent, then their parallel-
ogram has area 0; this is consistent with Corollary 13.
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• Now let’s look at R3, and think about the determinant det(v1, v2, v3)
of three vectors in R3. Thus turns out to be (plus or minus) the
volume of the parallelopiped with sides v1, v2, v3 (you may remember
this from Math 32A). To determine plus or minus, one uses the right-
hand rule: if the thumb is at v1 and the second finger is at v2, and
the middle finger is at v3, then we have a plus sign if this can be
achieved using the right hand, and a minus sign if it can be achieved
using the left-hand. For instance, det((1, 0, 0), (0, 1, 0), (0, 0, 1)) = 1,
but det((0, 1, 0), (1, 0, 0), (0, 0, 1)) = −1. It is an instructive exercise
to interpret Properties 1,2,3 using this geometric picture, as well as
Corollary 13.

• The two-dimensional rule of “determinant is positive if v2 clockwise of
v1” can be interpreted as a right-hand rule using a two-dimensional
hand, while the one-dimensional rule of “determinant is positive if v1
is on the right” can be interpreted as a right-hand rule using a one-
dimensional hand.

• There is a similar link between determinant and n-dimensional volume
in higher dimensions n ≥ 3, but it is of course much more difficult to vi-
sualize, and beyond the scope of this course (one needs some grounding
in measure theory, anyway, in order to understand what “n-dimensional
volume” means. Also, one needs n-dimensional hands.). But in partic-
ular, we see that the volume of a parallelopiped with edges v1, . . . , vn
is the absolute value of the determinant det(v1, . . . , vn). (Note that it
doesn’t particularly matter whether we use row or column vectors here
since det(At) = det(A)).

• Let v1, . . . , vn be n column vectors in Rn, so that (v1, . . . , vn) is an n×n
matrix, and consider the linear transformation

T := L(v1,...,vn).

Observe that
T (1, 0, . . . , 0) = v1

T (0, 1, . . . , 0) = v2

. . .
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T (0, 0, . . . , 1) = vn

(why is this the case?) So if we let Q be the unit cube with edges
(1, 0, . . . , 0), . . . , (0, 0, . . . , 1), then T will map Q to the n-dimensional
parallelopiped with vectors v1, . . . , vn. (If you are having difficulty
imagining n-dimensional parallelopipeds, you may just want to think
about the n = 3 case). Thus T (Q) has volume | det(v1, . . . , vn)|, while
Q of course had volume 1. Thus T expands volume by a factor of
| det(v1, . . . , vn)|. Thus the magnitude | det(A)| of a determinant mea-
sures how much the linear transformation LA expands (n-dimensional)
volume.

• Example Consider the matrix

A :=

(
5 0
0 3

)
which as we know has the corresponding linear transformation

LA(x1, x2) = (5x1, 3x2).

This dilates the x1 co-ordinate by 5 and the x2 co-ordinate by 3, so area
(which is 2-dimensional volume) is expanded by 15. This is consistent
with det(A) = 15. Note that if we replace 3 with -3, then the determi-
nant becomes -15 but area still expands by a factor of 15 (why?). Also,
if we replace 3 instead with 0, then the determinant becomes 0. What
happens to the area in this case?

• Example Now consider the matrix

A :=

(
1 1
0 1

)
which as we know has the corresponding linear transformation

LA(x1, x2) = (x1 + x2, x2).

This matrix shears the x1 co-ordinate horizontally by an amount de-
pending on the x2 co-ordinate, but area is unchanged (why? It has to
do with the base × height formula for area). This is consistent with
the determinant being 1.
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• So the magnitude of the determinant measures the volume-expanding
properties of a linear transformation. The sign of a determinant will
measure the orientation-preserving properties of a transformation: will
a “right-handed” object remain right-handed when one applies the
transformation? If so, the determinant is positive; if however right-
handed objects become left-handed, then the determinant is negative.

• Example The reflection matrix

A :=

(
1 0
0 −1

)
corresponds to reflection through the x1-axis:

LA(x1, x2) = (x1,−x2).

It is clear that a “right-handed” object (which in two-dimensions, means
an arrow pointing anti-clockwise) will reflect to a “left-handed” object
(an arrow pointing clockwise). This is why reflections have negative
determinant.

• This interpretation of determinant, as measuring both the volume ex-
panding and the orientation preserving properties of a transformation,
also allow us to interpret Theorem 14 geometrically. For instance, if
T : Rn → Rn expands volume by a factor of 4 and flips the orien-
tation (so det[T ]ββ = −4, where β is the standard ordered basis), and
S : Rn → Rn expands volume by a factor of 3 and also flips the orien-
tation (so det[S]ββ = −3), then one can now see why ST should expand

volume by 12 and preserve orientation (so det[ST ]ββ = +12).

• We now close with a little lemma that says that to take the determinant
of a matrix, it doesn’t matter what basis you use.

• Lemma 15. If two matrices are similar, then they have the same
determinant.

• Proof If A is similar to B, then B = Q−1AQ for some invertible matrix
Q. Thus by Theorem 13

det(B) = det(Q−1) det(A) det(Q) = det(A) det(Q−1) det(Q)
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= det(A) det(Q−1Q) = det(A) det(In) = det(A)

as desired. �

• Corollary 16. Let T : Rn → Rn be a linear transformation, and let
β, β′ be two ordered bases for Rn. Then the matrices [T ]ββ and [T ]β

′

β′

have the same determinant.

• Proof. From last week’s notes we know that [T ]ββ and [T ]β
′

β′ are similar,
and the result follows from Lemma 15. �
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Math 115A - Week 7
Textbook sections: 4.5, 5.1-5.2

Topics covered:

• Cramer’s rule

• Diagonal matrices

• Eigenvalues and eigenvectors

• Diagonalization

* * * * *
Cramer’s rule

• Let A be an n× n matrix. Last week we introduced the notion of the
determinant det(A) of A, and also that of a cofactor Ãij associated to
each row i and column j. Given any row i, we then have the cofactor
expansion formula

det(A) =
n∑
j=1

(−1)i+jAijÃij.

For instance, if

A =

 a b c
d e f
g h i


then

det(A) = aÃ11 − bÃ12 + cÃ13

or in other words

det

 a b c
d e f
g h i

 = a det

(
e f
h i

)
−b det

(
d f
g i

)
+c det

(
d e
g h

)
.
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• Suppose we replace the row (a, b, c) by (d, e, f) in the above example.
Then we have

det

 d e f
d e f
g h i

 = d det

(
e f
h i

)
−e det

(
d f
g i

)
+f det

(
d e
g h

)
.

But the left-hand side is zero because two of the rows are the same
(see Property 1 of determinants on the previous week’s notes). Thus
we have

0 = dÃ11 − eÃ12 + fÃ13.

Similarly we have
0 = gÃ11 − hÃ12 + iÃ13.

We can also do the same analysis with the cofactor expansion along
the second row

det(A) = −dÃ21 + eÃ22 − fÃ23

yielding
0 = −aÃ21 + bÃ22 − cÃ23

0 = −gÃ21 + hÃ22 − iÃ23.

And similarly for the third row:

det(A) = gÃ31 − hÃ32 + iÃ33

0 = aÃ31 − bÃ33 + cÃ33

0 = dÃ31 − eÃ32 + fÃ33.

We can put all these nine identies together in a compact matrix form
as a b c

d e f
g h i

 +Ã11 −Ã21 +Ã31

−Ã12 +Ã22 −Ã32

+Ã13 −Ã23 +Ã33

 =

 det(A) 0 0
0 det(A) 0
0 0 det(A)

 .
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The second matrix on the left-hand side is known as the adjugate of A,
and is denoted adj(A):

adj(A) :=

 Ã11 −Ã21 Ã31

−Ã12 Ã22 −Ã32

Ã13 −Ã23 Ã33

 .

Thus we have the identity for 3× 3 matrices

Aadj(A) = det(A)I3.

The adjugate matrix is the transpose of the cofactor matrix cof(A):

cof(A) :=

 Ã11 −Ã12 Ã13

−Ã21 Ã22 −Ã23

Ã31 −Ã32 Ã33

 .

Thus adj(A) = cof(A)t. To compute the cofactor matrix, at every row
i and column j we extract the minor corresponding to that row and
column, take the n−1×n−1 determinant of the minor, and then place
that number in the ij entry of the cofactor matrix. Then we alternate
the signs by (−1)i+j.

• More generally, for n × n matrices, we can define the cofactor matrix
by

cof(A)ij = (−1)i+jÃij

and the adjugate matrix by adj(A) = cof(A)t, so that

adj(A)ij = (−1)j+iÃji,

and then we have the identity

Aadj(A) = det(A)In.

If det(A) is non-zero, then A is invertible and we thus have

A−1 =
1

det(A)
adj(A).

This is known as Cramer’s rule - it allows us to compute the inverse of
a matrix using determinants. (There is also a closely related rule, also
known as Cramer’s rule, which allows one to solve equations Ax = b
when A is invertible; see the textbook).
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• For example, in the 2× 2 case

A =

(
a b
c d

)
then the cofactor matrix is

cof(A) =

(
d −c
−b a

)
and so the adjugate matrix is

adj(A) = cof(A)t =

(
d −b
−c a

)
and so, if det(A) 6= 0, the inverse of A is

A−1 =
1

det(A)
adj(A) =

1

ad− bc

(
d −c
−b a

)
.

* * * * *
Diagonal matrices

• Matrices in general are complicated objects to manipulate, and we are
always looking for ways to simplify them into something better. Last
week we explored one such way to do so: using elementary row (or
column operations) to reduce a matrix into row-echelon form, or to
even simpler forms. This type of simplification is good for certain
purposes (computing rank, determinant, inverse), but is not good for
other purposes. For instance, suppose you want to raise a matrix A to
a large power, say A100. Using elementary matrices to reduce A to, say,
row-echelon form will not be very helpful, because (a) it is still not very
easy to raise row-echelon form matrices to very large powers, and (b)
one has to somehow deal with all the elementary matrices you used to
convert A into row echelon form. However, to perform tasks like this
there is a better factorization available, known as diagonalization. But
before we do this, we first digress on diagonal matrices.
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• Definition An n × n matrix A is said to be diagonal if all the off-
diagonal entries are zero, i.e. Aij = 0 whenever i 6= j. Equivalently, a
diagonal matrix is of the form

A =


A11 0 . . . 0
0 A22 . . . 0
...

...
...

...
0 0 . . . Ann

 .

We write this matrix as diag(A11,A22, . . . ,Ann). Thus for instance

diag(1, 3, 5) =

 1 0 0
0 3 0
0 0 5

 .

• Diagonal matrices are very easy to add, scalar multiply, and multiply.
One can easily verify that

diag(a1, a2, . . . , an)+diag(b1, b2, . . . , bn) = diag(a1+b1, a2+b2, . . . , an+bn),

cdiag(a1, a2, . . . , an) = diag(ca1, ca2, . . . , can)

and

diag(a1, a2, . . . , an)diag(b1, b2, . . . , bn) = diag(a1b1, a2b2, . . . , anbn).

Thus for instance

diag(1, 3, 5)diag(1, 3, 5) = diag(12, 32, 52)

and more generally

diag(1, 3, 5)n = diag(1n, 3n, 5n).

Thus raising diagonal matrices to high powers is very easy. More gen-
erally, polynomial expressions of a diagonal matrix are very easy to
compute. For instance, consider the polynomial f(x) = x3 + 4x2 + 2.
We can apply this polynomial to any n×n matrix A, creating the new
matrix f(A) = A3 + 4A2 + 2. In general, such a matrix may be difficult
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to compute. But for a diagonal matrix A = diag(a1, a2, . . . , an), we
have

A2 = diag(a2
1, a

2
2, . . . , a

2
n)

A3 = diag(a3
1, a

3
2, . . . , a

3
n)

and thus

f(A) = diag(a3
1+4a2

1+2, a3
2+4a2

2+2, . . . , a3
n+4a2

n+2) = diag(f(a1), . . . , f(an)).

This is true for more general polynomials f :

f(diag(a1, . . . , an)) = diag(f(a1), . . . , f(an)).

Thus to do any sort of polynomial operation to a diagonal matrix, one
just has to perform it on the diagonal entries separately.

• If A is an n × n diagonal matrix A = diag(a1, . . . , an), then the linear
transformation LA : Rn → Rn is very simple:

LA


x1
x2
...
xn

 =


a1 0 . . . 0
0 a2 . . . 0
...

...
...

...
0 0 . . . an




x1
x2
...
xn

 =


a1x1
a2x2
...
anxn

 .

Thus LA dilates the first co-ordinate x1 by a1, the second co-ordinate x2
by a2, and so forth. In particular, if β = (e1, e2, . . . , en) is the standard
ordered basis for Rn, then

LAe1 = a1e1; LAe2 = a2e2; . . . ; LAen = anen.

This leads naturally to the concept of eigenvalues and eigenvalues,
which we now discuss.

• Remember from last week that the rank of a matrix is equal to the
number of non-zero rows in row echelon form. Thus it is easy to see
that

• Lemma 1. The rank of a diagonal matrix is equal to the number of
its non-zero entries.
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• Thus, for instance, diag(3, 4, 5, 0, 0, 0) has rank 3.

* * * * *
Eigenvalues and eigenvectors

• Let T : V → V be a linear transformation from a vector space V to
itself. One of the simplest possible examples of such a transformation
is the identity transformation T = IV , so that Tv = v for all v ∈
V . After the identity operation, the next simplest example of such a
transformation is a dilation T = λIV for some scalar λ, so that Tv = λv
for all v ∈ V .

• In general, though, T does not look like a dilation. However, there are
often some special vectors in V for which T is as simple as a dilation,
and these are known as eigenvectors.

• Definition An eigenvector v of T is a non-zero vector v ∈ V such that
Tv = λv for some scalar λ. The scalar λ is known as the eigenvalue
corresponding to v.

• Example Consider the linear transformation T : R2 → R2 defined by
T (x, y) := (5x, 3y). Then the vector v = (1, 0) is an eigenvector of T
with eigenvalue 5, since Tv = T (1, 0) = (5, 0) = 5v. More generally,
any non-zero vector of the form (x, 0) is an eigenvector with eigenvalue
5. Similarly, (0, y) is an eigenvector of T with eigenvalue 3, if y is non-
zero. The vector v = (1, 1) is not an eigenvector, because Tv = (5, 3)
is not a scalar multiple of v.

• Example More generally, if A = diag(a1, . . . , an) is a diagonal matrix,
then the basis vectors e1, . . . , en are eigenvectors for LA, with eigenval-
ues a1, . . . , an respectively.

• Example If T is the identity operator, then every non-zero vector
is an eigenvector, with eigenvalue 1 (why?). More generally, if T =
λIV is λ times the identity operator, then every non-zero vector is an
eigenvector, with eigenvalue λ (Why?).

• Example If T : V → V is any linear transformation, and v is any
non-zero vector in the null space N(T ), then v is an eigenvector with
eigenvalue 0. (Why?)
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• Example Let T : R2 → R2 be the reflection through the line l connect-
ing the origin to (4, 3). Then (4, 3) is an eigenvector with eigenvalue 1
(why?), and (3,−4) is an eigenvector with eigenvalue -1 (why?).

• We do not consider the 0 vector as an eigenvector, even though T0 is
always 0, because we cannot determine what eigenvalue 0 should have.

• If A is an n × n matrix, we say that v is an eigenvector for A with
eigenvalue λ if it is already an eigenvector for LA with eigenvalue λ, i.e.
Av = λv. In other words, for the purposes of computing eigenvalues
and eigenvectors we do not distinguish between a matrix A and its
linear transformation LA.

• (Incidentally, the word “eigen” is German for “own”. An eigenvector
is a vector which keeps its own direction when acted on by T . The
terminology is thus a hybrid of German and English, though some
people prefer “principal value” and “principal vector” to avoid this (or
“characteristic” or “proper” instead of “principal”). Then again,

“vector” is pure Latin. English is very cosmopolitan).

• Definition Let T : V → V be a linear transformation, and let λ be
a scalar. Then the eigenspace of T corresponding to λ is the set of all
vectors (including 0) such that Tv = λv.

• Thus an eigenvector with eigenvalue λ is the same thing as a non-
zero element of the eigenspace with eigenvalue λ. Since Tv = λv is
equivalent to (T − λIV )v = 0, we thus see that the eigenspace of T
with eigenvalue λ is the same thign as the null space N(T − λIV ) of
T −λIV . In particular, the eigenspace is always a subspace of V . From
the above discussion we also see that λ is an eigenvalue of T if and only
if N(T − λIV ) is non-zero, i.e. when T − λIV is not one-to-one.

• Example Let T : R2 → R2 be the transformation T (x, y) := (5x, 3y).
Then the x-axis is the eigenspace N(T −3IR2) with eigenvalue 5, while
the y-axis is the eigenspace N(T−5IR2) with eigenvalue 5. For all other
values λ 6= 3, 5, the eigenspace N(T−λIR2) is just the zero vector space
{0} (why?).
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• The relationship between eigenvectors and diagonal matrices is the fol-
lowing.

• Lemma 2. Suppose that V is an n-dimensional vector space, and
suppose that T : V → V is a linear transformation. Suppose that
V has an ordered basis β = (v1, v2, . . . , vn), such that each vj is an

eigenvector of T with eigenvalue λj. Then the matrix [T ]ββ is a diagonal

matrix; in fact [T ]ββ = diag(λ1, . . . , λn).

• Conversely, if β = (v1, v2, . . . , vn) is a basis such that [T ]ββ = diag(λ1, . . . , λn),
then each vj is an eigenvector of T with eigenvalue λ.

• Proof Suppose that vj is an eigenvector of T with eigenvalue λj. Then
Tvj = λjvj, so [Tvj]

β is just the column vector with jth entry equal
to λj, and all other entries zero. Putting all these column vectors

together we see that [T ]ββ = diag(λ1, . . . , λn). Conversely, if [T ]ββ =

diag(λ1, . . . , λn), then by definition of [T ]ββ we see that Tvj = λjvj, and
so vj is an eigenvector with eigenvalue λj. �

• Definition. A linear transformation T : V → V is said to be diago-
nalizable if there is an ordered basis β of V for which the matrix [T ]ββ
is diagonal.

• Lemma 2 thus says that a transformation is diagonalizable if and only
if it has a basis consisting entirely of eigenvectors.

• Example Let T : R2 → R2 be the reflection through the line l connect-
ing the origin to (4, 3). Then (4, 3) and (3,−4) are both eigenvectors
for T . Since these two vectors are linearly independent and R2 is two-
dimensional, they form a basis for T . Thus T is diagonalizable; indeed,
if β := ((4, 3), (3,−4)), then

[T ]ββ =

(
1 0
0 −1

)
= diag(1,−1).

• If one knows how to diagonalize a transformation, then it becomes very
easy to manipulate. For example, in the above reflection example we
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see very quickly that T must have rank 2 (since diag(1,−1) has two
non-zero entries). Also, we can square T easily:

[T 2]ββ = diag(1,−1)2 = diag(1, 1) = I2 = [IR2 ]ββ

and hence T 2 = IR2 , the identity transformation. (Geometrically, this
amounts to the fact that if you reflect twice around the same line, you
get the identity).

• Definition. An n × n matrix A is said to be diagonalizable if the
corresponding linear transformation LA is diagonalizable.

• Example The matrix A = diag(5, 3) is diagonalizable, because the
linear operator LA in the standard basis β = ((1, 0), (0, 1)) is just A
itself: [LA]ββ = A, which is diagonal. So all diagonal matrices are
diagonalizable (no surprise there).

• Lemma 3. A matrix A is diagonalizable if and only if A = QDQ−1

for some invertible matrix Q and some diagonal matrix D. In other
words, a matrix is diagonalizable if and only if it is similar to a diagonal
matrix.

• Proof Suppose A was diagonalizable. Then [LA]β
′

β′ would be equal to
some diagonal matrix D, for some choice of basis β′ (which may be
different from the standard ordered basis β. But by the change of
variables formula,

A = [LA]ββ = Q[LA]β
′

β′Q
−1 = QDQ−1

as desired, where Q := [IRn ]ββ′ is the change of variables matrix.

Conversely, suppose that A = QDQ−1 for some invertible matrix Q.
Write D = diag(λ1, . . . , λn), so that Dej = λj. Then

A(Qej) = QDQ−1Qej = QDej = Qλjej = λj(Qej)

and so Qej is an eigenvector for A with eigenvalue λj. Since Q is
invertible and e1, . . . , en is a basis, we see that Qe1, . . . , Qen is also a
basis (why?). Thus we have found a basis of Rn consisting entirely of
eigenvectors of A, and so A is diagonalizable. �
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• From Lemma 2 and Lemma 3 we see that if we can find a basis
(v1, . . . , vn) of Rn which consists entirely of eigenvectors of A, then
A is diagonalizable and A = QDQ−1 for some diagonal matrix D and
some invertible matrix Q. We now make this statement more precise,
specifying precisely what Q and D are.

