The Cosmic Distance Ladder Terence Tao (UCLA)

Orion nebula, Hubble \& Spitzer telescopes, composite image, NASA/JPL

Astrometry

Solar system montage, NASA/JPL

Astrometry is the study of positions and movements of celestial bodies (sun, moon, planets, stars, etc.).

It is a major subfield of astronomy.

Typical questions in astrometry are:

- How far is it from the Earth to the Moon?
- From the Earth to the Sun?
- From the Sun to other planets?
- From the Sun to nearby stars?
- From the Sun to distant stars?

These distances are far too vast to be measured directly.

Nevertheless, there are several ways to measure these distances indirectly'.

The methods often rely more on mathematics than on technology.

The indirect methods control large distances in terms of smaller distances.

From "The Essential Cosmic Perspective", Bennett et al.

The smaller distances are controlled by even smaller distances...

From "The Essential Cosmic Perspective", Bennett et al.

... and so on, until one reaches distances that one can measure directly.

From "The Essential Cosmic Perspective", Bennett et al.

This is the cosmic distance ladder.

From "The Essential Cosmic Perspective", Bennett et al.

Nowadays, we know that the earth is approximately

 spherical, with radius 6378 kilometers (3963 mi) at the equator and 6356 kilometers $(3949 \mathrm{mi})$ at the poles.Earth Observing System composite, NASA

These values have now been verified to great precision by many means, including modern satellites.
 ceryeng

$28+1$

But suppose we had no advanced technology such as spaceflight,

 ocean and air travel, or even telescopes and sextants.

Could we even tell that the Earth was

round?

Earth Observing System composite, NASA

B

The answer is yes- if one

 knows some geometry!
Aristotle (384-322 BCE) gave a convincing indirect argument that the Earth was round... by looking at the Moon.

Aristotle knew that lunar eclipses only occurred when the Moon was directly opposite the Sun.

He deduced that these eclipses were caused by the Moon falling into the Earth's shadow.

But the shadow of the Earth on the Moon in an eclipse was always a circular arc.

In order for Earth's shadows to always be circular, the Earth must be round.

Aristotle also knew there were stars one could see in Egypt but not in Greece.

He reasoned that this was due to the curvature of the Earth, so that its radius was finite.

However, he was unable to get an accurate measurement of this radius.

Eratosthenes read of a well in Syene, Egypt which at noon on the summer solstice (June 21) would reflect the overhead sun.

Tropic of Cancer: Swinburne University, COSMOS Encyclopedia of Astronomy
[This is because Syene lies almost directly on the Tropic of Cancer.]

Sun directly overhead

Tropic of Cancer: Swinburne University, COSMOS Encyclopedia of Astronomy

Eratosthenes tried the same experiment in his home city of Alexandria.

Sun directly overhead

Alexandria

Syene

Tropic of Cancer: Swinburne University, COSMOS Encyclopedia of Astronomy

But on the solstice, the sun was at an angle and did not reflect from the bottom of the well.

Sun not quite overhead

Sun directly overhead

Alexandria

Syene

Tropic of Cancer: Swinburne University, COSMOS Encyclopedia of Astronomy

Using a gnomon (measuring stick), Eratosthenes measured the deviation of the sun from the vertical as 7°.

Tropic of Cancer: Swinburne University, COSMOS Encyclopedia of Astronomy

From trade caravans and other sources, Eratosthenes knew Syene to be 5,000 stadia (740 km) south of Alexandria.

Alexandria

Syene

Tropic of Cancer: Swinburne University, COSMOS Encyclopedia of Astronomy

This is enough

 information to compute the radius of the Earth.

Tropic of Cancer: Swinburne University, COSMOS Encyclopedia of Astronomy

[This assumes that the Sun is quite far away, but more on this later.]

Tropic of Cancer: Swinburne University, COSMOS Encyclopedia of Astronomy

$2^{\text {nd }}$ rung: the Moon

- What shape is the Moon?
- How large is the Moon?
- How far away is the Moon?

The ancient Greeks could answer these questions also.

Aristotle argued that the Moon was a ${ }^{4}$ sphere (rather than a disk) because the terminator (the boundary of the Sun's light on the Moon) was always an elliptical arc.

