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This will be an expository talk, rather than a talk on current
research.
My objective will be to try to convey the basic principles of
higher order Fourier analysis, by revisiting the classical
circle method and viewing it from this more modern
viewpoint.
The focus here will be on the “big picture”, and we will be
imprecise in the technical details.
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The classical circle method of Hardy and Littlewood allows
one to asymptotically count solutions to many systems of
equations in number theory.
A typical question that can be answered by this method:
How many arithmetic progressions of length three are
there in the prime numbers up to a large threshold N?

Answer (van der Corput, 1939): (S+ o(1))( N2

log3 N
), where

S is the singular series

S =
∏
p≥3

(
1 − p2 − 4p + 1

(p − 1)4

)
≈ 1.0481.
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Traditionally, the circle method proceeds as follows.
First, one expresses the question one wishes to solve as a
certain multilinear sum. For instance, van der Corput’s
result is equivalent to the assertion∑

n,r∈Z

f (n)f (n + r)f (n + 2r) = (S+ o(1))N2,

where f (n) := Λ(n)1n≤N and Λ is the von Mangoldt
function.
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Then, one uses Fourier-analytic identities to rewrite this
sum in terms of exponential sums. For instance, we can
write ∑

n,r∈Z

f (n)f (n + r)f (n + 2r) =
∫ 1

0
S(α)2S(−2α) dα

where S(α) is the exponential sum

S(α) :=
∑
n≤N

Λ(n)e(−nα)

and e(α) := e2πiα.
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∑
n,r∈Z

f (n)f (n + r)f (n + 2r) =
∫ 1

0
S(α)2S(−2α) dα

One often divides the region of integration [0,1] of α into
major arcs, where α is close to a rational a

q with small
denominator q, and minor arcs, which comprise all other α.
In favorable situations, the contribution of minor arcs is
negligible, and the contribution of major arcs can be
efficiently estimated, for instance by the methods of
multiplicative number theory.
Putting together all the estimates then (hopefully) gives an
asymptotic for the desired problem.
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However, the circle method does not always work.
For instance, sometimes the error bounds on the minor
arcs dominates the main terms coming from the major
arcs. (This is for instance the case in the twin primes
conjecture, or even Goldbach conjecture.)
For some problems, such as counting arithmetic
progressions of length four or more, Fourier expansion
does not produce an integral over a single frequency α, but
rather over multiple frequencies α1, α2, . . . , making it even
less likely for major arc contributions to dominate.
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From the modern perspective of higher order Fourier
analysis, given any counting problem in additive
combinatorics, the first step is to ascertain the complexity
of the problem, which roughly speaking describes which
contributions to the count are “non-negligible”.
The circle method tends to work for problems of complexity
one - in which contributions coming from Fourier phases
such as n 7→ e(αn) are the non-negligible ones. (Example:
how many length three arithmetic progressions in the
primes up to N?)
They are particularly effective for complexity zero
problems, in which it is the contributions from major arc
Fourier phases, such as the constant phase n 7→ 1, which
are the non-negligible ones. (Example: how many primes
up to N differ by a perfect square?)
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Higher order Fourier analysis can treat problems of
arbitrary finite complexity, in which the non-negligible
contributions are coming from higher order analogues of
Fourier phases, such as polynomial phases n 7→ e(P(n))
or nilsequences n 7→ F (g(n)Γ).
For instance, the problem of counting progressions of
length four turns out to have complexity two, and can be
handled by quadratic Fourier analysis.
Unfortunately, some problems are infinite complexity - they
have a huge number of non-negligible contributions - and
are out of reach of even higher order Fourier analysis.
(Example: how many twin primes up to N?)
We now have a pretty good understanding of what the
“true” complexity of a problem is, though there is still some
ongoing research in this area (e.g., Altman 2021).
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In principle, higher order Fourier analysis is a
generalisation of the classical circle method.
But in practice, the two methods can look rather different at
first.
One reason for this is that many of the Fourier analytic
identities that are so prominent in the circle method (e.g.,
Parseval/Plancherel identity, or the Fourier inversion
formula) do not, as far as we know, have a useful analogue
in higher degrees.
So we instead rely on other tools than identities, such as
inverse theorems, transference principles, and
equidistribution theorems, to proceed in the higher order
case.
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These non-identity-based tools of higher order Fourier
analysis do not give as precise answers as the
identity-based tools of the classical circle method.
However, they are often still strong enough to ensure that
the “error term” in one’s counts are lower order than the
“main term”, which is often the most important question to
resolve.
In the rest of this talk I will focus mostly on the complexity
one theory that one traditionally attacks via the circle
method, but from the higher order perspective that
generalises to higher complexities as well.
In particular we downplay the role of Fourier identities as
much as possible.
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The first step in using higher order Fourier analysis is to
determine the complexity of the problem being studied.
In most cases the counting problem boils down to
evaluating a certain multilinear form involving some finite
number of functions.
For instance, to count the number of length three
arithmetic progressions in a set A ⊂ Z is ΛZ