• Lemma 4. Let A be an n × n matrix, and suppose that (v1, . . . , vn)
is an ordered basis of Rn such that each vj is an eigenvector of A with
eigenvalue λj (i.e. Avj = λvj for j = 1, . . . , n). Then we have

A = Qdiag(λ1, . . . , λn)Q−1

where Q is the n× n matrix with columns v1, v2, . . . , vn:

Q = (v1, v2, . . . , vn).

• Proof. Let β′ be the ordered basis β′ := (v1, v2, . . . , vn) of Rn, and let
β := (e1, e2, . . . , en) be the standard ordered basis of Rn. Then

[IRn ]ββ′ = Q

(why?). So by the change of variables formula

A = [LA]ββ = Q[LA]β
′

β′Q
−1.

On the other hand, since LAvj = λjvj, we see that

[LA]β
′

β′ = diag(λ1, . . . , λn).

Combining these two equations we obtain the lemma. �.

* * * * *
Computing eigenvalues

• Now we compute the eigenvalues and eigenvectors of a general matrix.
The key lemma here is

• Lemma 5. A scalar λ is an eigenvalue of an n× n square matrix A if
and only det(A− λIn) = 0.
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• Proof. If λ is an eigenvalue of A, then Av = λv for some non-zero v,
thus (A − λIn)v = 0. Thus A − λIn is not invertible, and so det(A −
λIn) = 0 (Theorem 12 from last week’s notes). Conversely, if det(A−
λIn) = 0, then A− λIn is not invertible (again by Theorem 12), which
means that the corresponding linear transformation is not one-to-one
(recall that one-to-one and onto are equivalent when the domain and
range have the same dimension; see Lemma 2 of Week 3 notes). So we
have (A − λIn)v = 0 for some non-zero v, which means that Av = λv
and hence λ is an eigenvalue. �

• Because of this lemma, we call det(A− λIn) the characteristic polyno-
mial of A, and sometimes call it f(λ). Lemma 5 then says that the
eigenvalues of A are precisely the zeroes of f(λ).

• Example Let A be the matrix

A =

(
0 1
1 1

)
.

Then the characteristic polynomial f(λ) is given by

f(λ) = det

(
−λ 1
1 1− λ

)
= −λ(1− λ)− 1× 1 = λ2 − λ− 1.

From the quadratic formula, this polynomial has zeroes when λ =
(1 ±

√
5)/2, and so the eigenvalues are λ1 := (1 +

√
5)/2 = 1.618 . . .

and λ2 = (1−
√

5)/2 := −0.618 . . ..

• Once we have the eigenvalues of A, we can compute eigenvectors, be-
cause the eigenvectors with eigenvalues λ are precisely those non-zero
vectors in the null-space of A − λIn (or equivalently, of the null space
of LA − λIRn).

• Example: Let A be the above matrix. Let us try to find the eigenvec-

tors

(
x
y

)
with eigenvalue λ1 = (1 +

√
5)/2. In other words, we want

to solve the equation

(A− (1 +
√

5)/2)

(
x
y

)
=

(
0
0

)
,
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or in other words(
−(1 +

√
5)/2 1

1 (1−
√

5)/2

)(
x
y

)
=

(
0
0

)
,

or equivalently

−1 +
√

5

2
x+ y = 0

x+
1−
√

5

2
y = 0.

This matrix does not have full rank (since its determinant is zero - why
should this not be surprising?). Indeed, the second equation here is
just (1 −

√
5)/2 times the first equation. So the general solution is y

arbitrary, and x equal to −1−
√
5

2
y. In particular, we have

v1 :=

(
−1−

√
5

2

1

)
as an eigenvector of A with eigenvalue λ1 = (1 +

√
5)/2.

A similar argument gives

v2 :=

(
−1+

√
5

2

1

)
as an eigenvector of A with eigenvalue λ2 = (1−

√
5)/2. Thus we have

Av1 = λ1v1 and Av2 = λ2v2. Thus, if we let β′ be the ordered basis
β′ := (v1, v2), then

[LA]β
′

β′ =

(
λ1 0
0 λ2

)
.

Thus A is diagonalizable. Indeed, from Lemma 4 we have

A = QDQ−1

where D := diag(λ1, λ2) and Q := (v1, v2).

• As an application, we recall the example of Fibonacci’s rabbits from
Week 2. If at the beginning of a year there are x pairs of juvenile
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rabbits and y pairs of adult rabbits - which we represent by the vector(
x
y

)
in R2 - then at the end of the next year there will be y juvenile

pairs and x+ y adult pairs - so the new vector is(
y
x+ y

)
=

(
0 1
1 1

)(
x
y

)
= A

(
x
y

)
.

Thus, each passage of a year multiplies the population vector by A. So
if we start with one juvenile pair and no adult pairs - so the population

vector is initially v0 :=

(
1
0

)
- then after n years, the population vector

should become Anv0. To compute this, one would have to multiply A
by itself n times, which appears to be difficult (try computing A5 by
hand, for instance!). However, this can be done efficiently using the
diagonalization A = QDQ−1 we have. Observe that

A2 = QDQ−1QDQ−1 = QD2Q−1

A3 = A2A = QD2Q−1QDQ−1 = QD3Q−1

and more generally (by induction on n)

An = QDnQ−1.

In particular, our population vector after n years is

Anv0 = QDnQ−1v0.

But since D is the diagonal matrix D = diag(λ1, λ2), D
n is easy to

compute:
Dn = diag(λn1, λ

n
2).

Now we can compute QDnQ−1v0. Since

Q = (v1, v2) =

(
−1−

√
5

2
−1+

√
5

2

1 1

)
we have

det(Q) = −1−
√

5

2
+

1−
√

5

2
=
√

5
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and so by Cramer’s rule

Q−1 =
1√
5

(
1 1+

√
5

2

−1 −1−
√
5

2

)

and so

Q−1v0 =
1√
5

(
1
−1

)
and hence

DnQ−1v0 = diag(λn1, λ
n
2)

1√
5

(
1
−1

)
=

1√
5

(
λn1
−λn2

)
.

Since 1−
√
5

2
1+
√
5

2
= 1−5

4
= −1, we have

Q =

(
−1−

√
5

2
−1+

√
5

2

1 1

)
=

(
λ−11 λ−12

1 1

)
and hence

Anv0 = QDnQ−1v0 =

(
λ−11 λ−12

1 1

)
1√
5

(
λn1
−λn2

)
=

(
(λn−11 − λn−12 )/

√
5

(λn1 − λn2 )/
√

5

)
.

Thus, after n years, the number of pairs of juvenile rabbits is

Fn−1 = (λn−11 −λn−12 )/
√

5 = ((1.618 . . .)n−1−(−0.618 . . .)n−1)/2.236 . . . ,

and the number of pairs of adult rabbits is

Fn = (λn1 − λn2 )/
√

5 = ((1.618 . . .)n − (−0.618 . . .)n)/2.236 . . . .

This is a remarkable formula - it does not look like it at all, but the
expressions Fn−1, Fn are always integers. For instance

F3 = ((1.618 . . .)3 − (−0.618 . . .)3)/2.236 . . . = 2.

(Check this!). The numbers

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 25, . . .

173



are known as Fibonacci numbers and come up in all sorts of places
(including, oddly enough, the number of petals on flowers and pine
cones). The above formula shows that these numbers grow exponen-
tially, and are comparable to (1.618)n when n gets large. The number
1.618 . . . = (1 +

√
5)/2 is known as the golden ratio and has several

interesting properties, which we will not go into here.

• A final note. Up until now, we have always chosen the field of scalars
to be real. However, it will now sometimes be convenient to change the
field of scalars to be complex, because one gets more eigenvalues and
eigenvectors this way. For instance, consider the matrix

A =

(
0 1
−1 0

)
.

The characteristic polynomial f(λ) is given by

f(λ) = det

(
−λ 1
−1 −λ

)
= λ2 + 1.

If one restricts the field of scalars to be real, then f(λ) has no zeroes,
and so there are no real eigenvalues (and thus no real eigenvectors). On
the other hand, if one expands the field of scalars to be complex, then
f(λ) has zeroes at λ = ±i, and one can easily show that vectors such as(

1
i

)
are eigenvectors with eigenvalue i, while

(
1
i

)
is an eigenvector

with eigenvalue −i. Thus it is sometimes advantageous to introduce
complex numbers into a problem which seems purely concerned with
real numbers, because it can introduce such useful concepts as eigen-
vectors and eigenvalues into the situation. (An example of this appears
in Q10 of this week’s assignment).
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Math 115A - Week 8
Textbook sections: 5.2, 6.1

Topics covered:

• Characteristic polynomials

• Tests for diagonalizability

• Inner products

• Inner products and length

* * * * *
Characteristic polynomials

• Let A be an n× n matrix. Last week we introduced the characteristic
polynomial

f(λ) = det(A− λI)

of that matrix; this is a polynomial in λ. For instance, if

A =

 a b c
d e f
g h i


then

f(λ) = det

 a− λ b c
d e− λ f
g h i− λ


= (a− λ)((e− λ)(i− λ)− fh))− b(d(i− λ)− gf) + c(dh− (e− λ)g),

which simplifies to some degree 3 polynomial in λ (we think of a, b, c, d, e, f, g
as just constant scalars). Last week we saw that the zeroes of this poly-
nomial give the eigenvalues of A.

175



• As you can see, the characteristic polynomial looks pretty messy. But
in the special case of a diagonal matrix, e.g

A =

 a 0 0
0 b 0
0 0 c


the characteristic polynomial is quite simple, in fact

f(λ) = (a− λ)(b− λ)(c− λ)

(why?). This has zeroes when λ = a, b, c, and so the eigenvalues of this
matrix are a, b, and c.

• Lemma 1. Let A and B be similar matrices. Then A and B have the
same characteristic polynomial.

• An algebraist would phrase this as: “the characteristic polynomial is
invariant under similarity”.

• Proof. Since A and B are similar, we have B = QAQ−1 for some
invertible matrix Q. So the characteristic polynomial of B is

det(B − λI) = det(QAQ−1 − λI)
= det(QAQ−1 −QλIQ−1)
= det(Q(A− λI)Q−1)
= det(Q) det(A− λI) det(Q−1)
= det(Q) det(Q−1) det(A− λI)
= det(QQ−1(A− λI))
= det(A− λI)

and hence the characteristic polynomials are the same. �

• Now let’s try to understand the characteristic polynomial for general
matrices. Let P1(R) be all the polynomials aλ+ b of degree at most 1;
we shall make the free variable λ instead of x. Note that all the entries
in the matrix A− λI lie in P1(R).

• Lemma 2. Let B be an n×n matrix, all of whose entries lie in P1(R).
Then det(B) lies in Pn(R) (i.e. det(B) is a polynomial in λ of degree
at most n).
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• Proof. We prove this by induction on n. When n = 1 the claim is
trivial, since a 1 × 1 matrix with an entry in P1(R) looks like B =
(aλ+ b), and clearly det(B) = aλ+ b ∈ Pn(R).

Now let’s suppose inductively that n > 1, and that we have already
proved the lemma for n − 1. We expand det(B) using cofactor ex-
pansion along some row or column (it doesn’t really matter which row
or column we use). This expands det(B) as an (alternating-sign) sum
of expressions, each of which is the product of an entry of B, and a
cofactor of B. The entry of B is in P1(R), while the cofactor of B is
in Pn−1(R) by the induction hypothesis. So each term in det(B) is in
Pn(R), and so det(B) is also in Pn(R). This finishes the induction. �

• From this lemma we see that f(λ) lies in Pn(R), i.e it is a polynomial of
degree at most n. But we can be more precise. In fact the characteristic
polynomial in general looks a lot like the characteristic polynomial of
a diagonal matrix, except for an error which is a polynomial of degree
at most n− 2:

• Lemma 3. Let n ≥ 2. Let A be the n× n matrix

A :=


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
...

...
An1 An2 . . . Ann

 .

Then we have

f(λ) = (A11 − λ)(A22 − λ) . . . (Ann − λ) + g(λ)

where g(λ) ∈ Pn−2(R).

• Proof. Again we induct on n. If n = 2 then f(λ) = (A11−λ)(A22−λ)−
A12A21 (why?) and so the claim is true with g := −A12A21 ∈ P0(R).
Now suppose inductively that n > 2, and the claim has already been
proven for n− 1. We write out f(λ) as

f(λ) =


A11 − λ A12 . . . A1n

A21 A22 − λ . . . A2n
...

...
...

...
An1 An2 . . . Ann − λ

 .
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• Now we do cofactor expansion along the first row. The first term in
this expansion is

(A11 − λ) det

 A22 − λ . . . A2n
...

...
...

An2 . . . Ann − λ

 .

But this determinant is just the characteristic polynomial of an n−1×
n− 1 matrix, and so by the induction hypothesis we have

det

 A22 − λ . . . A2n
...

...
...

An2 . . . Ann − λ

 = (A22−λ) . . . (Ann−λ)+ something in Pn−3(R).

Thus the first term in the cofactor expansion is

(A11 − λ)(A22 − λ) . . . (Ann − λ) + something in Pn−2(R).

(Why did the Pn−3(R) become a Pn−2(R) when multiplying by (A11−
λ)?).

• Now let’s look at the second term in the cofactor expansion; this is

−A12 det

 A21 . . . A2n
...

...
...

An1 . . . Ann − λ

 .

We do cofactor expansion again on the second row of this n− 1×n− 1
determinant. We can expand this determinant as an alternating-sign
sum of terms, which look like A2i times some n−2×n−2 determinant.
By Lemma 2, this n − 2 × n − 2 determinant lies in Pn−2(R), while
A2i is a scalar. Thus all the terms in this determinant lie in Pn−2(R),
and so the determinant itself must lie in Pn−2(R) (recall that Pn−2(R)
is closed under addition and scalar multiplication). Thus this second
term in the cofactor expansion lies in Pn−2(R).

• A similar argument shows that the third, fourth, etc. terms in the
cofactor expansion of det(A − λI) all lie in Pn−2(R). Adding up all
these terms we obtain

det(A−λI) = (A11−λ)(A22−λ) . . . (Ann−λ)+ something in Pn−2(R)
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as desired. �

• If we multiply out

(A11 − λ)(A22 − λ) . . . (Ann − λ)

we get

(−λ)n+(−λ)n−1(A11 +A22 + . . .+Ann)+ stuff of degree at most n−2

(why?). Note that (A11 + . . .+Ann) is just the trace tr(A) of A. Thus
from Lemma 3 we have

f(λ) = (−1)nλn+(−1)n−1tr(A)λn−1+an−2λ
n−2+an−3λ

n−3+. . .+a1λ+a0

for some scalars an−2, . . . , a0. These coefficients an−2, . . . , a0 are quite
interesting, but hard to compute. However, a0 can be obtained by a
simple trick: if we evaluate the above expression at 0, we get

f(0) = a0,

but f(0) = det(A − 0I) = det(A). We have thus proved the following
result.

• Theorem 4. The characteristic polynomial f(λ) of an n × n matrix
A has the form

f(λ) = (−1)nλn+(−1)n−1tr(A)λn−1+an−2λ
n−2+an−3λ

n−3+. . .+a1λ+det(A).

• Thus the characteristic polynomial encodes the trace and the determi-
nant, as well as some additional information which we will not study
further in this course.

• Example. The characteristic polynomial of the 2× 2 matrix(
a b
c d

)
is

(a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc)
(why?). Note that a+ d is the trace and ad− bc is the determinant.

179



• Example. The characteristic polynomial of the 3× 3 matrix a 0 0
0 b 0
0 0 c


is

(a− λ)(b− λ)(c− λ) = −λ3 + (a+ b+ c)λ2 − (ab+ bc+ ca)λ+ abc.

Note that a+ b+ c is the trace and abc is the determinant.

• Since the characteristic polynomial is of degree n and has a leading
coefficient of −1, it is possible that it factors into n linear factors, i.e.

f(λ) = −(λ− λ1)(λ− λ2) . . . (λ− λn)

for some scalars λ1, . . . , λn in the field of scalars (which we will call F
for a change... this F may be either R or C). These scalars do not
necessarily have to be distinct (i.e. we can have releated roots). If this
is the case we say that f splits over F , or more simply that f splits.

• Example. The characteristic polynomial of the 2× 2 matrix(
0 1
1 0

)
is λ2−1 (why?), which splits over the reals as (λ−1)(λ− (−1)). It also
splits over the complex numbers because +1 and −1 are real numbers,
and hence also complex numbers. On the other hand, the characteristic
polynomial of (

0 1
−1 0

)
is λ2 + 1, which doesn’t split over the reals, but does split over the
complexes as (λ− i)(λ+ i). Finally, the characteristic polynomial of(

0 1
0 0

)
is λ2, which splits over both the reals and the complexes as (λ−0)(λ−0).
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• Example The characteristic polynomial of a diagonal matrix will al-
ways split. For instance the characteristic polynomial of a 0 0

0 b 0
0 0 c


is

(a− λ)(b− λ)(c− λ) = −(λ− a)(λ− b)(λ− c).

• From the previous example, and Lemma 1, we see that the character-
istic polynomial of any diagonalizable matrix will always split (since
diagonalizable matrices are similar to diagonal matrices). In particu-
lar, if the characteristic polynomial of a matrix doesn’t split, then it
can’t be diagonalizable.

• Example. The matrix (
0 1
−1 0

)
from an earlier example cannot be diagonalizable over the reals, because
its characteristic polynomial does not split over the reals. (However,
it can be diagonalized over the complex numbers; we leave this as an
exercise).

• It turns out that the complex numbers have a significant advantage
over the reals, in that polynomials always split:

• Fundamental Theorem of Algebra. Every polynomial splits over
the complex numbers.

• This theorem is a basic reason why the complex numbers are so useful;
unfortunately, the proof of this theorem is far beyond the scope of this
course. (You can see a proof in Math 132, however).

* * * * *
Tests for diagonalizability

• Recall that an n× n matrix A is diagonalizable if there is an invertible
matrix Q and a diagonal matrix D such that A = QDQ−1. It is often
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useful to know when a matrix can be diagonalized. We already know
one such characterization: A is diagonalizable if and only if there is a
basis of Rn which consists entirely of eigenvectors of A. Equivalently:

• Lemma 5. An n× n matrix A is diagonalizable if and only if one can
find n linearly independent vectors v1, v2, . . . , vn in Rn, such that each
vector vj is an eigenvector of A.

• This is because n linearly independent vectors in Rn automatically
form a basis of Rn.

• It is thus important to know when the eigenvectors of A are linearly
independent. Here is one useful test:

• Proposition 6. Let A be an n × n matrix. Let v1, v2, . . . , vk be
eigenvectors of A with eigenvalues λ1, . . . , λk respectively. Suppose that
the eigenvalues λ1, . . . , λk are all distinct. Then the vectors v1, . . . , vk
are linearly independent.

• Proof. Suppose for contradiction that v1, . . . , vk were not independent,
i.e. there was some scalars a1, . . . , ak, not all equal to zero, such that

a1v1 + a2v2 + . . .+ akvk = 0.

At least one of the aj is non-zero; without loss of generality we may
assume that a1 is non-zero.

• Now we use a trick to eliminate vk: We apply (A− λkI) to both sides
of this equation. Using the fact that A− λkI is linear, we obtain

a1(A− λkI)v1 + a2(A− λkI)v2 + . . .+ ak(A− λkI)vk = 0.

But observe that

(A− λkI)v1 = Av1 − λkv1 = λ1v1 − λkv1 = (λ1 − λk)v1

and more generally

(A− λkI)vj = (λj − λk)vj.

182



In particular we have
(A− λkI)vk = 0.

Putting this all together, we obtain

a1(λ1 − λk)v1 + a2(λ2 − λk)v2 + . . .+ ak−1(λk−1 − λk)vk−1 = 0.

Now we eliminate vk−1 by applying A − λk−1I to both sides of the
equation. Arguing as before, we obtain

a1(λ1 − λk)(λ1 − λk−1)v1 + a2(λ2 − λk)(λ2 − λk−1)v2 + . . .

+ak−2(λk−2 − λk)(λk−2 − λk−1)vk−2 = 0.

We then eliminate vk−2, then vk−3, and so forth all the way down to
eliminating v2, until we obtain

a1(λ1 − λk)(λ1 − λk−1) . . . (λ1 − λ2)v1 = 0.

But since the λi are all distinct, and a1 is non-zero, this forces v1 to
equal zero. But this contradicts the definition of eigenvector (eigenvec-
tors are not allowed to be zero). Thus the vectors v1, . . . , vk must have
been linearly independent. �

• Proposition 5 holds for linear transformations as well as matrices: see
Theorem 5.10 of the textbook.