						Cl^{28}
29	$\underbrace{1}{ }^{30}$				3	4
5	\square^{6}	7	8	9	10	$\begin{array}{r} 11 \\ \text { ipedia } \end{array}$

Aristarchus (310-230 BCE) computed the distance of the Earth to the Moon as about 60 Earth radii.
[In truth, it varies from 57 to 63 Earth radii.]

Aristarchus also computed the radius of the Moon as $1 / 3$ the radius of the Earth.

[In truth, it is 0.273 Earth radii.]

The radius of the Earth was

 computed in the previous rung of the ladder, so we now know the size and location of the Moon.Radius of moon $=0.273$ radius of Earth $=1,700 \mathrm{~km}=1,100 \mathrm{mi}$ Distance to moon $=60$ Earth radii $=384,000 \mathrm{~km}=239,000 \mathrm{mi}$

Orbit of the Earth

Aristarchus's argument to measure the distance to the Moon was indirect, and relied on the Sun.

Sun

Orbit of the Earth

Aristarchus knew that lunar eclipses were caused by the Moon passing through the Earth's shadow.

Sun

Umbra

Orbit of the Earth

The Earth's shadow is approximately two Earth radii wide*.

Umbra

Orbit of the Earth

$\mathrm{v}=2 \mathrm{r} / 3$ hours

The maximum length of a lunar eclipse is three hours*.

Sun

Orbit of the Earth

$\mathrm{v}=2 \mathrm{r} / 3$ hours
$=2 \pi \mathrm{~d} / 1$ month

It takes one month* for the Moon to go around the Earth.

Orbit of the Earth

This is enough information* to work out the distance to the Moon in Earth radii.

Sun

Also, the Moon takes about 2 minutes to set.

Moonset over the Colorado Rocky Mountains, Sep 15 2008, Alek Kolmarnitsky

$$
\begin{aligned}
& \mathrm{V}=2 \mathrm{R} / 2 \mathrm{~min} \\
& =2 \pi \mathrm{~d} / 24 \text { hours }
\end{aligned}
$$

The Moon takes 24 hours to make a full (apparent) rotation around the Earth.

Moonset over the Colorado Rocky Mountains, Sep 15 2008, Alek Kolmarnitsky

$$
\begin{aligned}
& \mathrm{V}=2 \mathrm{R} / 2 \mathrm{~min} \\
& =2 \pi \mathrm{D} / 24 \text { hours }
\end{aligned}
$$

This is enough information to determine the radius of the Moon, in terms of the distance to the Moon...

Moonset over the Colorado Rocky Mountains, Sep 15 2008, Alek Kolmarnitsky

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{V}=2 \mathrm{R} / 2 \mathrm{~min} \\
=2 \pi \mathrm{D} / 24 \text { hours }
\end{array} \\
& \begin{array}{l}
\mathrm{R}=\mathrm{D} / 180 \\
=\mathrm{r} / 3
\end{array}
\end{aligned}
$$

... which we have just computed.

Moonset over the Colorado Rocky Mountains, Sep 15 2008, Alek Kolmarnitsky

$\mathrm{V}=2 \mathrm{R} / 2$ min
$=2 \pi \mathrm{D} / 24$ hours

$\mathrm{R}=\mathrm{D} / 180$
$=\mathrm{r} / 3$

[Aristarchus, by the way, was handicapped by not having an accurate value of π, which had to wait until Archimedes (287212BCE) some decades later!]

Moonset over the Colorado Rocky Mountains, Sep 15 2008, Alek Kolmarnitsky

$3^{\text {rd }}$ rung: the Sun

- How large is the Sun?
- How far away is the Sun?

EIT-SOHO Consortium, ESA, NASA

Once again, the ancient Greeks could answer these questions (but with imperfect accuracy).

EIT-SOHO Consortium, ESA, NASA

Their methods were indirect, and relied on the Moon.

EIT-SOHO Consortium, ESA, NASA

Aristarchus already computed that the radius of the Moon was $1 / 180$ of the distance to the Moon.

He also knew that during a solar eclipse, the Moon covered the Sun almost perfectly.

Using similar triangles, he concluded that the radius of
 the Sun was also $1 / 180$ of the distance to the Sun.