• Corollary 6 Let A be an n×n matrix. If the characteristic polynomial
of A splits into n distinct factors, then A is diagonalizable.

• Proof. By assumption, the characteristic polynomial f(λ) splits as

f(λ) = −(λ− λ1) . . . (λ− λn)

for some distinct scalars λ1, . . . , λn. Thus we have n distinct eigenvalues
λ1, . . . , λn. For each eigenvalue λj let vj be an eigenvector with that
eigenvalue, then by Proposition 5 v1, . . . , vn are linearly independent,
and hence by Lemma 4 A is diagonalizable. �
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• Example Consider the matrix

A =

(
1 −2
1 4

)
.

The characteristic polynomial here is

f(λ) = (1− λ)(4− λ) + 2 = λ2 − 5λ+ 6 = (λ− 2)(λ− 3),

so the characteristic polynomial splits into n distinct factors (regardless
of whether our scalar field is the reals or the complexes). So we know
that A is diagonalizable. (If we actually wanted the explicit diagonal-
ization, we would find the eigenvalues (which are 2,3) and then some
eigenvectors, and use the previous week’s notes).

• To summarize what we know so far: if the characteristic polynomial
doesn’t split, then we can’t diagonalize the matrix; while if it does split
into distinct factors, then we can diagonalize the matrix. There is still
a remaining case in which the characteristic function splits, but into
repeated factors. Unfortunately this case is much more complicated;
the matrix may or may not be diagonalizable. For instance, the matrix(

2 0
0 2

)
has a characteristic polynomial of (λ− 2)2 (why?), so it splits but not
into distinct linear factors. It is clearly diagonalizable (indeed, it is
diagonal). On the other hand, the matrix(

2 1
0 2

)
has the same characteristic polynomial of (λ− 2)2 (why?), but it turns
out not to be diagonalizable, for the following reason. If it were diag-
onalizable, then we could find a basis of Rn which consists entirely of
eigenvectors. But since the only root of the characteristic polynomial
is 2, the only eigenvalue is 2. Now let’s work out what the eigenvec-
tors are. Since the only eigenvalue is 2, we only need to look in the
eigenspace with eigenvalue 2. We have to solve the equation(

2 1
0 2

)(
x
y

)
= 2

(
x
y

)
,
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i.e. we have to solve the system of equations

2x+ y = 2x; 2y = 2y.

The general solution of this system occurs when y = 0 and x is arbi-
trary, so the eigenspace with eigenvalue 2 is just the x-axis. But the
vectors from this eigenspace are not enough to span all of R2, so we
cannot find a basis of eigenvectors. Thus this matrix is not diagonaliz-
able.

• The moral of this story is that, while the characteristic polynomial does
carry a large amount of information, it does not completely solve the
problem of whether a matrix is diagonalizable or not. However, even
when the characteristic polynomial is inconclusive, it is still possible
to determine whether a matrix is diagonalizable or not by computing
its eigenspaces and seeing if it is possible to make a basis consisting
entirely of eigenvectors. We will not pursue the full solution of the
diagonalization problem here, but defer it to 115B (where you will learn
about two more tools to study diagonalization - the minimal polynomial
and the Jordan normal form).

• One last example. Consider the matrix 2 1 0
0 2 0
0 0 3

 ;

this is the same matrix as the previous example but we attach another
row and column, and add a 3. (This is not a diagonal matrix, but is
an example of a block-diagonal matrix: see this week’s homework for
more information). The characteristic polynomial here is

f(λ) = −(λ− 2)2(λ− 3)

(why?), so the eigenvalues are 2 and 3. To find the eigenspace with
eigenvalue 2, we solve the equation 2 1 0

0 2 0
0 0 3

 x
y
z

 = 2

 x
y
z

 ,
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and a little bit of work shows that the general solution to this equation
occurs when y = z = 0 and x is arbitrary, thus the eigenspace is just

the x-axis {

 x
0
0

 : x ∈ R}. Similarly the eigenspace with eigenvalue

3 is the z-axis. But this is not enough eigenvectors to span R3 (the 2-
eigenspace only contributes one linearly independent eigenvector, and
the 3-eigenspace contributes only one linearly independent eigenvector,
whereas we need three linearly independent eigenvectors in order to
span R3.

* * * * *
Inner product spaces

• We now leave matrices and eigenvalues and eigenvectors for the time
being, and begin a very different topic - the concept of an inner product
space.

• Up until now, we have been preoccupied with vector spaces and var-
ious things that we can do with these vector spaces. If you recall, a
vector space comes equipped with only two basic operations: addition
and scalar multiplication. These operations have already allowed us to
introduce many more concepts (bases, linear transformations, etc.) but
they cannot do everything that one would like to do in applications.

• For instance, how does one compute the length of a vector? In R2 or
R3 one can use Pythagoras’s theorem to work out the length, but what
about, say, a vector in P3(R)? What is the length of x3 + 3x2 + 6? It
turns out that such spaces do not have an inherent notion of length:
you can add and scalar multiply two polynomials, but we have not
given any rule to determine the length of a polynomial. Thus, vector
spaces are not equipped to handle certain geometric notions such as
length (or angle, or orthogonality, etc.)

• To resolve this, mathematicians have introduced several “upgraded”
versions of vector spaces, in which you can not only add and scalar
multiply vectors, but can also compute lengths, angles, inner products,
etc. One particularly common such “upgraded” vector space is some-
thing called an inner product space, which we will now discuss. (There
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are also normed vector spaces, which have a notion of length but not
angle; topological vector spaces, which have a notion of convergence but
not length; and if you wander into infinite dimensions then there are
slightly fancier things such as Hilbert spaces and Banach spaces. Then
there are vector algebras, where you can multiply vectors with other vec-
tors to get more vectors. Then there are hybrids of these notions, such
as Banach algebras, which are a certain type of infinite-dimensional
vector algebra. None of these will be covered in this course; they are
mostly graduate level topics).

• The problem with length is that it is not particularly linear: the length
of a vector v+w is not just the length of v plus the length of w. However,
in R2 or R3 we can rewrite the length of a vector v as the square root
of the dot product v · v. Unlike length, the dot product is linear in the
sense that (v + v′) · w = v · w + v′ · w and v · (w + w′) = v · w + v · w′,
with a similar rule for scalar multiplication. (Actually, to be precise,
the dot product is considered bilinear rather than linear, just as the
determinant is considered multilinear, because it has two inputs v and
w, instead of just one for linear transformations).

• Thus, the idea behind an inner product space is to introduce length
indirectly, by means of something called an inner product, which is a
generalization of the dot product. Depending on whether the field of
scalars is real or complex, we have either a real inner product space
or a complex inner product space. Complex inner product spaces are
similar to real ones, except the complex conjugate operation z 7→ z
makes an appearance. Here’s a clue why: the length |z| of a complex
number z = a + bi, is not the square root of z · z, but is instead the
square root of z · z.

• We will now use both real and complex vector spaces, and will try
to take care to distinguish between the two. When we just say “vec-
tor space” without the modifier “real” or “complex”, then the field of
scalars might be either the reals or the complex numbers.

• Definition An inner product space is a vector space V equipped with an
additional operation, called an inner product, which takes two vectors
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v, w ∈ V as input and returns a scalar 〈v, w〉 as output, which obeys
the following three properties:

• (Linearity in the first variable) For any vectors v, v′, w ∈ V and any
scalar c, we have 〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉 and 〈cv, w〉 = c〈v, w〉.

• (Conjugate symmetry) If v and w are vectors in V , then 〈w, v〉 is the
complex conjugate of 〈v, w〉: 〈w, v〉 = 〈v, w〉.

• (Positivity) If v is a non-zero vector in V , then 〈v, v〉 is a positive real
number: 〈v, v〉 > 0.

• If the field of scalars is real, then every number is its own conjugate
(e.g. 3 = 3) and so the conjugate-symmetry property simplifies to just
the symmetry property 〈w, v〉 = 〈v, w〉.

• We now give some examples of inner product spaces.

• Rn as an inner product space. We already know that Rn is a real
vector space. If we now equip Rn with the inner product equal to the
dot product

〈x, y〉 := x · y

i.e.

〈(x1, x2, . . . , xn), (y1, . . . , yn)〉 = x1y1 + x2y2 + . . .+ xnyn =
n∑
j=1

xjyj

then we obtain an inner product space. For instance, we now have
〈(1, 2), (3, 4)〉 = 11.

• To verify that we have an inner product space, we have to verify the
linearity property, conjugate symmetry property, and the positivity
property. To verify the linearity property, observe that

〈x+ x′, y〉 = (x+ x′) · y = x · y + x′ · y = 〈x, y〉+ 〈x′, y〉

and
〈cx, y〉 = (cx) · y = c(x · y) = c〈x, y〉
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while the conjugate symmetry follows since

〈y, x〉 = y · x = x · y = 〈x, y〉 = 〈x, y〉

(since the conjugate of a real number is itself. To verify the positivity
property, observe that

〈(x1, x2, . . . , xn), (x1, . . . , xn)〉 = x21 + x22 + . . .+ x2n

which is clearly positive if the x1, . . . , xn are not all zero.

• The difference between the dot product and the inner product is that
the dot product is specific to Rn, while the inner product is a more
general concept and is applied to many other vector spaces.

• One can interpret the dot product x · y as measuring the amount of
“correlation” or “interaction” between x and y; the longer that x and y
are, and the more that they point in the same direction, the larger the
dot product becomes. If x and y point in opposing directions then the
dot product is negative, while if x and y point at right angles then the
dot product is zero. Thus the dot product combines both the length
of the vectors, and their angle (as can be seen by the famous formula
x · y = |x||y| cos θ but easier to work with than either length or angle
because it is (bi-)linear (while length and angle individually are not
linear quantities).

• Rn as an inner product space II. One doesn’t have to use the dot
product as the inner product; other dot products are possible. For
instance, one could endow Rn with the non-standard inner product

〈x, y〉′ := 10x · y,

so for instance 〈(1, 2), (3, 4)〉′ = 110. While this is not the standard
inner product, it still obeys the three properties of linearity, conju-
gate symmetry, and positivity (why?), so this is still an inner product
(though to avoid confusion we have labeled it as 〈, 〉′ instead of 〈, 〉. The
situation here is similar to bases of vector spaces; a vector space such as
Rn can have a standard basis but also have several non-standard bases
(for instance, we could multiply every vector in the standard basis by
10), and the same is often true of inner products. However in the vast
majority of cases we will use a standard inner product.
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• More generally, we can multiply any inner product by a positive con-
stant, and still have an inner product.

• R as an inner product space. A special case of the previous example
of Rn with the standard inner product occurs when n = 1. Then our
inner product space is just the real numbers, and the inner product is
given by the ordinary product: 〈x, y〉 := xy. For instance 〈2, 3〉 = 6.
Thus, plain old multiplication is itself an example of an inner product
space.

• C as an inner product space. Now let’s look at the complex num-
bers C, which is a one-dimensional complex vector space (so the field of
scalars is now C). Here, we could reason by analogy with the previous
example and guess that 〈z, w〉 := zw would be an inner product, but
this does not obey either the conjugate-symmetry property or the pos-
itivity property: if z were a complex number, then 〈z, z〉 = z2 would
not necessarily be a positive real number (or even a real number); for
instance 〈i, i〉 = −1.

• To fix this, the correct way to define an inner product on C is to
set 〈z, w〉 := zw; in other words we have to conjugate the second
factor. This inner product is now linear in the first variable (why?)
and conjugate-symmetric (why?). To verify positivity, observe that
〈a+ bi, a+ bi〉 = (a+ bi)(a− bi) = a2 + b2 which will be a positive real
number if a+ bi is non-zero.

• Cn as an inner product space. Now let’s look at the complex vector
space

Cn := {(z1, z2, . . . , zn) : z1, z2, . . . , zn ∈ C}.

This is just like Rn but with the scalars being complex instead of real;
for instance (3, 1 + i, 3i) would lie in C3 but it wouldn’t be a vector in
R3. We can define an inner product here by

〈(z1, z2, . . . , zn), (w1, w2, . . . , wn)〉 := z1w1 + z2w2 + . . .+ znwn;

note how this definition is a hybrid of the Rn inner product and the C
inner product. This is an inner product space (why?).
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• Functions as an inner product space. Consider C([0, 1]; R), the
space of continuous real-valued functions from the interval [0, 1] to R.
This is an infinite-dimensional real vector space, containing such func-
tions as sin(x), x2 + 3, 1/(x+ 1), and so forth. We can define an inner
product on this space by defining

〈f, g〉 :=

∫ 1

0

f(x)g(x) dx;

for instance,

〈x+ 1, x2〉 =

∫ 1

0

(x+ 1)x2 dx = (
x4

4
+
x3

3
)|10 =

1

4
+

1

3
=

7

12
.

Note that we need the continuity property in order to make sure that
this integral actually makes sense (as opposed to diverging to infinity or
otherwise doing something peculiar). One can verify fairly easily that
this is an inner product space; we just give parts of this verification.
One of the things we have to show is that

〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉,

but this follows since the left-hand side is∫ 1

0

(f1(x)+f2(x))g(x) dx =

∫ 1

0

f1(x)g(x) dx+

∫ 1

0

f2(x)g(x) dx = 〈f1, g〉+〈f2, g〉.

To verify positivity, observe that

〈f, f〉 =

∫ 1

0

f(x)2 dx.

The function f(x)2 is always non-negative, and if f is not the zero
function on [0, 1], then f(x)2 must be strictly positive for some x ∈
[0, 1]. Thus there is a strictly positive area under the graph of f(x)2,

and so
∫ 1

0
f(x)2 dx > 0.

• One can view this example as an infinite-dimensional version of the
finite-dimensional inner product space example of Rn. To see this,
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let N be a very large number. Remembering that integrals can be
approximated by Riemann sums, we have (non-rigorously) that∫ 1

0

f(x)g(x) dx ≈
N∑
j=1

f(
j

N
)g(

j

N
)

1

N
,

or in other words

〈f, g〉 ≈ 1

N
(f(

1

N
), f(

2

N
), . . . , f(

N

N
)) · (g(

1

N
), g(

2

N
), . . . , g(

N

N
)),

and the right-hand side resembles an example of the inner product on
RN (admittedly there is an additional factor of 1

N
, but as observed

before, putting a constant factor in the definition of an inner product
just gives you another inner product.

• Functions as an inner product space II. Consider C([−1, 1]; R),
the space of continuous real-valued functions on [−1, 1]. Here we can
define an inner product as

〈f, g〉 :=

∫ 1

−1
f(x)g(x) dx.

Thus for instance

〈x+ 1, x2〉 =

∫ 1

−1
(x+ 1)x2 dx = (

x4

4
+
x3

3
)|1−1 =

2

3
.

Note that this inner product of x + 1 and x2 was different from the
inner product of x+ 1 and x2 given in the previous example! Thus it is
important, when dealing with functions, to know exactly what the do-
main of the functions is, and when dealing with inner products, to know
exactly which inner product one is using - confusing one inner product
for another can lead to the wrong answer! To avoid confusion, one
sometimes labels the inner product with some appropriate subscript,
for instance the inner product here might be labeled 〈, 〉C([−1,1];R) and
the previous one labeled 〈, 〉C([0,1];R).

• Functions as an inner product space III. Now consider C([0, 1]; C),
the space of continuous complex-valued functions from the interval [0, 1]
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to C; this includes such functions as sin(x), x2 + ix− 3 + i, i/(x− i),
and so forth. Note that while the range of this function is complex,
the domain is still real, so x is still a real number. This is a infinite-
dimensional complex vector space (why?). We can define an inner
product on this space as

〈f, g〉 :=

∫ 1

0

f(x)g(x) dx.

Thus, for instance

〈x2, x+ i〉 =

∫ 1

0

x2(x− i) dx = (
x4

4
− ix3

3
)10 =

1

4
− i

3
.

This can be easily verified to be an inner product space. For the posi-
tivity, observe that

〈f, f〉 =

∫ 1

0

f(x)f(x) dx =

∫ 1

0

|f(x)|2 dx.

Even though f(x) can be any complex number, |f(x)|2 must be a non-
negative real number, and an argument similar to that for real functions
shows that

∫ 1

0
|f(x)|2 dx is a positive real number when f is not the

zero function on [0, 1].

• Polynomials as an inner product space. The inner products in
the above three examples work on functions. Since polynomials are a
special instance of functions, the above inner products are also inner
products on polynomials. Thus for instance we can give P3(R) the
inner product

〈f, g〉 :=

∫ 1

0

f(x)g(x) dx,

so that for instance

〈x, x2〉 =

∫ 1

0

x3 dx =
x4

4
|10 =

1

4
.

Or we could instead give P3(R) a different inner product

〈f, g〉 :=

∫ 1

−1
f(x)g(x) dx,
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so that for instance

〈x, x2〉 =

∫ 1

−1
x3 dx =

x4

4
|1−1 = 0.

Unfortunately, we have here a large variety of inner products and it
is not obvious what the “standard” inner product should be. Thus
whenever we deal with polynomials as an inner product space we shall
be careful to specify exactly which inner product we will use. However,
we can draw one lesson from this example, which is that if V is an inner
product space, then any subspace W of V is also an inner product
space. (Note that if the properties of linearity, conjugate symmetry,
and positivity hold for the larger space V , then they will automatically
hold for the smaller space W (why?)).

• Matrices as an inner product space. Let Mm×n(R) be the space
of real matrices with m rows and n columns; a typical element is

A =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
...

...
Am1 Am2 . . . Amn

 .

• This is a mn-dimensional real vector space. We can turn this into an
inner product space by defining the inner product

〈A,B〉 :=
m∑
i=1

n∑
j=1

AijBij;

i.e. for every row and column we multiply the corresponding entries of
A and B together, and then sum. For instance,

〈
(

1 2
3 4

)
,

(
5 6
7 8

)
〉 = 1× 5 + 2× 6 + 3× 7 + 4× 8 = 70.

It is easy to verify that this is also an inner product; note how similar
this is to the standard Rn inner product. This inner product can also
be written using transposes and traces:

〈A,B〉 = tr(ABt).
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To see this, note that ABt is an m×m matrix, with the top left entry
being A11B11+A12B12+ . . .+A1nB1n, the second entry on the diagonal
being A21B21 +A22B22 + . . .+A2nB2n, and so forth down the diagonal
(why?). Adding these together we obtain 〈A,B〉. For instance,

tr(

(
1 2
3 4

)(
5 6
7 8

)t

) = tr

(
1× 5 + 2× 6 1× 7 + 2× 8
3× 5 + 4× 5 3× 7 + 4× 8

)

= 1× 5 + 2× 6 + 3× 7 + 4× 8 = 〈
(

1 2
3 4

)
,

(
5 6
7 8

)
.

• Matrices as an inner product space II. Let Mm×n(C) be the
space of complex matrices with m rows and n columns; this is an mn-
dimensional complex vector space. This is an inner product space with
inner product

〈A,B〉 :=
m∑
i=1

n∑
j=1

AijBij.

• It is not hard to verify that this is indeed an inner product space. Unlike
the previous example, the inner product is not given by the formula
〈A,B〉 = tr(ABt), however there is a very similar formula. Define the
adjoint B† of a matrix to be the complex conjugate of the transpose
Bt; i.e. B† is the same matrix as Bt but with every entry replaced by
its complex conjugate. For instance, 1 + 2i 3 + 4i

5 + 6i 7 + 8i
9 + 10i 11 + 12i

† =

(
1− 2i 5− 6i 9− 10i
3− 4i 7− 8i 11− 12i

)
.

The adjoint is the complex version of the transpose; it is completely
unrelated to the adjugate matrix in the previous week’s notes. It is
easy to verify that 〈A,B〉 = tr(AB†).

• (Optional remarks) To summarize: many of the vector spaces we have
encountered before, can be upgraded to inner product spaces. As we
shall see, the additional capabilities of inner product spaces can be
useful in many applications when the more basic capabilities of vec-
tor spaces are not enough. On the other hand, inner products add
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complexity (and possible confusion, if there is more than one choice
of inner product available) to a problem, and in many situations (for
instance, in the last six weeks of material) they are unnecessary. So
it is sometimes better to just deal with bare vector spaces, with no
inner product attached; it depends on the situation. (A more subtle
reason why sometimes adding extra structure can be bad, is because
it reduces the amount of symmetry in a situation; it is relatively easy
for a transformation to be linear (i.e. it preserves the vector space
structures of addition and scalar multiplication) but it is much harder
to be isometric (which means that it not only preserves addition and
scalar multiplication, but also inner products as well.). So if one insists
on dealing with inner products all the time, then one loses a lot of
symmetries, because there is more structure to preserve, and this can
sometimes make a problem appear harder than it actually is. Some of
the deepest advances in physics, for instance, particularly in relativ-
ity and quantum mechanics, were only possible because the physicists
removed a lot of unnecessary structure from their models (e.g. in rel-
ativity they removed separate structures for space and time, keeping
only something called the spacetime metric), and then gained so much
additional symmetry that they could then use those symmetries to dis-
cover new laws of physics (e.g. Einstein’s law of gravitation).)

• Some basic properties of inner products:

• From the linearity and conjugate symmetry properties it is easy to see
that 〈v, w + w′〉 = 〈v, w〉 + 〈v, w′〉 and 〈v, cw〉 = c〈v, w〉 for all vectors
v, w, w′ and scalars c (why?) Note that when you pull a scalar c out of
the second factor, it gets conjugated, so be careful about that. (Another
way of saying this is that the inner product is conjugate linear, rather
than linear, in the second variable. Because the inner product is linear
in the first variable and only sort-of-linear in the second, it is sometimes
said that the inner product is sesquilinear (sesqui is Latin for “one and
a half”).

• The inner product of 0 with anything is 0: 〈0, v〉 = 〈v, 0〉 = 0. (This is
an easy consequence of the linearity (or conjugate linearity) - Why?).
In particular, 〈0, 0〉 = 0. Thus, by the positivity property, 〈v, v〉 is
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positive if v is non-zero and zero if v is zero. In particular, if we ever
know that 〈v, v〉 = 0, we can deduce that v itself is 0.

Inner products and length

• Once you have an inner product space, you can then define a notion of
length:

• Definition Let V be an inner product space, and let v be a vector
of V . Then the length of v, denoted ‖v‖, is given by the formula
‖v‖ :=

√
〈v, v〉. (In particular, 〈v, v〉 = ‖v‖2).

• Example In R2 with the standard inner product, the vector (3, 4) has
length

‖(3, 4)‖ =
√
〈(3, 4), (3, 4)〉 =

√
32 + 42 = 5.

• If instead we use the non-standard inner product 〈x, y〉 = 10x · y, then
the length is now

‖(3, 4)‖ =
√
〈(3, 4), (3, 4)〉 =

√
10(32 + 42) = 5

√
10.

Thus the notion of length depends very much on what inner product
you choose (although in most cases this will not be an issue since we
will use the standard inner product).

• From the positivity property we see that every non-zero vector has a
positive length, while the zero vector has zero length. Thus ‖v‖ = 0 if
and only if v = 0.

• If c is a scalar, then

‖cv‖ =
√
〈cv, cv〉 =

√
cc〈v, v〉 =

√
|c|2‖v‖2 = |c|‖v‖.

• Example In a complex vector space, the vector (3 + 4i)v is five times
as long as v. The vector −v has exactly the same length as v.

• The inner product in some special cases can be expressed in terms of
length. We already know that 〈v, v〉 = ‖v‖2. More generally, if w is a
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positive scalar multiple of v (so that v and w are parallel and in the
same direction), then w = cv for some positive real number c, and

〈v, w〉 = 〈v, cv〉 = c〈v, v〉 = c‖v‖2 = ‖v‖‖cv‖ = ‖v‖‖w‖,

i.e. when v and w are pointing in the same direction then the inner
product is just the product of the norms. In the other extreme, if w is
a negative scalar multiple of v, then w = −cv for some positive c, and

〈v, w〉 = 〈v,−cv〉 = −c〈v, v〉 = −c‖v‖2

= −‖v‖| − c|‖v‖ = −‖v‖‖ − cv‖ = −‖v‖‖w‖,
and so the inner product is negative the product of the norms. In
general the inner product lies in between these two extremes:

• Cauchy-Schwarz inequality Let V be an inner product space. For
any v, w ∈ V , we have

|〈v, w〉| ≤ ‖v‖‖w‖.

• Proof. If w = 0 then both sides are zero, so we can assume that w 6= 0.
From the positivity property we know that 〈v, v〉 ≥ 0. More generally,
for any scalars a, b we know that 〈av + bw, av + bw〉 ≥ 0. But

〈av + bw, av + bw〉 = a〈v, av + bw〉+ b〈w, av + bw〉
= aa〈v, v〉+ ab〈v, w〉+ ba〈w, v〉+ bb〈w,w〉
= |a|2‖v‖2 + ab〈v, w〉+ ba〈v, w〉+ |b|2‖w‖2.

Since 〈av+ bw, av+ bw〉 ≥ 0 for any choice of scalars a, b, we thus have

|a|2‖v‖2 + ab〈v, w〉+ ba〈v, w〉+ |b|2‖w‖2 ≥ 0

for any choice of scalars a, b. We now select a and b in order to obtain
some cancellation. Specifically, we set

a := ‖w‖2; b := −〈v, w〉.

Then we see that

‖w‖4‖v‖2 − ‖w‖2〈v, w〉〈v, w〉 − 〈v, w〉‖w‖2〈v, w〉+ |〈v, w〉|2‖w‖2 ≥ 0;
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this simplifies to
‖w‖4‖v‖2 ≥ ‖w‖2|〈v, w〉|2.

Dividing by ‖w‖2 (recall that w is non-zero, so that ‖w‖ is non-zero)
and taking square roots we obtain the desired inequality. �

• Thus for real vector spaces, the inner product 〈v, w〉 always lies some-
where between +‖v‖‖w‖ and −‖v‖‖w‖. For complex vector spaces,
the inner product 〈v, w〉 can lie anywhere in the disk centered at the
origin with radius ‖v‖‖w‖. For instance, in the complex vector space
C, if v = 3 + 4i and w = 4− 3i then 〈v, w〉 = vw = 25i, while ‖v‖ = 5
and ‖w‖ = 5.

• The Cauchy-Schwarz inequality is extremely useful, especially in anal-
ysis; it tells us that if one of the vectors v, w have small length then
their inner product will also be small (unless of course the other vector
has very large length).

• Another fundamental inequality concerns the relationship between length
and vector addition. It is clear that length is not linear: the length of
v + w is not just the sum of the length of v and the length of w. For
instance, in R2, if v := (1, 0) and w = (0, 1) then ‖v +w‖ = ‖(1, 1)‖ =√

2 6= 1 + 1 = ‖v‖+ ‖w‖. However, we do have

• Triangle inequality Let V be an inner product space. For any v, w ∈
V , we have

‖v + w‖ ≤ ‖v‖+ ‖w‖.

• Proof. To prove this inequality, we can square both sides (note that
this is OK since both sides are non-negative):

‖v + w‖2 ≤ (‖v‖+ ‖w‖)2.

The left-hand side is

〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉.

The quantities 〈v, v〉 and 〈w,w〉 are just ‖v‖2 and ‖w‖2 respectively.
From the Cauchy-Schwarz inequality, the two quantities 〈v, w〉 and
〈w, v〉 have absolute value at most ‖v‖‖w‖. Thus

〈v + w, v + w〉 ≤ ‖v‖2 + ‖v‖‖w‖+ ‖v‖‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2
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as desired. �

• The reason this is called the triangle inequality is because it has a
natural geometric interpretation: if one calls two sides of a triangle v
and w, so that the third side is v+w, then the triangle inequality says
that the length of the third side is less than or equal to the sum of
the lengths of the other two sides. In other words, a straight line has
the shortest distance between two points (at least when compared to
triangular alternatives).

• The triangle inequality has a couple of variants. Here are a few:

‖v − w‖ ≤ ‖v‖+ ‖w‖

‖v + w‖ ≥ ‖v‖ − ‖w‖

‖v + w‖ ≥ ‖w‖ − ‖v‖

‖v − w‖ ≥ ‖v‖ − ‖w‖

‖v − w‖ ≥ ‖w‖ − ‖v‖

Thus for instance, if v has length 10, and w has length 3, then both v+w
and v−w have length somewhere between 7 and 13. (Can you see this
geometrically?). These inequalities can be proven in a similar manner
to the original triangle inequality, or alternatively one can start with
the original triangle inequality and do some substitutions (e.g. replace
w by −w, or replace v by v − w, on both sides of the inequality; try
this!).
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Math 115A - Week 9
Textbook sections: 6.1-6.2

Topics covered:

• Orthogonality

• Orthonormal bases

• Gram-Schmidt orthogonalization

• Orthogonal complements

* * * * *
Orthogonality

• From your lower-division vector calculus you know that two vectors
v, w in R2 or R3 are perpendicular if and only if v ·w = 0; for instance,
(3, 4) and (−4, 3) are perpendicular.

• Now that we have inner products - a generalization of dot products -
we can now give a similar notion for all inner product spaces.

• Definition. Let V be an inner product space. If v, w are vectors in V ,
we say that v and w are orthogonal if 〈v, w〉 = 0.

• Example. In R4 (with the standard inner product), the vectors (1, 1, 0, 0)
and (0, 0, 1, 1) are orthogonal, as are (1, 1, 1, 1) and (1,−1, 1,−1), but
the vectors (1, 1, 0, 0) and (1, 0, 1, 0) are not orthogonal. In C2, the
vectors (1, i) and (1,−i) are orthogonal, but (1, 0) and (i, 0) are not.

• Example. In any inner product space, the 0 vector is orthogonal to
everything (why?). On the other hand, a non-zero vector cannot be
orthogonal to itself (why? Recall that 〈v, v〉 = ‖v‖2).

• Example. In C([0, 1]; C) with the inner product

〈f, g〉 :=

∫ 1

0

f(x)g(x) dx,
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the functions 1 and x− 1
2

are orthogonal (why?), but 1 and x are not.
However, in C([−1, 1]; C) with the inner product

〈f, g〉 :=

∫ 1

−1
f(x)g(x) dx,

the functions 1 and x− 1
2

are no longer orthogonal, however the func-
tions 1 and x now are. Thus the question of whether two vectors are
orthogonal depends on which inner product you use.

• Sometimes we say that v and w are perpendicular instead of orthogonal.
This makes the most sense for Rn, but can be a bit confusing when
dealing with other inner product spaces such as C([−1, 1],C) - how
would one visualize the functions 1 and x being “perpendicular”, for
instance (or i and x, for that matter)? So I prefer to use the word
orthogonal when dealing with general inner product spaces.

• Sometimes we write v ⊥ w to denote the fact that v is orthogonal to
w.

• Being orthogonal is at the opposite extreme of being parallel; recall
from the Cauchy-Schwarz inequality that |〈v, w〉| must lie between 0
and ‖v‖‖w‖. When v and w are parallel then |〈v, w〉| attains its max-
imum possible value of ‖v‖‖w‖, while when v and w are orthogonal
then |〈v, w〉| attains its minimum value of 0.

• Orthogonality is symmetric: if v is orthgonal to w then w is orthogonal
to v. (Why? Use the conjugate symmetry property and the fact that
the conjugate of 0 is 0).

• Orthogonality is preserved under linear combinations:

• Lemma 1. Suppose that v1, . . . , vn are vectors in an inner product
space V , and suppose that w is a vector in V which is orthogonal to all
of v1, v2, . . . , vn. Then w is also orthogonal to any linear combination
of v1, . . . , vn.

• Proof Let a1v1 + . . .+anvn be a linear combination of v1, . . . , vn. Then
by linearity

〈a1v1 + . . .+ anvn, w〉 = a1〈v1, w〉+ . . .+ an〈vn, w〉.
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But since w is orthogonal to each of v1, . . . , vn, all the terms on the
right-hand side are zero. Thus w is orthogonal to a1v1 + . . . + anvn as
desired. �

• In particular, if v and w are orthogonal, then cv and w are also orthog-
onal for any scalar c (why is this a special case of Lemma 1?)

• You are all familiar with the following theorem about orthogonality.

• Pythagoras’s theorem If v and w are orthogonal vectors, then ‖v +
w‖2 = ‖v‖2 + ‖w‖2.

• Proof. We compute

‖v + w‖2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉.

But since v and w are orthogonal, 〈v, w〉 and 〈w, v〉 are zero. Since
〈v, v〉 = ‖v‖2 and 〈w,w〉 = ‖w‖2, we obtain ‖v+w‖2 = ‖v‖2 + ‖w‖2 as
desired. �

• This theorem can be generalized:

• Generalized Pythagoras’s theorem If v1, v2, . . . , vn are all orthog-
onal to each other (i.e. vi ⊥ vj = 0 for all i 6= j) then

‖v1 + v2 + . . .+ vn‖2 = ‖v1‖2 + ‖v2‖2 + . . .+ ‖vn‖2.

• Proof. We prove this by induction. If n = 1 the claim is trivial, and
for n = 2 this is just the ordinary Pythagoras theorem. Now suppose
that n > 2, and the claim has already been proven for n − 1. From
Lemma 1 we know that vn is orthogonal to v1 + . . .+ vn−1, so

‖v1 + v2 + . . .+ vn‖2 = ‖v1 + . . .+ vn−1‖2 + ‖vn‖2.

On the other hand, by the induction hypothesis we know that

‖v1 + . . .+ vn−1‖2 = ‖v1‖2 + . . .+ ‖vn−1‖2.

Combining the two equations we obtain

‖v1 + v2 + . . .+ vn‖2 = ‖v1‖2 + ‖v2‖2 + . . .+ ‖vn‖2

as desired. �
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• Recall that if two vectors are orthogonal, then they remain orthogonal
even when you multiply one or both of them by a scalar. So we have

• Corollary 2. If v1, v2, . . . , vn are all orthogonal to each other (i.e.
vi ⊥ vj for all i 6= j) and a1, . . . , an are scalars, then

‖a1v1 + a2v2 + . . .+ anvn‖2 = |a1|2‖v1‖2 + |a2|2‖v2‖2 + . . .+ |an|2‖vn‖2.

• Definition A collection (v1, v2, . . . , vn) of vectors is said to be orthogo-
nal if every pair of vectors is orthogonal to each other (i.e. 〈vi, vj〉 = 0
for all i 6= j). If a collection is orthogonal, and furthermore each vector
has length 1 (i.e. ‖vi‖ = 1 for all i) then we say that the collection is
orthonormal.

• Example In R4, the collection ((3, 0, 0, 0), (0, 4, 0, 0), (0, 0, 5, 0)) is or-
thogonal but not orthonormal. But the collection ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0))
is orthonormal (and therefore orthogonal). Note that any single vector
v1 is always considered an orthogonal collection (why?).

• Corollary 3. If (v1, v2, . . . , vn) is an orthonormal collection of vectors,
and a1, . . . , an are scalars, then

‖a1v1 + a2v2 + . . .+ anvn‖2 = |a1|2 + |a2|2 + . . .+ |an|2.

Note that the right-hand side |a1|2+ |a2|2+ . . .+ |an|2 is always positive,
unless a1, . . . , an are all zero. Thus a1v1 + . . .+anvn is always non-zero,
unless a1, . . . , an are all zero. Thus

• Corollary 4. Every orthonormal collection of vectors is linearly inde-
pendent.

* * * * *
Orthonormal bases

• As we have seen, orthonormal collections of vectors have many nice
properties. As we shall see, things are even better when this collection
is also a basis:
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• Definition An orthonormal basis of an inner product space V is a
collection (v1, . . . , vn) of vectors which is orthonormal and is also an
ordered basis.

• Example. In R4, the collection ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)) is or-
thonormal but is not a basis. However, the collection ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))
is an orthonormal basis. More generally, the standard ordered basis of
Rn is always an orthonormal basis, as is the standard ordered basis of
Cn. (Actually, the standard bases of Rn and of Cn are the same; only
the field of scalars is different). The collection ((1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1))
is a basis of R4 but is not an orthonormal basis.

• From Corollary 4 we have

• Corollary 5 Let (v1, . . . , vn) be an orthonormal collection of vectors
in an n-dimensional inner product space. Then (v1, . . . , vn) is an or-
thonormal basis.

• Proof. This is just because any n linearly independent vectors in an
n-dimensional space automatically form a basis. �

• Example Consider the vectors (3/5, 4/5) and (−4/5, 3/5) in R2. It is
easy to check that they have length 1 and are orthogonal. Since R2 is
two-dimensional, they thus form an orthonormal basis.

• Let (v1, . . . , vn) be an ordered basis of an n-dimensional inner product
space V . Since (v1, . . . , vn) is a basis, we know that every vector v in
V can be written as a linear combination of v1, . . . , vn:

v = a1v1 + . . .+ anvn.

In general, finding these scalars a1, . . . , an can be tedious, and often
requires lots of Gaussian elimination. (Try writing (1, 0, 0, 0) as a lin-
ear combination of (1, 1, 1, 1), (1, 2, 3, 4), (2, 2, 1, 1) and (1, 2, 1, 2), for
instance). However, if we know that the basis is an orthonormal basis,
then finding these coefficients is much easier.

• Theorem 6. Let (v1, . . . , vn) be an orthonormal basis of an inner
product space V . Then for any vector v ∈ V , we have

v = a1v1 + a2v2 + . . .+ anvn
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where the scalars a1, . . . , an are given by the formula

aj = 〈v, vj〉 for all j = 1, . . . , n

• Proof. Since (v1, . . . , vn) is a basis, we know that v = a1v1 + . . .+anvn
for some scalars a1, . . . , an. To finish the proof we have to solve for
a1, . . . , an and verify that aj = 〈v, vj〉 for all j = 1, . . . , n. To do this
we take our equation for v and take inner products of both sides with
vj:

〈v, vj〉 = 〈a1v1 + a2v2 + . . .+ anvn, vj〉.

We expand out the right-hand side as

a1〈v1, vj〉+ a2〈v2, vj〉+ . . .+ an〈vn, vj〉.

Since v1, . . . , vn are orthogonal, all the inner products vanish except
〈vj, vj〉 = ‖vj‖2. But ‖vj‖ = 1 since v1, . . . , vn is also orthonormal. So
we get

〈v, vj〉 = 0 + . . .+ 0 + aj × 1 + 0 + . . .+ 0

as desired. �

From the definition of co-ordinate vector [v]β, we thus have a simple
way to compute co-ordinate vectors:

• Corollary 7 Let β = (v1, . . . , vn) be an orthonormal basis of an inner
product space V . Then the co-ordinate vector [v]β of any vector v is
then given by

[v]β =


〈v, v1〉
〈v, v2〉
...
〈v, vn〉

 .

• Note that Corollary 7 also gives us a reltaively quick way to compute
the co-ordinate matrix [T ]γβ of a linear operator T : V → W provided
that γ is an orthonormal basis, since the columns of [T ]γβ are just [Tvj]

γ,
where vj are the basis vectors of β.
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• Example. Let v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (0, 0, 1), and v :=
(3, 4, 5). Then (v1, v2, v3) is an orthonormal basis of R3. Thus

v = a1v1 + a2v2 + a3v3,

where a1 := 〈v, v1〉 = 3, a2 := 〈v, v2〉 = 4, and a3 := 〈v, v3〉 = 5.
(Of course, in this case one could expand v as a linear combination of
v1, v2, v3 just by inspection.)

• Example. Let v1 := (3/5, 4/5), v2 := (−4/5, 3/5), and v := (1, 0).
Then (v1, v2) is an orthonormal basis for R2. Now suppose we want to
write v as a linear combination of v1 and v2. We could use Gaussian
elimination, but because our basis is orthogonal we can use Theorem 6
instead to write

v = a1v1 + a2v2

where a1 := 〈v, v1〉 = 3/5 and a2 := 〈v, v2〉 := −4/5. Thus v =
3
5
v1 − 4

5
v2. (Try doing the same thing using Gaussian elimination, and

see how much longer it would take!). Equivalently, we have

[v](v1,v2) =

(
3/5
−4/5

)
.

• The example of Fourier series. We now give an example which
is important in many areas of mathematics (though we won’t use it
much in this particular course) - the example of Fourier series. Let
C([0, 1]; C) be the inner product space of continuous complex-valued
functions on the interval [0, 1], with the inner product

〈f, g〉 :=

∫ 1

0

f(x)g(x) dx.

Now consider the functions . . . , v−3, v−2, v−1, v0, v1, v2, v3, . . . in C([0, 1]; C)
defined by

vk(x) := e2πikx;

these functions are sometimes known as complex harmonics.
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• Observe that these functions all have length 1:

‖vk‖ = 〈vk, vk〉1/2 = (

∫ 1

0

vk(x)vk(x) dx)1/2

= (

∫ 1

0

e2πikxe−2πikx dx)1/2 = (

∫ 1

0

1 dx)1/2 = 1.

Also, they are all orthogonal: if j 6= k then

〈vj, vk〉 =

∫ 1

0

vj(x)vk(x) dx =

∫ 1

0

e2πijxe−2πikx dx

=

∫ 1

0

e2πi(j−k)x dx =
e2πi(j−k)x

2πi(j − k)
|10 =

e2πi(j−k) − 1

(2πi(j − k)

=
1− 1

2πi(j − k)
= 0.