Zimbabwe Solar Eclipse 4 Dec 2002, Murray Alexander

So his next task was to compute the distance to the Sun.

Zimbabwe Solar Eclipse 4 Dec 2002, Murray Alexander

For this, he turned to

 the Moon again for help.Zimbabwe Solar Eclipse 4 Dec 2002, Murray Alexander

$\theta=\pi / 2-2 \pi * 6$ Enrth
Moon hours/1 month

Sun

Aristarchus thought that half Moons occurred 6 hours before the midpoint of a new and full Moon.

$\theta=\pi / 2-2 \pi * 6$
hours $/ 1 \mathrm{month}$
$\cos \theta=\mathrm{d} / \mathrm{D}$

$\mathrm{D}=20 \mathrm{~d}$

Earth
Moon

Sun

From this and trigonometry, he concluded that the Sun was 20 times further away than the Moon.

$$
\begin{aligned}
& \begin{array}{l}
\theta=\pi / 2-2 \pi * 6 \\
0.5 \text { hour } / 1 \text { month } \\
\cos \theta=\mathrm{d} / \mathrm{D}
\end{array} \\
& \mathrm{D}=20390 \mathrm{~d}
\end{aligned}
$$

Earth
Moon

Sun

The true time discrepancy is $1 / 2$ hour (not 6 hours), and the Sun is 390 times further away (not 20 times).

$\mathrm{d}=60 \mathrm{r}$
$\mathrm{D} / \mathrm{d}=20$
$\mathrm{R} / \mathrm{D}=1 / 180$

Moon

Sun

And Aristarchus' computations led him to an important conclusion...

$$
\begin{aligned}
& \mathrm{d}=60 \mathrm{r} \\
& \mathrm{D} / \mathrm{d}=20 \\
& \mathrm{R} / \mathrm{D}=1 / 180
\end{aligned}
$$

... the Sun was much larger than the Earth.

He then concluded it was absurd to think the Sun went around the Earth...

© ־- Approx. size of Earth

Earth radius $=6371 \mathrm{~km}=3959 \mathrm{mi}$
Sun radius $=695,500 \mathrm{~km}=432,200 \mathrm{mi}$

\ldots and was the first to

 propose the heliocentric model that the Earth went around the Sun.© 〔- Approx. size of Earth

Earth radius $=6371 \mathrm{~km}=3959 \mathrm{mi}$
Sun radius $=695,500 \mathrm{~km}=432,200 \mathrm{mi}$

[1700 years later, Copernicus would credit Aristarchus for this idea.]

© 2 Approx. size of Earth

Earth radius $=6371 \mathrm{~km}=3959 \mathrm{mi}$
Sun radius $=695,500 \mathrm{~km}=432,200 \mathrm{mi}$

Ironically, Aristarchus' theory was not accepted by the other ancient Greeks...

© - Approx. size of Earth

Earth radius $=6371 \mathrm{~km}=3959 \mathrm{mi}$
Sun radius $=695,500 \mathrm{~km}=432,200 \mathrm{mi}$
... but we'll explain why later.
© - Approx. size of Earth

The distance from the Earth to the Sun is known as the Astronomical Unit (AU).

It is an extremely important rung in the cosmic distance ladder.

Aristarchus' original estimate of the AU was inaccurate...

but we'll see much more accurate ways to measure the AU later on.

$4^{\text {th }}$ rung: the planets

The ancient astrologers knew that all the planets lay on a plane (the ecliptic), because they only moved through the Zodiac.

But this still left many questions unanswered:

- How far away are the planets (e.g. Mars)?
- What are their orbits?
- How long does it take to complete an orbit?

The first person to obtain accurate answers was Nicolaus Copernicus (1473-1543).

Assuming circular orbits, and using measurements of the location of Mars in the Zodiac at various dates...

 \title{
Both of these measurements are
 \title{
Both of these measurements are accurate to two decimal places.
}

Tycho Brahe (1546-1601) made extremely detailed and long-term measurements of the position of Mars and other planets.

Unfortunately, his data deviated slightly from the predictions of the Copernican model.

Tycho Brahe's Mars Observations

Johannes Kepler (1571-1630) reasoned that this was because the orbits of the Earth and Mars were not quite circular.