Thus the collection . . . , v−3, v−2, v−1, v0, v1, v2, v3, . . . is an infinite or-
thonormal collection of vectors in C([0, 1]; C).

• We have not really discussed infinite bases, but it does turn out that,
in some sense, that the above collection is an orthonormal basis; thus
every function in C([0, 1]; C) is a linear combination of complex har-
monics. (The catch is that this is an infinite linear combination, and
one needs the theory of infinite series (as in Math 33B) to make this
precise. This would take us too far afield from this course, unfortu-
nately). This statement - which is not very intuitive at first glance
- was first conjectured by Fourier, and forms the basis for something
called Fourier analysis (which is an entire course in itself!). For now,
let us work with a simpler situation.

• Define the space Tn of trigonometric polynomials of degree at most n
to be the span of v0, v1, v2, . . . , vn. In other words, Tn consists of all the
functions f ∈ C([0, 1]; C) of the form

f = a0 + a1e
2πix + a2e

2πi2x + . . .+ ane
2πinx.

Notice that this is very similar to the space Pn(R) of polynomials of
degree at most n, since an element f ∈ Pn(R) has the form

f = a0 + a1x+ a2x
2 + . . .+ anx

n
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and so the difference between polynomials and trigonometric polynomi-
als is that x has been replaced by e2πix = cos(2πx) + i sin(2πx) (hence
the name, trigonometric polynomial).

• Tn is a subspace of the inner product space C([0, 1]; C), and is thus
itself an inner product space. Since the vectors v0, v1, . . . , vn are or-
thonormal, they are linearly independent, and thus (v0, v1, . . . , vn) is
an orthonormal basis for Tn. Thus by Theorem 6, every function f in
Tn can be written as a series

f = a0 + a1e
2πix + a2e

2πi2x + . . .+ ane
2πinx =

n∑
j=0

aje
2πijx.

where the (complex) scalars a0, a1, . . . , an are given by the formula

aj := 〈f, vj〉 =

∫ 1

0

f(x)e−2πijx dx.

The coefficients aj are known as the Fourier coefficients of f , and the
above series is known as the Fourier series of f . From Corollary 3 we
have the formula∫ 1

0

|f(x)|2 dx = ‖f‖2 = |a0|2 + |a1|2 + . . .+ |an|2 =
n∑
j=0

|aj|2;

this is known as Plancherel’s formula. These formulas form the foun-
dation of Fourier analysis, and are useful in many other areas, such
as signal processing, partial differential equations, and number theory.
(Actually, to be truly useful, one needs to generalize these formulas to
handle all kinds of functions, not just trigonometric polynomials, but
to do so is beyond the scope of this course).

* * * * *
The Gram-Schmidt orthogonalization process.

• In this section all vectors are assumed to belong to a fixed inner product
space V .
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• In the last section we saw how many more useful properties orthonormal
bases had, in comparison with ordinary bases. So it would be nice
if we had some way of converting a non-orthonormal basis into an
orthonormal one. Fortunately, there is such a process, and it is called
Gram-Schmidt orthogonalization.

• To make a basis orthonormal there are really two steps; first one has
to make a basis orthogonal, and then once it is orthogonal, one has to
make it orthonormal. The second procedure is easier to describe than
the first, so let us describe that first.

• Definition. A unit vector is any vector v of length 1 (i.e. ‖v‖ = 1, or
equivalently 〈v, v〉 = 1).

• Example. In R2, the vector (3/5, 4/5) is a unit vector, but (3, 4) is not.

In C([0, 1]; C), the function x is not a unit vector (‖x‖2 =
∫ 1

0
xx dx =

1/2), but
√

2x is (why?). The 0 vector is never a unit vector. In R3,
the vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) are all unit vectors.

• Unit vectors are sometimes known as normalized vectors. Note that
an orthogonal basis will be orthonormal if it consists entirely of unit
vectors.

• Most non-zero vectors are not unit vectors, e.g. (3, 4) is not a unit
vector. However, one can always turn a non-zero vector into a unit
vector by dividing out by its length:

• Lemma 8. If v is a non-zero vector, then v/‖v‖ is a unit vector.

• Proof. Since v is non-zero, ‖v‖ is non-zero, so v/‖v‖ is well defined.
But then

‖v/‖v‖‖ = ‖ 1

‖v‖
v‖ =

1

‖v‖
‖v‖ = 1

and so v/‖v‖ is a unit vector. �

• We sometimes call v/‖v‖ the normalization of v. If (v1, v2, . . . , vn) is a
basis, then we can normalize this basis by replacing each vector vj by its
normalization vj/‖vj‖, obtaining a new basis (v1/‖v1‖, v2/‖v2‖, . . . , vn/‖vn‖)
which now consists entirely of unit vectors. (Why is this still a basis?)
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• Lemma 9. If (v1, v2, . . . , vn) is an orthogonal basis of an inner product
space V , then the normalization (v1/‖v1‖, v2/‖v2‖, . . . , vn/‖vn‖) is an
orthonormal basis.

• Proof. Since the basis (v1, . . . , vn) has n elements, V must be n-
dimensional. Since the vectors vj are orthogonal to each other, the
vectors vj/‖vj‖ must also be orthogonal to each other (multiplying
vectors by a scalar does not affect orthogonality). By Lemma 8, these
vectors are also unit vectors. So the claim follows from Corollary 5. �

• Example. The basis ((3, 4), (−40, 30)) is an orthogonal basis of R2

(why?). If we normalize this basis we obtain ((3/5, 4/5), (−4/5, 3/5)),
and this is now an orthonormal basis of R2.

• So we now know how to turn an orthogonal basis into an orthonormal
basis - we normalize all the vectors by dividing out their length. Now
we come to the tricker part of the procedure - how to turn a non-
orthogonal basis into an orthogonal one. The idea is now to subtract
scalar multiples of one vector from another to make them orthogonal
(you might see some analogy here with row operations of the second
and third kind).

• To illustrate the idea, we first consider the problem of how to make
just two vectors v, w orthogonal to each other.

• Lemma 10. If v and w are vectors, and w is non-zero, then the vector
v − cw is orthogonal to w, where the scalar c is given by the formula
c := 〈v,w〉

‖w‖2 .

• Proof. We compute

〈v − cw,w〉 = 〈v, w〉 − c〈w,w〉 = 〈v, w〉 − c‖w‖2.

But since c := 〈v,w〉
‖w‖2 , we have 〈v−cw,w〉 = 0 and so v−cw is orthogonal

to w. �

• Example. Let v = (3, 4) and w = (5, 0). Then v and w are not
orthogonal; in fact, 〈v, w〉 = 15 6= 0. But if we replace v by the vector
v′ := v − cw = (3, 4)− 15

52
(5, 0) = (3, 4)− (3, 0) = (0, 4), then v′ is now

orthogonal to w.
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• Now we suppose that we have already made k vectors orthogonal to
each other, and now we work out how to make a (k + 1)th vector also
orthogonal to the first k.

• Lemma 11. Let w1, w2, . . . , wk be orthogonal non-zero vectors, and
let v be another vector. Then the vector v′, defined by

v′ := v − c1w1 − c2w2 − . . .− ckwk

is orthogonal to all of w1, w2, . . . , wk, where the scalars c1, c2, . . . , ck are
given by the formula

cj :=
〈v, wj〉
‖wj‖2

for all j = 1, . . . , k.

• Note that Lemma 10 is just Lemma 11 applied to the special case k = 1.
We can write v′ in series notation as

v′ := v −
k∑
j=1

〈v, wj〉
‖wj‖2

wj.

• Proof. We have to show that v′ is orthogonal to each wj. We compute

〈v′, wj〉 = 〈v, wj〉 − c1〈w1, wj〉 − c2〈w2, wj〉 − . . .− ck〈wk, wj〉.

But we are assuming that the w1, . . . , wk are orthogonal, so all the inner
products 〈wi, wj〉 are zero, except for 〈wj, wj〉, which is equal to ‖wj‖2.
Thus

〈v′, wj〉 = 〈v, wj〉 − cj‖wj‖2.

But since cj :=
〈v,wj〉
‖wj‖2 , we thus have 〈v′, wj〉 and so v′ is orthogonal to

wj. �

• We can now use Lemma 11 to turn any linearly independent set of
vectors into an orthogonal set.

• Gram-Schmidt orthogonalization process. Let v1, v2, . . . , vn be a
linearly independent set of vectors. Suppose we construct the vectors
w1, . . . , wn by the formulae

w1 := v1
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w2 := v2 −
〈v2, w1〉
‖w1‖2

w1

w3 := v3 −
〈v3, w1〉
‖w1‖2

w1 −
〈v3, w2〉
‖w2‖2

w2

. . .

wn := vn −
〈vn, w1〉
‖w1‖2

w1 − . . .−
〈vn, wn−1〉
‖wn−1‖2

wn−1.

Then the vectors w1, . . . , wn are orthogonal, non-zero, and the vector
space span(w1, . . . , wn) is the same vector space as span(v1, . . . , vn) (i.e.
the vectors w1, . . . , wn have the same span as v1, . . . , vn). More gen-
erally, we have that w1, . . . , wk has the same span as v1, . . . , vk for all
1 ≤ k ≤ n.

• Proof. We prove this by induction on n. In the base case n = 1 we
just have w1 := v1, and so clearly v1 and w1 has the same span. Also
v1 is an orthonormal collection of vectors (by default, since there is
nobody else to be orthonormal to).

Now suppose inductively that n > 1, and that we have already proven
the claim for n − 1. In particular, we already know that the vectors
w1, . . . , wn−1 are orthogonal, non-zero, and that v1, . . . , vk has the same
span as w1, . . . , wk for any 1 ≤ k ≤ n− 1. By Lemma 11, we thus see
that the vector wn is orthogonal to w1, . . . , wn−1. Now we have to show
that wn is non-zero and that w1, . . . , wn has the same span as v1, . . . , vn.

Let V denote the span of v1, . . . , vn, andW denote the span of w1, . . . , wn.
We have to show that V = W . Note that W contains the span of
w1, . . . , wn−1, and hence contains the span of v1, . . . , vn−1. In particu-
lar it contains v1, . . . , vn−1, and also contains wn. But from the formula

vn = wn +
〈vn, w1〉
‖w1‖2

w1 + . . .+
〈n3, wn−1〉
‖wn−1‖2

wn−1

we thus see that W contains vn. Thus W contains the span of v1, . . . , vn,
i.e. W contains V . But V is n-dimensional (since it is the span of n
linearly independent vectors), and W is at most n dimensional (since
W is also the span of n vectors), and so V and W must actually be
equal. Furthermore this shows that w1, . . . , wn are linearly independent
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(otherwise W would have dimension less than n). In particular wn
is non-zero. This completes everything we need to do to finish the
induction. �

• Example Let v1 := (1, 1, 1), v2 := (1, 1, 0), and v3 := (1, 0, 0). The
vectors v1, v2, v3 are independent (in fact, they form a basis for R3) but
are not orthogonal. To make them orthogonal, we apply the Gram-
Schmidt orthogonalization process, setting

w1 := v1 = (1, 1, 1)

w2 := v2 −
〈v2, w1〉
‖w1‖2

w1 = (1, 1, 0)− 2

3
(1, 1, 1) = (

1

3
,
1

3
,−2

3
)

w3 := v3 −
〈v3, w1〉
‖w1‖2

w1 −
〈v3, w2〉
‖w2‖2

w2

= (1, 0, 0)− 1

3
(1, 1, 1)− 1/3

6/9
(
1

3
,
1

3
,−2

3
) = (1/2,−1/2, 0).

Thus we have created an orthogonal set (1, 1, 1), (1
3
, 1
3
,−2

3
), (1

2
,−1

2
, 0),

which has the same span as v1, v2, v3, i.e. it is also a basis for R3. Note
that we can then use Lemma 8 to normalize this basis and make it
orthonormal, obtaining the orthonormal basis

1√
3

(1, 1, 1),
1√
6

(1, 1,−2),
1√
2

(1,−1, 0).

• We shall call the normalized Gram-Schmidt orthogonalization process
the procedure of first applying the ordinary Gram-Schmidt orthogonal-
ization process, and then normalizing all the vectors one obtains as a
result of that process in order for them to have unit length.

• One particular consequence of Gram-Schmidt is that we always have at
least one orthonormal basis lying around, at least for finite-dimensional
inner product spaces.

• Corollary 12. Every finite-dimensional inner product space V has an
orthonormal basis.
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• Proof. Let’s say V is n-dimensional. Then V has some basis (v1, . . . , vn).
By the Gram-Schmidt orthogonalization process, we can thus create a
new collection (w1, . . . , wn) of non-zero orthogonal vectors. By Lemma
9, we can then create a collection (y1, . . . , yn) of orthonormal vectors.
By Corollary 5, it is an orthonormal basis of V . �

* * * * *
Orthogonal complements

• We know what it means for two vectors to be orthogonal to each other,
v ⊥ w; it just means that 〈v, w〉 = 0. We now state what it means for
two subspaces to be orthogonal to each other.

• Definition. Two subspaces V1, V2 of an inner product space V are said
to be orthogonal if we have v1 ⊥ v2 for all v1 ∈ V1 and v2 ∈ V2, and we
denote this by V1 ⊥ V2.

• Example. The subspaces V1 := {(x, y, 0, 0, 0) : x, y ∈ R} and V2 :=
{(0, 0, z, w, 0) : z, w ∈ R} of R5 are orthogonal, because (x, y, 0, 0, 0) ⊥
(0, 0, z, w, 0) for all x, y, z, w ∈ R. The space V1 is similarly orthogonal
to the three-dimensional space V3 := {(0, 0, z, w, u) : z, w, u ∈ R}.
However, V1 is not orthogonal to the one-dimensional space V4 :=
{(t, t, t, t, t) : t ∈ R}, since the inner product of (x, y, 0, 0, 0) and
(t, t, t, t, t) can be non-zero (e.g. take x = y = t = 1).

• Example. The zero vector space {0} is orthogonal to any other sub-
space of V (why?)

• Orthogonal spaces have to be disjoint:

• Lemma 13. If V1 ⊥ V2, then V1 ∩ V2 = {0}.

• Clearly 0 lies in V1 ∩ V2 since every vector space contains 0. Now
suppose for contradiction that V1 ∩ V2 contained at least one other
vector v, which must of course be non-zero. Then v ∈ V1 and v ∈ V2;
since V1 ⊥ V2, this implies that v ⊥ v, i.e. that 〈v, v〉 = 0. But this
implies that ‖v‖2 = 0, hence v = 0, contradiction. Thus V1 ∩ V2 does
not contain any vector other than zero. �
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• As we can see from the above example, a subspace V1 can be orthogonal
to many other subspaces V2. However, there is a maximal orthogonal
subspace to V1 which contains all the others:

• Definition The orthogonal complement of a subspace V1 of an inner
product space V , denoted V ⊥1 , is defined to be the space of all vectors
perpendicular to V1:

V ⊥1 := {v ∈ V : v ⊥ w for all w ∈ V1}.

• Example. Let V1 := {(x, y, 0, 0, 0) : x, y ∈ R}. Then V ⊥1 is the space
of all vectors (a, b, c, d, e) ∈ R5 such that (a, b, c, d, e) is perpendicular
to V1, i.e.

〈(a, b, c, d, e), (x, y, 0, 0, 0)〉 = 0 for all x, y ∈ R.

In other words,
ax+ by = 0 for all x, y ∈ R.

This can only happen when a = b = 0, although c, d, e can be arbitrary.
Thus we have

V ⊥1 = {(0, 0, c, d, e) : c, d, e ∈ R},
i.e. V ⊥1 is the space V3 from the previous example.

• Example. If {0} is the zero vector space, then {0}⊥ = V (why?). A
little trickier is that V ⊥ = {0}. (Exercise! Hint: if v is perpendicular
to every vector in V , then in particular it must be perpendicular to
itself).

• From Lemma 1 we can check that V ⊥1 is a subspace of V (exercise!),
and is hence an inner product space.

• Lemma 14. If V1 ⊥ V2, then V2 is a subspace of V ⊥1 . Conversely, if V2
is a subspace of V ⊥1 , then V1 ⊥ V2.

• Proof. First suppose that V1 ⊥ V2. Then every vector v in V2 is
orthogonal to all of V1, and hence lies in V ⊥1 by definition of V ⊥1 . Thus
V2 is a subspace of V ⊥1 . Conversely, if V2 is a subspace of V ⊥1 , then
every vector v in V2 is in V ⊥1 and is thus orthogonal to every vector in
V1. Thus V1 and V2 are orthogonal. �
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• Sometimes it is not so easy to compute the orthogonal complement of
a vector space, but the following result gives one way to do so.

• Theorem 15. Let W be a k-dimensional subspace of an n-dimensional
inner product space V . Let (v1, . . . , vk) be a basis of W , and let
(v1, v2, . . . , vk, vk+1, . . . , vn) be an extension of that basis to be a basis
of V . Let (w1, . . . , wn) be the normalized Gram-Schmidt orthogonal-
ization of (v1, . . . , vn). Then (w1, . . . , wk) is an orthonormal basis of
W , and (wk+1, . . . , wn) is an orthonormal basis of W⊥.

• Proof. From the Gram-Schmidt orthogonalization process, we know
that (w1, . . . , wk) spans the same space as (v1, . . . , vk) - i.e. it spans
W . Since W is k-dimensional, this means that (w1, . . . , wk) is a basis
for W , which is orthonormal by the normalized Gram-Schmidt process.
Similarly (w1, . . . , wn) spans the n-dimensional space V , which implies
that it is a basis for V .

• Thus the the vectors wk+1, . . . , wn are orthonormal and thus (by Corol-
lary 4) linearly independent. It remains to show that they span W⊥.
First we show that they lie in W⊥. Let wj be one of these vectors. Then
wj is orthogonal to w1, . . . , wk, and is thus (by Lemma 1) orthogonal
to their span, which is W . Thus wj lies in W⊥. In particular, the span
of wk+1, . . . , wn must lie inside W⊥.

• Now we show that every vector V ⊥ lies in the span of w1, . . . , wk. Let
v be any vector in W⊥. By Theorem 6 we have

v = 〈v, w1〉w1 + . . .+ 〈v, wn〉wn.

But since v ∈ W⊥, v is orthogonal to w1, . . . , wk, and so the first k
terms on the right-hand side vanish. Thus we have

v = 〈v, wk+1〉wk+1 + . . .+ 〈v, wn〉wn

and in particular v is in the span of wk+1, . . . , wn as desired. �

• Corollary 16 (Dimension theorem for orthogonal complements)
If W is a subspace of a finite-dimensional inner product space V , then
dim(W ) + dim(W⊥) = dim(V ).
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• Example. Suppose we want to find the orthogonal complement of the
line W := {(x, y) ∈ R2 : 3x+ 4y = 0} in R2. This example is so simple
that one could do this directly, but instead we shall choose do this via
Theorem 15 for sake of illustration. We first need to find a basis for W ;
since W is one-dimensional, we just to find one non-zero vector in W ,
e.g. v1 := (−4, 3), and this will be our basis. Then we extend this basis
to a basis of the two-dimensional space R2 by adding one more linearly
independent vector, for instance we could take v2 := (1, 0). This basis
is not orthogonal or orthonormal, but we can apply the Gram-Schmidt
process to make it orthogonal:

w1 := v1 = (−4, 3); w2 := v2−
〈v2, w1〉
‖w1‖2

w1 = (1, 0)−−4

25
(−4, 3) = (

9

25
,
12

25
).

We can then normalize:

w′1 := w1/‖w1‖ = (−4

5
,
3

5
); w′2 := w2/‖w2‖ = (

3

5
,
4

5
).

Thus w′1 is an orthonormal basis for W , w′2 is an orthonormal basis for
W⊥, and (w1, w2) is an orthonormal basis for R2. (Note that we could
skip the normalization step at the end if one only wanted an orthogonal
basis for these spaces, as opposed to an orthonormal basis).

• Example. Let’s give P2(R) the inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x) dx.

The space P2(R) contains P1(R) as a subspace. Suppose we wish to
compute the orthogonal complement of P1(R). We begin by taking a
basis of P1(R) - let’s use the standard basis (1, x), and then extend it
to a basis of P2(R) - e.g. (1, x, x2). We then apply the Gram-Schmidt
orthogonalization procedure:

w1 := 1

w2 := x− 〈x,w1〉
‖w1‖2

1 = x− 0

2
1 = x
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w3 := x2 − 〈x
2, w1〉
‖w1‖2

1− 〈x
2, w2〉
‖w2‖2

x

= x2 − 2/3

2
1− 0

2/3
x = x2 − 1/3.

We can then normalize:

w′1 := w1/‖w1‖ =
1√
2

w′2 := w2/‖w2‖ =

√
3√
2
x

w′3 := w3/‖w3‖ =

√
45√
8

(x2 − 1

3
).

Thus W⊥ has w′3 as an orthonormal basis. Or one can just use w3 as a
basis, so that

W⊥ = {a(x2 − 1

3
) : a ∈ R}.

• Corollary 17 If W is a k-dimensional subspace of an n-dimensional
inner product space V , then every vector v ∈ V can be written in
exactly one way as w + u, where w ∈ W and u ∈ W⊥.

• Proof. By Theorem 15, we can find a orthonormal basis (w1, w2, . . . , wn)
of V such that (w1, . . . , wk) is an orthonormal basis ofW and (wk+1, . . . , wn)
is an orthonormal basis of W⊥. If v is a vector in V , then we can write

v = a1w1 + . . .+ anwn

for some scalars a1, . . . , an. If we write

w := a1w1 + . . .+ akwk; u := ak+1wk+1 + . . .+ anwn

then we have w ∈ W,u ∈ W⊥, and v = w + u. Now we show that this
is the only way to decompose v in this manner. If v = w′+ u′ for some
w′ ∈ W , u′ ∈ W⊥, then

w + u = w′ + u′
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and so
w − w′ = u′ − u.

But w−w′ lies in W , and u′−u lies in W⊥. By Lemma 13, this vector
must be 0, so that w = w′ and u = u′. Thus there is no other way to
write v = w + u. �

• We call the vector w obtained in the above manner the orthogonal
projection of v onto W ; this terminology can be made clear by a picture
(at least in R3 or R2), since w, u, and v form a right-angled triangle
whose base w lies in W . This projection can be computed as

w = a1w1 + . . .+ akwk = 〈v, w1〉w1 + . . .+ 〈v, wk〉wk

where w1, . . . , wk is any orthonormal basis of W .

• Example Let W := {(x, y) ∈ R2 : 3x+ 4y = 0} be as before. Suppose
we wish to find the orthogonal projection of the vector (1, 1) to W .
Since we have an orthonormal basis given by w′1 := (−4

5
, 3
5
), we can

compute the orthogonal projection as

w = 〈(1, 1), w′1〉w′1 = −1

5
(−4

5
,
3

5
) = (

4

25
,− 3

25
).

• The orthogonal projection has the “nearest neighbour” property:

• Theorem 18. Let W be a subspace of a finite-dimensional inner prod-
uct space V , let v be a vector in V , and let w be the orthogonal pro-
jection of v onto W . Then w is closer to v than any other element of
W ; more precisely, we have ‖v−w′‖ > ‖v−w‖ for all vectors w′ in W
other than w.

• Proof. Write v = w+u, where w ∈ W is the orthogonal projection of v
ontoW , and u ∈ W⊥. Then we have ‖v−w‖ = ‖u‖. On the other hand,
to compute v−w′, we write v−w′ = (v−w)+(w−w′) = u+(w−w′).
Since w,w′ lie in W , w−w′ does also. But u lies in W⊥, thus u ⊥ w−w′.
By Pythagoras’s theorem we thus have

‖v − w′‖2 = ‖u‖2 + ‖w − w′‖2 > ‖u‖2

(since w 6= w′) and so ‖v − w′‖ > ‖u‖ = ‖v − w‖ as desired. �
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• This Theorem makes the orthogonal projection useful for approximat-
ing a given vector v in V by a another vector in a given subspace W of
V .

• Example Consider the vector x2 in P2(R). Suppose we want to find
the linear polynomial ax+ b ∈ P1(R) which is closest to x2 (using the
inner product on [−1, 1] from the previous example to define length).
By Theorem 18, this linear polynomial will be the orthogonal projection
of x2 to P1(R). Using the orthonormal basis w′1 = 1√

2
, w′2 =

√
3√
2
x from

the prior example, we thus see that this linear polynomial is

〈x2, w′1〉w′1 + 〈x2, w′2〉w′2 =
2/3√

2

1√
2

+ 0

√
3√
2
x =

1

3
+ 0x.

Thus the function 1/3 + 0x is the closest linear polynomial to x2 using
the inner product on [−1, 1]. (If one uses a different inner product,
one can get a different “closest approximation”; the notion of closeness
depends very much on how one measures length).
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Math 115A - Week 10
Textbook sections: 3.1-5.1

Topics covered:

• Linear functionals

• Adjoints of linear operators

• Self-adjoint operators

• Normal operators

• Stuff about the final

* * * * *
Linear functionals

• Let F be either the real or complex numbers, and let V , W be vector
spaces over the field of scalars F . We know what a linear transformation
T from V to W is; it is a transformation that takes as input a vector v
in V and returns a vector Tv in W , which preserves addition T (v+v′) =
Tv + Tv′ and scalar multiplication T (cv) = cTv.

• We now look at some special types of linear transformation, where the
input space V or the output space W is very small. We first look at
what happens when the input space is just F , the field of scalars.

• Example The linear transformation T : R → R3 defined by Tc :=
(3c, 4c, 5c) is a linear transformation from the field of scalars R to a
vector space R3.

• Note that the above example can be written as Tc := cw, where w is
the vector (3, 4, 5) in R3. The following lemma says, in fact, that all
linear transformations from the field of scalars to another vector space
are of this form:

• Lemma 1. Let T : F → W be a linear transformation from F to W .
Then there is a vector w ∈ W such that Tc = cw for all c ∈ F .
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• Proof Since c = c1, we have Tc = T (c1) = c(T1). So if we set w := T1,
then we have Tc = cw for all c ∈ F . �

• Now we look at what happens when the output space is the field of
scalars.

• Definition A linear functional on a vector space V is a linear trans-
formation T : V → F from V to the field of scalars F .

• Thus linear functionals are in some sense the “opposite” of vectors:
they “eat” a vector as input and spit out a scalar as output. (They are
sometimes called covectors or dual vectors for this reason; sometimes
physicists call them axial vectors. Another name used is 1-forms. In
quantum mechanics, one sometimes uses Dirac’s “braket” notation, in
which vectors are called “kets” and covectors are called “bras”).

• Example 1. The linear transformation T : R3 → R defined by
T (x, y, z) := 3x + 4y + 5z is a linear functional on R3. Another ex-
ample is altitude: the linear transformation A : R3 → R defined by
A(x, y, z) := z; this takes a vector in three-dimensional space as input
and returns its altitude (the z co-ordinate).

• Example 2 (integration as a linear functional). The linear trans-

formation I : C([0, 1]; R) → R defined by If :=
∫ 1

0
f(x) dx is a linear

functional, for instance I(x2) = 1/3.

• Example 3 (evaluation as a linear functional). The linear trans-
formation E : C([0, 1]; R) → R defined by Ef = f(0) is a linear
functional, thus for instance E(x2) = 0, and E(ex) = 1.

• Example 4. Let V be any inner product space, and let w be any
vector in V . Then the linear transformation T : V → F defined by
Tv := 〈v, w〉 is a linear functional on V (this is because inner prod-
uct is linear in the first variable v). For instance, the linear func-
tional T (x, y, z) := 3x + 4y + 5z in Example 1 is of this type, since
T (x, y, z) = 〈(x, y, z), (3, 4, 5)〉; similarly the altitude function can be
written in this form, as A(x, y, z) = 〈(x, y, z), (1, 0, 0)〉. Also, the inte-
gration functional I in Example 2 is also of this form, since If = 〈f, 1〉.
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(As it turns out, the evaluation function E from Example 3 is not of
this form, at least on C([0, 1]; R); but see below.)

• It turns out that on an finite-dimensional inner product space V , every
linear functional is of the form given in the previous example:

• Riesz representation theorem. Let V be a finite-dimensional inner
product space, and let T : V → F be a linear functional on V . Then
there is a vector w ∈ V such that Tv = 〈v, w〉 for all v ∈ V .

• Proof. Let’s say that V is n-dimensional. By the Gram-Schmidt or-
thogonalization process we can find an orthonormal basis v1, v2, . . . , vn
of V . Let v be any vector in V . From the previous week’s notes we
have the formula

v = 〈v, v1〉v1 + . . .+ 〈v, vn〉vn.

Applying T to both sides, we obtain

Tv = 〈v, v1〉Tv1 + . . .+ 〈v, vn〉Tvn.

Since Tv1, . . . , T vn are all scalars, and 〈v, w〉c = 〈v, cw〉 for any scalar
c, and we thus have

Tv = 〈v, Tv1v1 + . . . T vnvn〉.

Thus if we let w ∈ V be the vector

w := Tv1v1 + . . . T vnvn

then we have Tv = 〈v, w〉 for all v ∈ V , as desired. �

• (Actually, this is only the Riesz representation theorem for finite dimen-
sional spaces. There are more general Riesz representation theorems
for such infinite-dimensional spaces as C([0, 1]; R), but they are beyond
the scope of this course).

• Example Consider the linear functional T : C3 → C defined by
T (x, y, z) := 3x + iy + 5z. From the Riesz representation theorem we
know that there must be some vector w ∈ C3 such that Tv := 〈v, w〉
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for all v ∈ C3. In this case we can see what w is by inspection, but let
us pretend that we are unable to see this, and instead use the formula
in the proof of the Riesz representation theorem. Namely, we know
that

w := Tv1v1 + . . . T vnvn

whenever v1, . . . , vn is an orthonormal basis for C3. Thus, using the
standard basis (1, 0, 0), (0, 1, 0), (0, 0, 1), we obtain

w := T (1, 0, 0)(1, 0, 0) + T (0, 1, 0)(0, 1, 0) + T (0, 0, 1)(0, 0, 1)

= 3(1, 0, 0) + i(0, 1, 0) + 5(0, 0, 1) = (3,−i, 5).

Thus Tv = 〈v, (3,−i, 5)〉, which one can easily check is consistent with
our definition of T .

• More generally, we see that any linear functional T : F n → F (where
F = R or C) can be written in the form Tv := 〈v, w〉, where w is the
vector

w = (Te1, T e2, . . . , T en),

and e1, . . . , en is the standard basis for F n. (i.e. the first component of
w is Te1, etc. For instance, in the previous example Te1 = T (1, 0, 0) =
3, so the first component of w is 3 = 3.

• Example Let P2(R) be the polynomials of degree at most 2, with the
inner product

〈f, g〉 :=

∫ 1

−1
f(x)g(x) dx.

Let E : P2(R) → R be the evaluation function E(f) := f(0), for
instance E(x2 + 2x + 3) = 3. From the Riesz representation theorem
we know that E(f) = 〈f, w〉 for some w ∈ P2(R); we now find what
this w is. We first find an orthonormal basis for P2(R). From last
week’s notes, we know that

v1 :=
1√
2

; v2 :=

√
3√
2
x; v3 :=

√
45√
8

(x2 − 1

3
)

is an orthonormal basis for P2(R). Thus we can compute w using the
formula

w = Tv1v1 + Tv2v2 + Tv3v3

225



from the proof of the Riesz representation theorem. Since Tv1 = 1√
2
,

Tv2 = 0, and Tv3 =
√
45√
8

(−1
3
), we thus have

w =
1√
2

1√
2

+

√
45√
8

(−1

3
)

√
45√
8

(x2 − 1

3
)

which simplifies to

w =
1

2
− 5

24
(3x2 − 1) =

17

24
− 5

8
x2.

• It may seem that the vector w that is obtained by the Riesz representa-
tion theorem would depend on which orthonormal basis v1, . . . , vn one
chooses for V . But it turns out that this is not the case:

• Lemma 2. Let T : V → R be a linear functional on an inner product
space V . Then there can be at most one vector w ∈ V with the property
that Tv = 〈v, w〉 for all v ∈ V .

• Proof. Suppose for contradiction that there were at least two different
vectors w,w′ in V such that Tv = 〈v, w〉 and Tv = 〈v, w′〉 for all v ∈ V .
Then we have

〈v, w − w′〉 = 〈v, w〉 − 〈v, w′〉 = Tv − Tv = 0

for all v ∈ V . In particular, if we apply this identity to the vector
v := w − w′ we obtain

‖w − w′‖2 = 〈w − w′, w − w′〉 = 0

which implies that w−w′ = 0, so that w and w′ are not different after
all. This contradiction shows that there could only have been one such
vector w to begin with, as desired. �

• Another way to view Lemma 2 is the following: if 〈v, w〉 = 〈v, w′〉 for
all v ∈ V , then w and w′ must be equal. (If you like, this is sort of
like being able to “cancel” v from both sides of an identity involving
an inner product, provided that you know the identity holds for all v).
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* * * * *
Adjoints

• The Riesz representation theorem allows us to turn linear functionals
T : V → R into vectors w ∈ V , if V is a finite-dimensional inner
product space. This leads us to a useful notion, that of the adjoint of
a linear operator.

• Let T : V → W be a linear transformation from one inner product
space to another. Then for every vector w ∈ W , we can define a linear
functional Tw : V → R by the formula

Twv := 〈Tv, w〉.

• Example. If T : R3 → R2 is the linear transformation

T (x, y, z) := (x+ 2y + 3z, 4x+ 5y + 6z)

and w was the vector (10, 1) ∈ R2, then Tw : R3 → R would be the
linear functional

Tw(x, y, z) = 〈(x+ 2y + 3z, 4x+ 5y + 6z), (10, 1)〉 = 14x+ 25y + 36z.

• One can easily check that Tw is indeed a linear functional on V :

Tw(v+v′) = 〈T (v+v′), w〉 = 〈Tv+Tv′, w〉 = 〈Tv, w〉+〈Tv′, w〉 = Twv+Twv
′

Tw(cv) = 〈T (cv), w〉 = 〈cTv, w〉 = c〈Tv, w〉 = cTwv.

• By the Riesz representation theorem, there must be a vector, called
T ∗w ∈ V , such that Twv = 〈v, T ∗w〉 for all v ∈ V , or in other words
that

〈Tv, w〉 = 〈v, T ∗w〉

for all w ∈ W and v ∈ V ; this is probably the most basic property of
T ∗. Note that by Lemma 2, there can only be one possible value for
T ∗w for each w.
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• Example Continuing the previous example, we see that

Tw(x, y, z) = 〈(x, y, z), (14, 25, 36)〉

and hence by Lemma 2, the only possible choice for T ∗w is

T ∗(10, 1) = T ∗w = (14, 25, 36).

• Note that while T is a transformation that turns a vector v in V to a
vector Tv in W , T ∗ does the opposite, starting with a vector w in W as
input and returning a vector T ∗w in V as output. This seems similar to
how an inverse T−1 of T would work, but it is important to emphasize
that T ∗ is not the inverse of T , and it makes sense even when T is not
invertible.

• We refer to T ∗ : W → V as the adjoint of T . Thus when we move an
operator T from one side of an inner product to another, we have to
replace it with its adjoint. This is similar to how when one moves a
scalar from one side of an inner product to another, you have to replace
it by its complex conjugate: 〈cv, w〉 = 〈v, cw〉. Thus the adjoint is like
the complex conjugate, but for linear transformations rather than for
scalars.

• Lemma 3. If T : V → W is a linear transformation, then its adjoint
T ∗ : W → V is also a linear transformation.

• Proof. We have to prove that T ∗(w+w′) = T ∗w+T ∗w′ and T ∗(cw) =
cT ∗w for all w,w′ ∈ W and scalars c.

• First we prove that T ∗(w+w′) = T ∗w+ T ∗w′. By definition of T ∗, we
have

〈v, T ∗(w + w′)〉 = 〈Tv, w + w′〉
for all v ∈ V . But

〈Tv, w+w′〉 = 〈Tv, w〉+〈Tv, w′〉 = 〈v, T ∗w〉+〈v, T ∗w′〉 = 〈v, T ∗w+T ∗w′〉.

Thus we have

〈v, T ∗(w + w′)〉 = 〈v, T ∗w + T ∗w′〉

for all v ∈ V . By Lemma 2, we must therefore have T ∗w + T ∗w′ =
T ∗(w + w′) as desired.
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• Now we show that T ∗(cw) = cT ∗w. We have

〈v, T ∗(cw)〉 = 〈Tv, cw〉 = c〈Tv, w〉 = c〈v, T ∗w〉 = 〈v, cT ∗w〉

for all v ∈ V . By Lemma 2, we thus have T ∗(cw) = cT ∗w as desired.
�

• Example Let us continue our previous example of the linear transfor-
mation T : R3 → R2 defined by

T (x, y, z) := (x+ 2y + 3z, 4x+ 5y + 6z).

Let us work out what T ∗ : R2 → R3 is. Let (a, b) be any vector in R2.
Then we have

〈T (x, y, z), (a, b)〉 = 〈(x, y, z), T ∗(a, b)〉

for all (x, y, z) ∈ R3. The left-hand side is

〈(x+ 2y + 3z, 4x+ 5y + 6z), (a, b)〉 = a(x+ 2y + 3z) + b(4x+ 5y + 6z)

= (a+4b)x+(2a+5b)y+(3a+6b)z = 〈(x, y, z), (a+4b, 2a+5b, 3a+6b)〉.
Thus we have

〈(x, y, z), (a+ 4b, 2a+ 5b, 3a+ 6b)〉 = 〈(x, y, z), T ∗(a, b)〉

for all x, y, z; by Lemma 2, this implies that

T ∗(a, b) = (a+ 4b, 2a+ 5b, 3a+ 6b).

• This example was rather tedious to compute. However, things become
easier with the aid of orthonormal bases. Recall (from Corollary 7 of
last week’s notes) that if v is a vector in V and β := (v1, . . . , vn) is an
orthonormal basis of V , then the column vector [v]β is given by

[v]β =

 〈v, v1〉...
〈v, vn〉

 .

Thus the ith row entry of [v]β is just 〈v, vi〉.
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• Now suppose that T : V → W is a linear transformation, and β :=
(v1, . . . , vn) is an orthonormal basis of V and γ := (w1, . . . , wm) is an
orthonormal basis of W . Then [T ]γβ is a matrix with m rows and n

columns, whose jth column is given by [Tvj]
β. In other words, we have

[T ]γβ =


〈Tv1, w1〉 〈Tv2, w1〉 . . . 〈Tvn, w1〉
〈Tv1, w2〉 〈Tv2, w2〉 . . . 〈Tvn, w2〉

...
〈Tv1, wm〉 〈Tv2, wm〉 . . . 〈Tvn, wm〉

 .

In other words, the entry in the ith row and jth column is 〈Tvj, wi〉.

• We can apply similar reasoning to the linear transformation T ∗ : W →
V . Then [T ∗]βγ is a matrix with n rows and m columns, and the entry
in the ith row and jth column is 〈T ∗wj, vi〉. But

〈T ∗wj, vi〉 = 〈vi, T ∗wj〉 = 〈Tvi, wj〉.

Thus, the matrix [T ∗]βγ is given by

[T ∗]βγ =


〈Tv1, w1〉 〈Tv1, w2〉 . . . 〈Tv1, wm〉
〈Tv2, w1〉 〈Tv2, w2〉 . . . 〈Tv2, wm〉

...

〈Tvn, w1〉 〈Tvn, w2〉 . . . 〈Tvn, wm〉

 .

Comparing this with our formula for [T ]γβ we see that [T ∗]βγ is the adjoint
of [T ]γβ:

• Theorem 3. If T : V → W is a linear transformation, β is an or-
thonormal basis of V , and γ is an orthonormal basis of W , then

[T ∗]βγ = ([T ]γβ)†.

• Example Let us once again take the example of the linear transfor-
mation T : R3 → R2 defined by

T (x, y, z) := (x+ 2y + 3z, 4x+ 5y + 6z).
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Let β := ((1, 0, 0), (0, 1, 0), (0, 0, 1)) be the standard basis of R3, and
let γ := ((1, 0), (0, 1)) be the standard basis of R2. Then we have

[T ]γβ :=

(
1 2 3
4 5 6

)
(why?). On the other hand, if we write the linear transformation

T ∗(a, b) = (a+ 4b, 2a+ 5b, 3a+ 6b)

in matrix form, we see that

[T ∗]βγ :=

 1 4
2 5
3 6

 ,

which is the adjoint of [T ]γβ. (In this example, the field of scalars is real,
and so the complex conjugation aspect of the adjoint does not make an
appearance.

• The following corollary connects the notion of adjoint of a linear trans-
formation with that of adjoint of a matrix.

• Corollary 4. Let A be an m × n matrix with either real or complex
entries. Then the adjoint of LA is LA† .

• Proof. Let F be the field of scalars that the entries of A lie in. Then
LA is a linear transformation from Fm to F n, and LA† is a linear trans-
formation from F n to Fm. If we let β be the standard basis of Fm and
γ be the standard basis of F n, then by Theorem 3

[L∗A]βγ = ([LA]γβ)† = A† = [LA† ]
β
γ

and hence L∗A = LA† as desired. �

• In particular, we see that

〈Av,w〉 = 〈v,A†w〉

for any m × n matrix A, any column vector v of length n, and any
column vector w of length m.
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• Example Let A be the matrix

A =

(
1 i 0
0 1 + i 3

)
,

so that LA : C3 → C2 is the linear transformation defined by

LA

 z1
z2
z3

 = A

 z1
z2
z3

 =

(
z1 + iz2
(1 + i)z2 + 3z3

)
.