Tycho Brahe's Mars Observations

To explain how this works, let's first suppose that Mars is fixed, rather than orbiting the Sun.

But the Earth is moving in an unknown orbit.

At any given time, one can measure the position of the Sun and Mars from Earth, with respect to the fixed stars (the Zodiac).

Assuming that the Sun and Mars are fixed, one can then triangulate to determine the position of the Earth relative to the Sun and Mars.

Unfortunately, Mars is not fixed; it also moves, and along an unknown orbit.

So by taking Brahe's data at intervals of 687 days...

... Kepler could triangulate and compute Earth's orbit relative to any position of Mars.

Once Earth's orbit was known, it could be used to compute more positions of Mars by taking other sequences of data separated by 687 days...

Kepler's methods allowed for very precise measurements of planetary distances in terms of the AU.

Mercury: 0.307-0.466 AU Venus: 0.718-0.728 AU Earth: 0.98-1.1 AU Mars: 1.36-1.66 AU Jupiter: 4.95-5.46 AU Saturn: $9.05-10.12 \mathrm{AU}$ Uranus: 18.4-20.1 AU Neptune: 29.8-30.4 AU

One way to measure such distances is by parallax-measuring the same object from two different locations on the Earth.

By measuring the parallax of the transit of Venus across the Sun simultaneously in several locations (including James Cook's voyage!), the AU was computed reasonably accurately in the $18^{\text {th }}$ century*.

D. With modern technology such as radar and interplanetary satellites, the AU and the planetary orbits have now been computed to extremely high precision.

Incidentally, such precise measurements of Mercury revealed a precession that was not explained by Newtonian gravity...
\ldots, and was one of the first experimental verifications of general relativity (which is needed in later rungs of the ladder).

Lucasfilm

Technically, the speed of light, c, is not a distance.

However, one needs to know it in order to ascend higher rungs of the distance ladder.

The first accurate measurements of c were by Ole Rømer (1644-1710) and Christiaan Huygens (1629-1695).

Their method was indirect... and used a moon of Jupiter, namely Io.

Io has the shortest orbit of all the major moons of Jupiter. It orbits Jupiter once every 42.5 hours.

Rømer made many measurements of this orbit by timing when Io entered and exited Jupiter's shadow.

He noticed* that when Jupiter was aligned with the Earth, the orbit advanced slightly; when Jupiter was opposed, the orbit lagged.

* As Romer could not observe Io in the daytime, his actual calculations occurred when Earth made an acute angle with Jupiter.

The difference was slight; the orbit lagged by about 20 minutes when Jupiter was opposed.

Huygens reasoned that this was because of the additional distance (2AU) that the light from Jupiter had to travel.

Using the best measurement of the

 AU available to him, he then computed the speed of light as $c=$ $220,000 \mathrm{~km} / \mathrm{s}=140,000 \mathrm{mi} / \mathrm{s}$.[The truth is $299,792 \mathrm{~km} / \mathrm{s}=186,282$ mi / s.]

This computation was important for the future development of physics.

James Clerk Maxwell (1831-1879)

 observed that the speed of light almost matched the speed his theory predicted for electromagnetic radiation.$$
\begin{aligned}
& \mathrm{c} \sim 3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \varepsilon_{0} \sim 8.9 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
& \mu_{0} \sim 1.3 \times 10^{-6} \mathrm{H} / \mathrm{m} \\
& \left(\varepsilon_{0} \mu_{0}\right)^{-1 / 2} \sim 3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

He then reached the important conclusion that light was a form of electromagnetic radiation.

Increasing wavelength

This observation was instrumental in leading to Einstein's theory of x special relativity in 1905.

$$
\begin{aligned}
& \mathrm{x}=\mathrm{vt} \leftrightarrow \mathrm{x}^{\prime}=0 \\
& \mathrm{X}=\mathrm{ct} \leftrightarrow \mathrm{x}^{\prime}=\mathrm{ct} \\
& \mathrm{x}=-\mathrm{ct} \leftrightarrow \mathrm{x}^{\prime}=-\mathrm{ct} t^{\prime}
\end{aligned}
$$

First spectroscope: 1814 (Joseph von Fraunhofer)

2 Earth radii $=12,700 \mathrm{~km}$ $2 \mathrm{AU}=300,000,000 \mathrm{~km}$
distant stars

Every January, we see this:

nearby star

Every July, we see this:

From "The Essential Cosmic Perspective", Bennett et al.