Then the adjoint of this transformation is given by LA† , where A† is
the adjoint of A:

A† =

 1 0
−i 1− i
0 3

 ,

so

LA†

(
w1

w2

)
= A

(
w1

w2

)
=

 w1

−iw1 + (1− i)w2

3w3

 .

• Some basic properties of adjoints. Firstly, the process of taking adjoints
is conjugate linear: if T : V → W and U : V → W are linear transfor-
mations, and c is a scalar, then (T + U)∗ = T ∗ + U∗ and (cT )∗ = cT ∗.
Let’s just prove the second claim, as the first is similar (or can be found
in the textbook). We look at the expression 〈v, (cT )∗w〉 for any v ∈ V
and w ∈ W , and compute:

〈v, (cT )∗w〉 = 〈cTv, w〉 = c〈Tv, w〉 = c〈v, T ∗w〉 = 〈v, cT ∗w〉.

Since this identity is true for all v ∈ V , we thus have (by Lemma 2)
that (cT )∗w = cT ∗w for all w ∈ W , and so (cT )∗ = cT ∗ as desired.

• This argument shows a key trick in understanding adjoints: in order to
understand a transformation T or its adjoint, it is often a good idea to
start by looking at the expression 〈Tv, w〉 = 〈v, T ∗w〉 and rewrite it in
some other way.
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• Some other properties, which we leave as exercises: (T ∗)∗ = T (i.e.
if T ∗ is the adjoint of T , then T is the adjoint of T ∗); the adjoint of
the identity operator is again the identity; and if T : V → W and
S : U → V are linear transformations, then (TS)∗ = S∗T ∗. (This last
identity can be verified by playing around with 〈u, S∗T ∗w〉 for u ∈ U
and w ∈ W ). If T is invertible, we also have (T−1)∗ = (T ∗)−1 (i.e. the
inverse of the adjoint is the adjoint of the inverse). This can be seen
by starting with the identity TT−1 = T−1T = I and taking adjoints of
all sides.

• Another useful property is that a matrix has the same rank as its
adjoint. To see this, recall that the adjoint of a matrix is the conjugate
of its transpose. From Lemma 7 of week 6 notes, we know that a
matrix has the same rank as its transpose. It is also easy to see that
a matrix has the same rank as its conjugate (this is basically because
the conjugate of an elementary matrix is again an elementary matrix,
and the conjugate of a matrix in row-echelon form is again a matrix in
row echelon form.) Combining these two observations we see that the
adjoint of a matrix must also have the same rank. From Theorem 3
(and Lemma 9 of week 6 notes) we see therefore that a linear operator
from one finite-dimensional inner product space to another has the
same rank as its adjoint.

• In a similar vein, if A is a square matrix with determinant d, then A∗

will have determinant d. (We will only sketch a proof of this fact here:
first prove it for elementary matrices, and for diagonal matrices. Then
to handle the general case, use Proposition 5 from week 6 notes, as well
as the identity (BA)† = A†B†).

* * * * *
Normal operators

• Recall that in the Week 7 notes we discussed the problem of whether a
linear transformation was diagonalizable, i.e. whether it had a basis of
eigenvectors. We did not fully resolve this question, and in fact we will
not be able to give a truly satisfactory answer to this question until
Math 115B. However, there is a special class of linear transformations
(aka operators) for which we can give a good answer - normal operators.
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• Definition Let T : V → V be a linear transformation on V , so that
the adjoint T ∗ : V → V is another linear transformation on V . We say
that T is normal if TT ∗ = T ∗T .

• Example 1 Let T : R2 → R2 be the linear transformation T (x, y) :=
(y,−x). Then T ∗ : R2 → R2 can be computed to be the linear trans-
formation T ∗(x, y) = (−y, x) (why?), and so

TT ∗(x, y) = T (−y, x) = (x, y)

and
T ∗T (x, y) = T ∗(y,−x) = (x, y).

Thus TT ∗(x, y) and T ∗T (x, y) agree for all (x, y) ∈ R2, which implies
that TT ∗ = T ∗T . Thus this transformation is normal.

• Example 2 Let T : R2 → R2 be the linear transformation T (x, y) :=
(0, x). Then T ∗(x, y) = (y, 0) (why?). So

TT ∗(x, y) = T (y, 0) = (0, y)

and
T ∗T (x, y) = T ∗(0, x) = (x, 0).

So in general TT ∗(x, y) and T ∗T (x, y) are not equal, and so TT ∗ 6= T ∗T .
Thus this transformation is not normal.

• In analogy to the above definition, we define a square matrix A to be
normal if AA† = A†A. For instance, the matrix(

0 1
−1 0

)
can easily be checked to be normal, while the matrix(

0 0
1 0

)
is not. (Why do these two examples correspond to Examples 1 and 2
above?)
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• Another example, easily checked: every diagonal matrix is normal.

From Theorem 3 we have

• Proposition 5. Let T : V → V be a linear transformation on a finite-
dimensional inner product space, and let β be an orthonormal basis.
Then T : V → V is normal if and only if the matrix [T ]ββ is.

• Proof. If T is normal, then TT ∗ = T ∗T . Now taking matrices with
respect to β, we obtain

[T ]ββ[T ∗]ββ = [T ∗]ββ[T ]ββ.

But by Theorem 3, [T ∗]ββ is the adjoint of [T ]ββ. Thus [T ]ββ is normal.
This proves the “only if” portion of the Proposition; the “if” part
follows by reversing the above steps. �

• Normal transformations have several nice properties. First of all, when
T is normal then T and T ∗ will have the same eigenvectors (but slightly
different eigenvalues):

• Lemma 6. Let T : V → V be normal, and suppose that Tv = λv for
some vector v ∈ V and some scalar λ. Then T ∗v = λv.

• Warning: the above lemma is only true for normal operators! For other
linear transformations, it is quite possible that T and T ∗ have totally
different eigenvectors and eigenvalues.

• Proof To show T ∗v = λv, it suffices to show that ‖T ∗v − λv‖ = 0,
which in turn will follow if we can show that

〈T ∗v − λv, T ∗v − λv〉 = 0.

We expand out the left-hand side as

〈T ∗v, T ∗v〉 − 〈λv, T ∗v〉 − 〈T ∗v, λv〉+ 〈λv, λv〉.

Pulling the λs out and swapping the T s over, this becomes

〈v, TT ∗v〉 − λ〈Tv, v〉 − λ〈v, Tv〉+ λλ〈v, v〉.
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Since T is normal and Tv = λv, we have T ∗v = T ∗Tv = λT ∗v. Thus
we can rewrite this expression as

λ〈v, T ∗v〉 − λλ〈v, v〉 − λλ〈v, v〉+ λλ〈v, v〉.

But 〈v, T ∗v〉 = 〈Tv, v〉 = λ〈v, v〉. If we insert this in the above expres-
sion we then see that everything cancels to zero, as desired. �

• Lemma 7. Let T : V → V be normal, and let v1, v2 be two eigen-
vectors of T with distinct eigenvalues λ1, λ2. Then v1 and v2 must be
orthogonal.

• (Compare this with Proposition 6 of the Week 8 notes, which merely
asserts that these vectors v1 and v2 are linearly independent. Again, we
caution that this orthogonality of eigenvectors is only true for normal
operators.)

• Proof. We have Tv1 = λ1v1 and Tv2 = λ2v2. By Lemma 6 we thus
have T ∗v1 = λ1v1 and T ∗v2 = λ2v2. Thus

λ1〈v1, v2〉 = 〈Tv1, v2〉 = 〈v1, T ∗v2〉 = 〈v1, λ2v2〉 = λ2〈v1, v2〉.

Since λ1 6= λ2, this means that 〈v1, v2〉 = 0, and so v1 and v2 are
orthogonal as desired. �

• This lemma tells us that most linear transformations will not be normal,
because in general the eigenvectors corresponding to different eigenval-
ues will not be orthogonal. (Take for instance the matrix involved in
the Fibonacci rabbit example).

• In the other direction, if we have an orthonormal basis of eigenvectors,
then the transformation must be normal:

• Lemma 8. Let T : V → V be a linear transformation o an inner
product space V , and let β be an orthonormal basis which consists
entirely of eigenvectors of T . Then T is normal.

• Compare this lemma to Lemma 2 of Week 7 notes, which sais that if
you have a basis of eigenvectors (not necessarily orthonormal), then T
is diagonalizable.
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• Proof. From Lemma 2 of Week 7 notes, we know that the matrix [T ]ββ
is diagonal. But all diagonal matrices are normal (why?), and so [T ]ββ
is normal. By Proposition 5 we thus see that T is normal. �

• We now come to an important theorem, that the converse of Lemma 8
is also true:

• Spectral theorem for normal operators Let T : V → V be a
normal linear transformation on a complex finite dimensional inner
product space V . Then there is an orthonormal basis β consisting
entirely of eigenvectors of T . In particular, T is diagonalizable.

• Thus normal linear transformations are precisely those diagonalizable
linear transformations which can be diagonalized using orthonormal
bases (as opposed to just being plain diagonalizable, using bases which
might not be orthonormal).

• There is also a spectral theorem for normal operators on infinite dimen-
sional inner product spaces, but it is beyond the scope of this course.

• Proof Let the dimension of V be n. We shall prove this theorem by
induction on n.

• First consider the base case n = 1. Then one can pick any orthonormal
basis β of V (which in this case will just be a single unit vector), and the
vector v in this basis will automatically be an eigenvector of T (because
in a one-dimensional space every vector will be a scalar multiple of v).
So the spectral theorem is trivially true when n = 1.

• Now suppose inductively that n > 1, and that the theorem has already
been proven for dimension n− 1. Let f(λ) be the characteristic poly-
nomial of T (or of any matrix representation [T ]ββ of T ; recall that any
two such matrix representations are similar and thus have the same
characteristic polynomial). From the fundamental theorem of algebra,
we know that this characteristic polynomial splits over the complex
numbers. Hence there must be at least one root of this polynomial,
and hence T has at least one (complex) eigenvalue, and hence at least
one eigenvector.
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• So now let us pick an eigenvector v1 of T with eigenvalue λ1, thus
Tv1 = λ1v1 and T ∗v1 = λ1v1 by Lemma 6. We can normalize v1 to have
length 1, so ‖v1‖ = 1 (remember that if you multiply an eigenvector by
a non-zero scalar you still get an eigenvector, so it’s safe to normalize
eigenvectors). Let W := {cv1 : c ∈ C} denote the span of this eigenvec-
tor, thus W is a one-dimensional space. Let W⊥ := {v ∈ V : v ⊥ v1}
denote the orthogonal complement of W ; this is thus an n− 1 dimen-
sional space.

• Now we see what T and T ∗ do to W⊥. Let w be any vector in W⊥,
thus w ⊥ v1, i.e. 〈w, v1〉 = 0. Then

〈Tw, v1〉 = 〈w, T ∗v1〉 = 〈w, λ1v1〉 = λ1〈w, v1〉 = 0

and similarly

〈T ∗w, v1〉 = 〈w, Tv1〉 = 〈w, λ1v1〉 = λ1〈w, v1〉 = 0.

Thus if w ∈ W⊥, then Tw and T ∗w are also in W⊥. Thus T and T ∗

are not only linear transformations from V to V , they are also linear
transformations from W⊥ to W⊥. Also, we have

〈Tw,w′〉 = 〈w, T ∗w′〉

for all w,w′ ∈ W⊥, because every vector in W⊥ is a vector in V , and
we already have this property for vectors in V . Thus T and T ∗ are still
adjoints of each other even after we restrict the vector space from the
n-dimensional space V to the n− 1-dimensional space W⊥.

• We now apply the induction hypothesis, and find that W⊥ enjoys an
orthonormal basis of eigenvectors of T . There are n − 1 such eigen-
vectors, since W⊥ is n − 1 dimensional. Now v1 is normalized and is
orthogonal to all the vectors in this basis, since v1 lies in W and all the
other vectors lie in W⊥. Thus if we add v1 to this basis we get a new
collection of n orthonormal vectors, which automatically form a basis
by Corollary 5 of Week 9 notes. Each of these vectors is an eigenvector
of T , and so we are done. �

• Example The linear transformation T : R2 → R2 defined by T (x, y) :=
(y,−x) that we discussed earlier is normal, but not diagonalizable (its
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characteristic polynomial is λ2 + 1, which doesn’t split over the reals).
This does not contradict the spectral theorem because that only con-
cerns complex inner product spaces. If however we consider the com-
plex linear transformation T : C2 → C2 defined by T (z, w) := (w,−z),
then we can find an orthonormal basis of eigenvectors, namely

v1 :=
1√
2

(1, i); v2 :=
1√
2

(1,−i)

(Exercise: cover up the above line and see if you can find these eigenvec-
tors on your own). Indeed, you can check that v1 and v2 are orthonor-
mal, and that Tv1 = iv1 and Tv2 = −iv2. Thus we can diagonalize T
using an orthonormal basis, to become the diagonal matrix diag(i,−i).

* * * * *
Self-adjoint operators

• To summarize the previous section: in the world of complex inner prod-
uct spaces, normal linear transformations (aka normal operators) are
the best kind of linear transformations: they are not only diagonaliz-
able, but they are diagonalizable using the best kind of basis, namely
an orthonormal basis. However, there is a subclass of normal transfor-
mations which are even better: the self-adjoint transformations.

• Definition A linear transformation T : V → V on a finite-dimensional
inner product space V is said to be self-adjoint if T ∗ = T , i.e. T is its
own adjoint. A square matrix A is said to be self-adjoint if A† = A,
i.e. A is its own adjoint.

• Example. The linear transformation T : R2 → R2 defined by T (x, y) :=
(y,−x) is normal, but not self-adjoint, because its adjoint T ∗(x, y) =
(−y, x) is not the same as T . However, the linear transformation
T : R2 → R2 defined by T (x, y) = (y, x) is self-adjoint, because its
adjoint is given by T ∗(x, y) = (y, x) (why?), and this is the same as T .

• Example. The matrix

A :=

(
0 1
−1 0

)
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is normal, but not self-adjoint, because its adjoint

A† =

(
0 −1
1 0

)
is not the same as A. However, the matrix

A :=

(
0 1
1 0

)
is normal, but not self-adjoint, because its adjoint

A† =

(
0 1
1 0

)
is the same as A. (Why does this example correspond to the preceding
one? It is easy to check, using Proposition 5, that a linear transforma-
tion is self-adjoint if and only if its matrix in some orthonormal basis
is self-adjoint).

• Example. Every real diagonal matrix is self-adjoint, but any other
type of diagonal matrix is not (e.g. diag(2 + i, 4 + 3i) has an adjoint of
diag(2−i, 4−3i) and is hence not self-adjoint, though it is still normal).

• It is clear that all self-adjoint linear transformations are normal, since
if T ∗ = T then T ∗T and TT ∗ are both equal to T 2 and are hence equal
to each other. Similarly, every self-adjoint matrix is normal. However,
not every normal matrix is self-adjoint, and not every normal linear
transformation is self-adjoint; see the above examples.

• A self-adjoint transformation over a complex inner product space is
sometimes known as a Hermitian transformation. A self-adjoint trans-
formation over a real inner product space is known as a symmetric
transformation. Similarly, a complex self-adjoint matrix is known as a
Hermitian matrix, while a real self-adjoint matrix is known as a sym-
metric matrix. (A matrix is symmetric if At = A. When the matrix
is real, the transpose At is the same as the adjoint, thus self-adjoint
and symmetric have the same meaning for real matrices, but not for
complex matrices).
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• Example The matrix

A :=

(
0 i
−i 0

)
is its own adjoint (why?), and is hence Hermitian, but it is not symmet-
ric, since it is not its own transpose. Note that every real symmetric
matrix is automatically Hermitian, because every real matrix is also a
complex matrix (with all the imaginary parts equal to 0).

• From the spectral theorem for normal matrices, we know that any Her-
mitian operator on a complex inner product space has an orthonormal
basis of eigenvectors. But we can say a little bit more:

• Theorem 9 All the eigenvalues of a Hermitian operator are real.

• Proof. Let λ be an eigenvalue of a Hermitian operator T , thus Tv = λv
for some non-zero eigenvector v. But then by Lemma 6, T ∗v = λv. But
since T is Hermitian, T = T ∗, and hence λv = λv. Since v is non-zero,
this means that λ = λ, i.e. λ is real. Thus all the eigenvalues of T are
real. �

• A similar line of reasoning shows that all the eigenvalues of a Hermitian
matrix are real.

• Corollary 10. The characteristic polynomial of a Hermitian matrix
splits over the reals.

• Proof. We know already from the Fundamental Theorem of Algebra
that the characteristic polynomial splits over the complex numbers.
But since the matrix is Hermitian, every root of the characteristic poly-
nomial must be real. Thus the polynomial must split over the reals.
�

• We can now prove

• Spectral theorem for self-adjoint operators Let T be a self-adjoint
linear transformation on an inner product space V (which can be ei-
ther real or complex). Then there is an orthonormal basis of V which
consists entirely of eigenvectors of V , with real eigenvalues.
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• Proof. We repeat the proof of the Spectral theorem for normal opera-
tors, i.e. we do an induction on the dimension n of the space V . When
n = 1 the claim is again trivial (and we use the fact that every Lemma
9 to make sure the eigenvalue is real). Now suppose inductively that
n > 1 and the claim has already been proven for n− 1.

From Corollary 10 we know that T has at least one real eigenvalue.
Thus we can find a real λ1 and a non-zero vector v1 such that Tv1 =
λ1v1. We can then normalize v1 to have unit length. We now repeat
the rest of the proof of the spectral theorem for normal operators, to
obtain the same conclusion except that the eigenvalues are now real.
�

• Notice one subtle difference between the spectral theorem for self-
adjoint operators and the spectral theorem for normal operators: the
spectral theorem for normal operators requires the inner product space
to be complex, but the one for self-adjoint operators does not. In partic-
ular, every symmetric operator on a real vector space is diagonalizable.

• Example The matrix

A :=

(
0 i
−i 0

)
is Hermitian, and thus so is the linear transformation LA : C2 → C2,
which is given by

LA

(
z
w

)
=

(
iw
−iz

)
.

By the spectral theorem, C2 must have an orthonormal basis of eigen-
vectors with real eigenvalues. One such basis is

v1 :=

(
1/
√

2

i/
√

2

)
; v2 :=

(
1/
√

2

−i/
√

2

)
;

one can verify that v1 and v2 are an orthonormal basis for the complex
two-dimensional inner product space C2, and that LAv1 = −v1 and
LAv2 = +v2. Thus LA can be diagonalized using an orthonormal basis
to give the matrix diag(+1,−1). Note that while the eigenvalues of
LA are real, the eigenvectors are still complex. The spectral theorem
says nothing as to how real or complex the eigenvectors are (indeed,
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in many inner product spaces, such a question does not really make
sense).

• Self-adjoint operators are thus the very best of all operators: not only
are they diagonalizable, with an orthonormal basis of eigenvectors, the
eigenvalues are also real. (Conversely, it is easy to modify Lemma 8 to
show that any operator with these properties is necessarily self-adjoint).
Fortunately, self-adjoint operators come up all over the place in real
life. For instance, in quantum mechanics, almost all the linear trans-
formations one sees there are Hermitian (this is basically because while
quantum mechanics uses complex inner product spaces, the quantities
we can actually observe in physical reality must be real-valued).
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Assignment 1 Due October 10 Covers: Sections 1.1-1.6

• Q1. Let V be the space of real 3-tuples

V = {(x1, x2, x3) : x1, x2, x3 ∈ R}

with the standard addition rule

(x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3)

but with the non-standard scalar multiplication rule

c(x1, x2, x3) = (cx1, x2, x3).

(In other words, V is the same thing as the vector space R3, but with
the scalar multiplication law changed so that the scalar only multiplies
the first co-ordinate of the vector.)

Show that V is not a vector space.

• Q2. (a) Find a subset of R3 which is closed under scalar multiplication,
but is not closed under vector addition.

(b) Find a subset of R3 which is closed under vector addition, but not
under scalar multiplication.

• Q3. Find three distinct non-zero vectors u, v, w in R3 such that span({u, v}) =
span({v,w}) = span({u, v,w}), but such that span({u,w}) 6= span({u, v,w}).

• Q4. Find a basis for M0
2×2(R), the vector space of 2× 2 matrices with

trace zero. Explain why the set you chose is indeed a basis.

• Q5. Do Exercise 1(abghk) of Section 1.2 in the textbook.

• Q6. Do Exercise 8(aef) of Section 1.2 in the textbook.

• Q7. Do Exercise 23 of Section 1.3 in the textbook.

• Q8*. Do Exercise 19 of Section 1.3 in the textbook. [Hint: Prove
by contradiction. If W1 6⊆ W2, then there must be a vector w1 which
lies in W1 but not in W2. Similarly, if W2 6⊆ W1, then there must be
a vector w2 which lies in W2 but not in W1. Now suppose that both
W1 6⊆ W2 and W2 6⊆ W1, and consider what one can say about the
vector w1 + w2.]
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• Q9. Do Exercise 4(a) of Section 1.4 in the textbook.

• Q10. Do Exercise 1(abdef) of Section 1.5 in the textbook.
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Assignment 2 Due October 17 Covers: Sections 1.6-2.1

• Q1. Do Exercise 1(acdejk) of Section 1.6 in the textbook.

• Q2. Do Exercise 3(b) of Section 1.6 in the textbook.

• Q3. Do Exercise 7 of Section 2.1 in the textbook.

• Q4. Do Exercise 9 of Section 2.1 in the textbook.

• Q5. Find a polynomial f(x) of degree at most three, such that f(n) =
2n for all n = 0, 1, 2, 3.

• Q6. Let V be a vector space, and let A, B be two subsets of V . Suppose
that B spans V , and that span(A) contains B. Show that A spans V .

• Q7*. Let V be a vector space which is spanned by a finite set S of
n elements. Show that V is finite dimensional, with dimension less
than or equal to n. [Note: You cannot apply the Dimension Theorem
directly, because we have not assumed that V is finite dimensional. To
do that, we must first construct a finite basis for V ; this can be done
by modifying the proof of part (g) of the Dimension theorem, or the
proof of Theorem 2.]

• Q8*. Show that F(R,R), the space of functions from R to R, is
infinite-dimensional.

• Q9. Let V be a vector space of dimension 5, and let W be a subspace of
V of dimension 3. Show that there exists a vector space U of dimension
4 such that W ⊂ U ⊂ V .

• Q10. Let v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (0, 0, 1), v4 := (1, 1, 0) be
four vectors in R3, and let S denote the set S := {v1, v2, v3, v4}. The set
S has 16 subsets, which are depicted on the reverse of this assignment.
(This graph, incidentally, depicts (the shadow of) a tesseract, or 4-
dimensional cube).

• Of these subsets, which ones span R3? which ones are linearly inde-
pendent? Which ones are bases? (Feel free to color in the graph and
turn it in with your assignment. You may find Corollary 1 in the Week
2 notes handy).
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Assignment 3 Due October 24 Covers: Sections 2.1-2.3

• Q1. Do Exercise 1(cdfh) of Section 2.1 of the textbook.

• Q2. Do Exercise 7 of Section 2.1 of the textbook.

• Q3. Do Exercise 10 of Section 2.1 of the textbook.

• Q4*. Do Exercise 17 of Section 2.1 of the textbook.

• Q5. Do Exercise 1(bcdf) of Section 2.2 of the textbook.

• Q6. Do Exercise 2(aceg) of Section 2.2 of the textbook.

• Q7. Do Exercise 7 of Section 2.2 of the textbook.

• Q8. (a) Let V , W be vector spaces, and let T : V → W be a linear
transformation. Let U be a subspace of W . Show that the set

T−1(U) := {v ∈ V : T (v) ∈ U}

is a subspace of V . Explain why this shows that the null space N(T )
is also a subspace.

• (b) Let V , W be vector spaces, and let T : V → W be a linear trans-
formation. Let X be a subspace of V . Show that the set

T (X) := {Tv : v ∈ X}

is a subspace of W . Explain why this shows that the range R(T ) is
also a subspace.

• Q9*. Show, without doing Gaussian elimination or any other compu-
tation, that there must be a solution to the system

12x1 +34x2 +56x3 +78x4 = 0
3x1 +6x2 +2x3 +10x4 = 0
43x1 +21x2 +98x3 +76x4 = 0

such that the x1, x2, x3, x4 are not all equal to zero. [Hint: consider
the linear transformation T : R4 → R3 defined by
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T (x1, x2, x3, x4) := (12x1 + 34x2 + 56x3 + 78x4,

3x1 + 6x2 + 2x2 + 10x4, 43x1 + 21x2 + 98x3 + 76x4).

What can you say about the rank and nullity of T?

• Q10. Find a non-zero vector v ∈ R2, and two ordered bases β, β′ of
R2, such that [v]β = [v]β′ but that β 6= β′.
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Assignment 4 Due October 31 Covers: Sections 2.3-2.4

• Q1. Do Exercise 5(cdefg) of Section 2.2 of the textbook.

• Q2. Do Exercise 1(aegij) of Section 2.3 of the textbook.

• Q3. Do Exercise 4(c) of Section 2.3 of the textbook.

• Q4. Do Exercise 10 of Section 2.3 at the textbook. (T0 is the zero
transformation, so that T0v = 0 for all v ∈ V .

• Q5. Do Exercise 1(bcdefhi) of Section 2.4 of the textbook.

• Q6. Do Exercise 2 of Section 2.4 of the textbook.

• Q7. Do Exercise 4 of Section 2.4 of the textbook.

• Q8*. Do Exercise 9 of Section 2.4 of the textbook.

• Q9. Let U , V , W be vector spaces.

• (a) Show that U is isomorphic to U .

• (b) Show that if U is isomorphic to V , then V is isomorphic to U .

• (c) Show that if U is isomorphic to V , and V is isomorphic to W , then
U is isomorphic to W .

• (Incidentally, the above three properties (a)-(c) together mean that
isomorphism is an equivalence relation).

• Q10. From our notes on Lagrange interpolation, we know that given
any three numbers y1, y2, y3, there exists an interpolating polynomial
f ∈ P2(R) such that f(0) = y1, f(1) = y2, and f(2) = y3. Define the
map T : R3 → P2(R) by setting T (y1, y2, y3) := f . (Thus for instance
T (0, 1, 4) = x2). Let α := ((1, 0, 0), (0, 1, 0), (0, 0, 1)) be the standard
basis for R3, and let β := (1, x, x2) be the standard basis for P2(R).

• (a) Compute the matrix [T ]βα. (You may assume without proof that T
is linear.)
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• (b) Let S : P2(R)→ R3 be the map

Sf := (f(0), f(1), f(2)).

Compute the matrix [S]αβ . (Again, you may assume without proof that
S is linear).

• (c) Use matrix multiplication to verify the identities

[S]αβ [T ]βα = [T ]βα[S]αβ = I3,

where I3 is the 3 × 3 identity matrix. Can you explain why these
identities should be true?
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Midterm

• Q1. Let T : R4 → R4 be the transformation

T (x1, x2, x3, x4) := (0, x1, x2, x3).

• (a) What is the rank and nullity of T?

• (b) Let β := ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)) be the stan-
dard ordered basis for T . Compute [T ]ββ, [T 2]ββ, [T 3]ββ, and [T 4]ββ. (Here
T 2 = T ◦ T , T 3 = T ◦ T ◦ T , etc.)

• Q2. Let V denote the space

V := {f ∈ P3(R) : f(0) = f(1) = 0}.

(a) Show that V is a vector space.

(b) Find a basis for V . (Hint: if f(0) = f(1) = 0, what can one say
about the factors of f?)

• Q3. Let V and W be vector spaces, and let T : V → W be a one-to-
one linear transformation. Let U be a finite-dimensional subspace of
V . Show that the vector space

T (U) := {Tv : v ∈ U}

has the same dimension as U . (You may assume without proof that
T (U) is a vector space).

• Q4. Let V be a three-dimensional vector space with an ordered basis
β := (v1, v2, v3). Let γ be the ordered basis γ := ((1, 1, 0), (1, 0, 0), (0, 0, 1))
of R3. (You may assume without proof that γ is indeed an ordered ba-
sis).

• Let T : V → R3 be a linear transformation whose matrix representation
[T ]γβ is given by

[T ]γβ =

 0 0 1
0 1 0
1 0 0

 .

Compute T (v1 + 2v2 + 3v3).
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• Q5. Find a linear transformation T : R3 → R3 whose null space N(T )
is equal to the z-axis

N(T ) = {(0, 0, z) : z ∈ R}

and whose range R(T ) is equal to the plane

R(T ) = {(x, y, z) ∈ R3 : x+ y + z = 0}.
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Assignment 5 Due November 7 Covers: Sections 2.4-2.5

• Q1. Do exercise 15(b) of Section 2.4 of the textbook. (Note that part
(a) of this exercise was already done in Q8(b) of Assignment 3).

• Q2. Do exercise 1(abde) of Section 2.5 in the textbook.

• Q3. Do exercise 2(b) of Section 2.5 in the textbook.

• Q4. Do exercise 4 of Section 2.5 in the textbook.

• Q5. Do exercise 10 of Section 2.5 in the textbook.

• Q6. Let β := ((1, 0), (0, 1)) be the standard basis of R2, and let β′ :=
((3,−4), (4, 3)) be another basis of R2. Let l be the line connecting
the origin to (4, 3), and let T : R2 → R2 be the operation of reflection
through l (so if v ∈ R2, then Tv is the reflected image of v through the
line l.

• (a) What is [T ]β
′

β′? (You should do this entirely by drawing pictures).

• (b) Use the change of variables formula to determine [T ]ββ.

• (c) If (x, y) ∈ R2, give a formula for T (x, y).

• Q7. Let T : Pn(R)→ Rn+1 be the map

T (f) := (f(0), f(1), f(2), . . . , f(n)).

Thus, for instance if n = 3, then T (x2) = (0, 1, 4, 9).

• (a) Prove that T is linear.

• (b) Prove that T is an isomorphism.

• Q8*. Let A, B be n × n matrices such that AB = In, where In is the
n× n identity matrix.

• (a) Show that LALB = IRn , where IRn the identity on Rn.

• (b) Show that LB is one-to-one and onto. (Hint: Use (a) to obtain the
one-to-one property. Then use the Dimension theorem to deduce the
onto property).
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• (c) Show that LBLA = IRn . (Hint: First use (a) to show that
LBLALB = LB, and then use the fact that LB is onto).

• (d) Show that BA = In.

• (To summarize the result of this problem: if one wants to show that
two n×n matrices A,B are inverses, one only needs to show AB = In;
the other condition BA = In comes for free).

• Q9. Let A, B, C be n× n matrices.

• (a) Show that A is similar to A.

• (b) Show that if A is similar to B, then B is similar to A.

• (c) Show that if A is similar to B, and B is similar to C, then A is
isomorphic to C.

• (Incidentally, the above three properties (a)-(c) together mean that
similarity is an equivalence relation).

• Q10*. Let V be a finite-dimensional vector space, let T : V → V be
a linear transformation, and let S : V → V be an invertible linear
transformation.

• (a) Prove that R(STS−1) = S(R(T )) and N(STS−1) = S(N(T)).
(Recall that R(T ) := {Tv : v ∈ V } is the range of T , while N(T ) :=
{v ∈ V : Tv = 0} is the null space of T . Also, for any subspace W of
V , recall that S(W ) := {Sv : v ∈ W} is the image of W under S.)

• (b) Prove that rank(R(T )) = rank(R(STS−1)) and nullity(R(T )) =
nullity(R(STS−1)). (Hint: use part (a) as well as Q1).
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Assignment 6 Due November 14 Covers: Sections 3.1-3.2; 4.1-4.4

• Q1. Do Question 1(abcdefgi) of Section 3.1 of the textbook.

• Q2. Do Question 1(acdefhi) of Section 3.2 of the textbook.

• Q3. Do Question 5(e) of Section 3.2 of the textbook.

• Q4. Do Question 6(ade) of Section 3.2 of the textbook.

• Q5. Do Question 1(abcdefgh) of Section 4.2 of the textbook.

• Q6. Do Question 25 of Section 4.2 of the textbook.

• Q7. Let U , V , W be finite-dimensional vector spaces, and let S : V →
W and T : U → V be linear transformations.

• (a) Show that rank(ST) ≤ rank(S).

• (b) Show that rank(ST) ≤ rank(T).

• (c) Show that nullity(ST) ≥ nullity(T).

• (d) Give an example where nullity(ST) > nullity(S).

• (e) Give an example where nullity(ST) < nullity(S).

• Q8. Let A and B be n × n matrices. Prove (from the definition of
transpose and matrix multiplication) that (AB)t = BtAt.

• Q9. Let A be an invertible n × n matrix. Prove that det(A−1) =
1/ det(A).

• Q10. Let A and B be invertible n×n matrices. Show that one there is a
sequence of elementary row operations which transforms A to B. (Hint:
first show that there is a sequence of row operations which transforms
A to the identity matrix).
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Assignment 7 Due November 21 Covers: Sections 4.4; 5.1-5.2

• Q1. Do Question 1(acdefgijk) of Question 1 of Section 4.4 of the text-
book.

• Q2. Do Question 4(g) of Section 4.4 of the textbook.

• Q3. Do Question 2(a) of Section 5.1 of the textbook.

• Q4. Do Question 3(a) of Section 5.1 of the textbook. (Treat any
occurrence of F as if it were R instead).

• Q5. Do Question 8 of Section 5.1 of the textbook. (You may assume
that T : V → V is a linear transformation from some finite-dimensional
vector space V to itself; this is what it means for T to be a linear
transformation “on V ).

• Q6*. Do Question 11 of Section 5.1 of the textbook.

• Q7. Do Question 15 of Section 5.1 of the textbook.

• Q8. Do Question 3(bf) of Section 5.2 of the textbook.

• Q9. Let A and B be similar n × n matrices. Show that A and B
have the same set of eigenvalues (i.e. every eigenvalue of A is also an
eigenvalue of B and vice versa).

• Q10*. For this question, the field of scalars will be the complex numbers
C := {x+ yi : x, y ∈ R} instead of the reals (i.e. all matrices, etc. are
allowed to have complex entries). Let θ be a real number, and let A be
the 2× 2 rotation matrix

A =

(
cos θ − sin θ
sin θ cos θ

)
.

• (a) Show that A has eigenvalues eiθ and e−iθ. (You may use Euler
formula eiθ = cos θ + i sin θ). What are the eigenvectors corresponding
to eiθ and e−iθ?
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• (b) Write A = QDQ−1 for some invertible matrix Q and diagonal
matrix D (note that Q and D may have complex entries. Also, there
are several possible answers to this question; you only need to give one
of them).

• (c) Let n ≥ 1 be an integer. Prove that

An =

(
cosnθ − sinnθ
sinnθ cosnθ

)
.

(You may find the formulae (eiθ)n = einθ = cosnθ + i sinnθ and
(e−iθ)n = e−inθ = cosnθ − i sinnθ to be useful).

• (d) Can you explain why the operator LA : R2 → R2 corresponds to
an anti-clockwise rotation of the plane R2 by angle θ?

• (e) Based on (d), can you think of a geometrical interpretation of the
result proven in (c)?
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Assignment 8 Due December 5 Covers: Sections 5.2,6.2-6.3

• Q1. Do Question 8 of Section 6.1 in the textbook.

• Q2. Do Question 11 of Section 6.1 in the textbook.

• Q3. Do Question 4 of Section 6.2 in the textbook.

• Q4. Do Question 13(a) of Section 6.2 in the textbook. (Hint: Use
Theorem 6 from the Week 9 notes).

• Q5. Do Question 17(bc) of Section 6.2 of the textbook.

• Q6. Do Question 18(b) of Section 6.2 of the textbook.

• Q7. Do Question 2 of Section 6.3 of the textbook.

• Q8. Let A be an n × n matrix with n distinct eigenvalues λ1, . . . , λn.
Show that det(A) = λ1λ2 . . . λn and tr(A) = λ1 + λ2 + . . .+ λn.

• Q9. Let V be a finite-dimensional inner product space, and let W be a
subspace of V . Show that (W⊥)⊥ = W ; i.e. the orthogonal complement
of the orthogonal complement of W is again W .

• Q10*. Find a 2×2 matrix A which has (1, 1) and (1, 0) as eigenvectors,
is not equal to the identity matrix, and is such that A2 = I2, where I2
is the 2×2 identity matrix. (Hint: you might want to use Q7 from last
week’s homework to work out what the eigenvalues of A must be).
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Mathematics 115A/3
Terence Tao
Final Examination, Dec 10, 2002
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Problem 1. (15 points) Let W be a finite-dimensional real vector space,
and let U and V be two subspaces of W . Let U + V be the space

U + V := {u+ v : u ∈ U and v ∈ V }.

You may use without proof the fact that U + V is a subspace of W .
(a) (5 points) Show that dim(U + V ) ≤ dim(U) + dim(V ).

(b) (5 points) Suppose we make the additional assumption that U ∩ V =
{0}. Now prove that dim(U + V ) = dim(U) + dim(V ).

Problem 1 continues on the next page.
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Problem 1 continued.
(c) (5 points) Let U and V be two three-dimensional subspaces of R5.

Show that there exists a non-zero vector v ∈ R5 which lies in both U and V .
(Hint: Use (b) and argue by contradiction).
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Problem 2. (10 points) Let P2(R) be the space of polynomials of degree
at most 2, with real coefficients. We give P2(R) the inner product

〈f, g〉 :=

∫ 1

0

f(x)g(x) dx.

You may use without proof the fact that this is indeed an inner product for
P2(R).

(a) (5 points) Find an orthonormal basis for P2(R).

Ans.

(b) (5 points) Find a basis for span(1, x)⊥.

Ans.
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Problem 3. (15 points) Let P3(R) be the space of polynomials of degree
at most 3, with real coefficients. Let T : P3(R) → P3(R) be the linear
transformation

Tf :=
df

dx
,

thus for instance T (x3 + 2x) = 3x2 + 2. You may use without proof the
fact that T is indeed a linear transformation. Let β := (1, x, x2, x3) be the
standard basis for P3(R).

(a) (5 points) Compute the matrix [T ]ββ.

Ans.

(b) (3 points) Compute the characteristic polynomial of [T ]ββ.

Ans.

(c) (5 points) What are the eigenvalues and eigenvectors of T? (Warn-
ing: the eigenvectors of T are related to, but not quite the same as, the
eigenvectors of [T ]ββ.

Ans.

Problem 3 continues on the next page.

263



Problem 3 continued.
(d) (2 points) Is T diagonalizable? Explain your reasoning.
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Problem 4. (15 points) This question is concerned with the linear trans-
formation T : R4 → R3 defined by

T (x, y, z, w) := (x+ y + z, y + 2z + 3w, x− z − 2w).

You may use without proof the fact that T is a linear transformation.
(a) (5 points) What is the nullity of T?

Ans.

(b) (5 points) Find a basis for the null space. (This basis does not need
to be orthogonal or orthonormal).

Ans.

(c) (5 points) Find a basis for the range. (This basis does not need to be
orthogonal or orthonormal).

Ans.
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Problem 5. (10 points) Let V be a real vector space, and let T : V → V
be a linear transformation such that T 2 = T . Let R(T ) be the range of T
and let N(T ) be the null space of T .

(a) (5 points) Prove that R(T ) ∩N(T ) = {0}.

(b) (5 points) Let R(T ) +N(T ) denote the space

R(T ) +N(T ) := {x+ y : x ∈ R(T ) and y ∈ N(T )}.

Show that R(T ) +N(T ) = V . (Hint: First show that for any vector v ∈ V ,
the vector v − Tv lies in the null space N(T )).
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Problem 6. (15 points) Let A be the matrix

A :=

 0 1 0
−1 0 0
0 0 −1


(a) (5 points) Find a complex invertible matrix Q and a complex diagonal

matrix D such that A = QDQ−1. (Hint: A has −1 as one of its eigenvalues).

Ans.

Problem 6 continues on the next page.
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Problem 6 continued.
(b) (5 points) Find three elementary matrices E1, E2, E3 such that A =

E1E2E3. (Note: this problem is not directly related to (a)).

Ans.

(c) (5 points) Compute A−1, by any means you wish.

Ans.
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Problem 7. (10 points) Let f, g be continuous, complex-valued functions

on [−1, 1] such that
∫ 1

−1 |f(x)|2 dx = 9 and
∫ 1

−1 |g(x)|2 dx = 16.

(a) (5 points) What possible values can
∫ 1

−1 f(x)g(x) dx take? Explain
your reasoning.

Ans.

(b) (5 points) What possible values can
∫ 1

−1 |f(x)+g(x)|2 dx take? Explain
your reasoning.

Ans.
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Problem 8. (10 points) Find a 2 × 2 matrix A with real entries which

has trace 5, determinant 6, and has

(
1
1

)
as one of its eigenvectors. (Hint:

First work out what the characteristic polynomial of A must be. There are
several possible answers to this question; you only have to supply one of
them.)

Ans.
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