1 light year $=9.5 \times 10^{15} \mathrm{~m}$
1 parsec $=3.1 \times 10^{16} \mathrm{~m}$

Every January, we see this:

nearby star

... which gives enough parallax to easily measure all stars within about 100 light years (30 parsecs) with ordinary optical telescopes.

1 AU July

distant stars

Every July, we see this:

From "The Essential Cosmic Perspective", Bennett et al.

These parallax computations, which require accurate telescopy, were first done by Friedrich Bessel (1784-1846) in 1838.

Nowadays, with modern telescopes (such as the satellite telescope Hipparcos), the parallax method can measure distances up to about 10,000 light years away.

Ironically, when Aristarchus

 proposed the heliocentric model, his contemporaries dismissed it, on the grounds that they did not observe any parallax effects...... so the heliocentric model would have implied that the stars were an absurdly large distance away.
[Which, of course, they are.]

Distance to Proxima Centauri
$=40,000,000,000,000 \mathrm{~km}$
$=25,000,000,000,000 \mathrm{mi}$

Wikipedia

$7^{\text {th }}$ rung: the Milky Way

One can use detailed observations of nearby stars to provide a means to measure distances to more distant stars.

Using spectroscopy, one can measure precisely the colour of a nearby star; using photography, one can also measure its apparent brightness.

Using the apparent brightness, the distance, and inverse square law, one can compute the absolute brightness of these stars.

$$
\mathrm{M}=\mathrm{m}-5\left(\log _{10} \mathrm{D}_{\mathrm{L}}-1\right)
$$

Ejnar Hertzsprung (1873-1967) and Henry Russell (1877-1957) plotted this absolute brightness against color for thousands of nearby stars in 1905-1915...

Leiden Observatory

This technique (main sequence fitting) works out to about 300,000 light years (covering the entire galaxy!)

300,000 light years $=2.8 \times 10^{21} \mathrm{~m}=1.8 \times 10^{18} \mathrm{mi}$ Diameter of Milky Way $=100,000$ light years Distance to galactic center $=25,000$ light years $=2.4 \times 10^{20} \mathrm{~m}=1.5 \times 10^{17} \mathrm{mi}$

Beyond this distance, the main sequence stars are too faint to be measured accurately.

Henrietta Swan Leavitt (18681921) observed a certain class of stars (the Cepheids) oscillated in brightness periodically.

American Institute of Physics

Fig. 1.
Henrietta Swan Leavitt, 1912

Fig. 1.
Henrietta Swan Leavitt, 1912

Most galaxies are fortunate to have at least one Cepheid in them, so we know the distances to all galaxies out to a reasonably large distance.

Cepheid measurements also allowed Harlow Shapley (1885-1972) to map the Milky Way, showing that the solar system was not at the centre of its own galaxy.

Local Ar

Schematic side view of Milky Way (NASA/CXC/M. Weiss)

Diameter of Milky Way $=100,000$ light years Most distant Cepheid detected (NGC 4604, HST) : 108,000,000 light years Most distant Type 1a supernova detected (1997ff) : 11,000,000,000 light years Diameter of universe $\gg 76,000,000,000$ light years

Similar methods, using supernovae instead of Cepheids, can sometimes work to even larger scales than these, and can also be used to independently confirm the Cepheid-based distance measurements.

Supernova remnant, NASA, ESA, HEIC, Hubble Heritage Team

Edwin Hubble (1889-1953) noticed that distant galaxies had their spectrum red-shifted a greater amount from those of nearby galaxies.

With this data, he formulated Hubble's law: the red-shift of an object was proportional to its distance.

distance

As explained by Christian Doppler (1803-

 1853), the red-shift of galaxies indicated that A terglow Li distance to these galaxies increased with 400,000 yis

This led to the famous Big Bang model of the expanding universe, which has now been af confirmed by many other cosmological observations.

Quantum Fluctuations

Two degree field Galaxy red-shift survey, W. Schaap et al.

For instance, our best estimate (as of 2004) of the current diameter of the entire universe is that it is at least 78 billion light-years.

Most distant object detected (gamma ray burst) : 13 billion light years
Diameter of observable universe $=28$ billion light years
Diameter of entire universe > 78 billion light years ($4.6 \times 10^{23} \mathrm{mi}$)
Age of universe $=13.7$ billion years

The mathematics becomes more advanced at this point, as the effects of general relativity have highly influenced the data we have at this scale of the universe.

Cutting-edge technology (such as the Hubble space telescope (1990-) and WMAP (2001-2010)) has also been vital to this effort.

Climbing this rung of the ladder (i.e. mapping the universe at its very large scales) is still a very active area in astronomy today!

For instance, a stunning confirmation of the cosmic distance ladder calculations came in 2015 when the Laser Interferometer Gravitational Wave Observatory (LIGO) made the first detection in history of a black hole collision.

By comparing the theoretical strength of the gravitational wave predicted by general relativity with the actual signal received, the LIGO collaboration was able to directly measure the distance to the black holes as 1.4 billion light years - without any use of the distance ladder whatsoever!

This measurement matched the one given by Hubble's law and the rest of the distance ladder to within ten percent. (Astronomers are still debating the implications of that ten percent deviation.)

Celestial object	Distance (metres)	First (relative) measurement
Earth	1.2×10^{7} (diameter)	Eratosthenes (~240BCE)
Moon	3.6×10^{8}	Aristarchus (~270BCE)
Sun	1.5×10^{11}	Aristarchus (270 BCE$)$ Cook etc. $(1761,1769)$
Mars	2.3×10^{11} (from Sun)	Copernicus (1543)
Saturn	1.5×10^{12} (from Sun)	Copernicus (1543)
Pluto	7.4×10^{12} (from Sun)	Tombaugh (1930)
Proxima Centauri	4.0×10^{16}	Alden (1928)
61 Cygni	1.1×10^{17}	Bessel (1838)
Hyades cluster	1.4×10^{18}	Smart (1939)
Pleiades cluster	4.2×10^{18}	Detweiler et al. (1984)
Galactic center	2.6×10^{20}	Shapley (1914)
Large Magellanic Cloud	1.5×10^{21}	Arp (1967)
Andromeda Galaxy	2.4×10^{22}	Hubble (1923)
NGC 4603	1.0×10^{24}	HST (1999)

Celestial object	Distance (metres)	First (relative) measurement
Sloan Great Wall	1.3×10^{25} (diameter)	Gott et al. (2003)
1997ff Type Ia supernova	1.0×10^{26}	HST (1997)
GRB (Gamma Ray Burst) 090423	1.2×10^{26}	Swift satellite (2009)
UDFy-38135539 (Galaxy)	1.2×10^{26}	Lehnert et al. (2010)
Observable universe	2.8×10^{26} (diameter)	Hubble (1929)
Entire universe	$>7.2 \times 10^{26}$	Cornish et al. (2004)

Image credits

- 1: Chaos at the Heart of Orion - NASA/JPL-Caltech/STScl
- 2-4, 86-89: Solar System Montage - NASA/JPL
- 5-7, 170,181: Hubble digs deeply - NASA/ESA/S. Beckwith (STScl) and the HUDF team
- 8-11: BENNETT, JEFFREY O.; DONAHUE, MEGAN; SCHNEIDER, NICHOLAS; VOIT, MARK, ESSENTIAL COSMIC PERSPECTIVE, THE, 3rd Edition, ©2005. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey. p. 384, Figure 15.16.
- 12-17: Earth - The Blue Marble - NASA
- 18: Trigonometry triangle - Wikipedia
- 19: Bust of Aristotle by Lysippus - Wikipedia
- 20-23: Lunar Eclipse Phases - Randy Brewer. Used with permission.
- 24-26: Night Sky - Till Credner: AlltheSky.com. Used with permission.
- 27-29: Eratosthenes, Nordisk familjebok, 1907 - Wikipedia
- 30-37: Tropic of Cancer - Swinburne University, COSMOS Encyclopedia of Astronomy http://astronomy.swin.edu.au/cosmos. Used with permission.
- 38-40: The Moon - NASA
- 41: Moon phase calendar May 2005 - Wikipedia
- 42-44: Bust of Aristarchus (310-230 BC) - Wikipedia
- 45: Geometry of a Lunar Eclipse - Wikipedia
- 51-55: Moonset over the Colorado Mountains, Sep 152008 - Alek Komarnitsky - www.komar.org
- 56-59: Driving to the Sun - EIT - SOHO Consortium, ESA, NASA
- 60-64: Zimbabwe Solar Eclipse - Murray Alexander. Used with permission.
- 65-76: The Earth - BBC. Used with permission.
- 77-81: Earth and the Sun - NASA Solarsystem Collection.
- 82-85: Solar map - Wikipedia
- 90: Claudius Ptolemaeus - Wikipedia
- 91:Ptolemaeus Geocentric Model - Wikipedia
- 92: Nicolaus Copernicus portrait from Town Hall in Thorn/Torun - 1580 - Wikipedia
- 93-98: Babylonian maps - Wikipedia
- 99: Tycho Brahe - Wikipedia
- 100, 102-108: Tycho Brahe - Mars Observations - Wikipedia
- 101: Johannes Kepler (1610) - Wikipedia
- 122-130: Our Solar System - NASA/JPL
- 131-133: Millennium Falcon - Courtesy of Lucasfilm, Ltd. Used with permission.
- 134: Ole Roemer - Wikipedia
- 135: Christaan Huygens - Wikipedia
- 136-142: A New Year for Jupiter and Io - NASA/JPL/University of Arizona
- 143: James Clerk Maxwell - Wikipedia
- 144: Electromagnetic spectrum - Science Learning Hub, The University of Waikato, New Zealand
- 145: Relativity of Simultaneity - Wikipedia
- 146-147: The Spectroscopic Principle: Spectral Absorption lines, Dr. C. Ian Short
- 148-150, 153: Nearby Stars Wikipedia
- 151-152: BENNETT, JEFFREY O.; DONAHUE, MEGAN; SCHNEIDER, NICHOLAS; VOIT, MARK, ESSENTIAL COSMIC PERSPECTIVE, THE, 3rd Edition, ©2005. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey. p. 281, Figure 11.12.
- 154-157: Friedrich Wilhelm Bessel - Wikipedia
- 158-161, 168-169: Milky way - Serge Brunier. Used with permission.
- 162: Ejnar Hertzprung - Courtesy Leiden University. Used with permission.
- 162: Henry Russell - The University of Chicago / Yerkes Observatory. Used with permission.
- 163-167: Richard Powell, http://www. atlasoftheuniverse.com/hr.html, Creative Commons licence.
- 171: Henrietta Swan Leavitt - Wikipedia
- 172-173: Leavitt's original Period-Brightness relation (X-axis in days, Y-axis in magnitudes) - SAO/NASA
- 174-175: Refined Hubble Constant Narrows Possible Explanations for Dark Energy - NASA/ESA/ A. Riess (STScl/JHU)
- 176: Rampaging Supernova Remnant N63A - NASA/ESA/HEIC/The Hubble Heritage Team (STScl/AURA)
- 177: Large-scale distribution of gaseous matter in the Universe - Greg Bryan. Used with permission.
- 178: Edwin Hubble (1889-1953) - NASA
- 179: Hubble's law - NASA
- 180: Big Bang Expansion - NASA
- 182-183, 188: Sloan Great Wall - Wikipedia
- 184: Full-Sky Map of the Oldest light in the Universe - Wikipedia
- 185: Spinning Black Holes and MCG-6-30-15 - XMM-Newton/ESA/NASA
- 186: Hubble Space Telescope - NASA
- 187: WMAP leaving Earth/Moon Orbit for L2 - NASA
- 188: Atlas Of Ancient And Classical Geography, J. M. Dent And Sons, 1912, Map 26;
- 188: Rotating Earth - Wikipedia

Many thanks to Rocie Carrillo for work on the image credits.

Thanks also to Richard Brent, Ford Denison, Estelle, Daniel Gutierrez, Nurdin Takenov, Andreas Thom, Dylan Thurston and several anonymous contributors to my blog for corrections and comments.