3(1A,1A,1A),
where ΛZ

3 is the trilinear form

ΛZ
3(f ,g,h) :=

∑
n∈Z

∞∑
r=1

f (n)g(n + r)h(n + 2r).

So the next step is to understand the nature of the
multilinear form.
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To avoid some minor technicalities let us work in a cyclic
group Z/NZ of odd order, and study the normalized
trilinear form

Λ3(f ,g,h) := En,r∈Z/NZf (n)g(n + r)h(n + 2r)

using the averaging notation En∈Af (n) := 1
|A|

∑
n∈A f (n).

This form counts length three progressions in subsets of
Z/NZ.
With this normalisation we have Λ3(1,1,1) = 1, and hence
|Λ3(f ,g,h)| ≤ 1 whenever f ,g,h are 1-bounded (i.e.,
|f |, |g|, |h| ≤ 1).
Let us informally call a function f negligible for Λ3 if
Λ3(f ,g,h) is small whenever g,h are 1-bounded, as well as
for permutations.
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For instance, from the triangle inequality we have

|Λ3(f ,g,h)| ≤ En∈Z/NZ|f (n)| =: ∥f∥L1(Z/NZ)

whenever g,h are 1-bounded; similarly for permutations.
Thus any function small in L1 is negligible.
On the other hand, for any integer multiple α of 1

N , the
identity

αn − 2α(n + r) + α(n + 2r) = 0

(reflecting the fact that the second derivative of x 7→ αx
vanishes) ensures that the function f (n) := e(αn) is not
negligible, since on taking g(n) := e(−2αn) and
h(n) := e(αn) we have Λ3(f ,g,h) = 1.
More generally, if g(n) = e(−2αn) and h(n) = e(αn), then

Λ3(f ,g,h) = En∈Z/NZf (n)e(−αn),

thus f will be non-negligible if it has large inner product
with a linear phase e(αn).
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It turns out that the converse is also true: if f is a
1-bounded function that is non-negligible for Λ3, then it has
a large inner product with a linear phase e(αn). This is the
inverse theorem for Λ3.
It is because of this that this form Λ3 has complexity 1, and
is therefore amenable to the circle method.
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In the classical circle method, the inverse theorem from Λ3
is a quick corollary of the Fourier identity

Λ3(f ,g,h) =
∑

ξ∈Z/NZ

f̂ (ξ)ĝ(−2ξ)ĥ(ξ)

where f̂ (ξ) := En∈Z/NZf (n)e(−ξn/N) are the Fourier
coefficients of f , combined with the Plancherel identity

∥f∥2
L2(Z/NZ) = En∈Z/NZ|f (n)|2 =

∑
ξ∈Z/NZ

|̂f (ξ)|2.
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An alternate way to proceed is to first apply the
Cauchy–Schwarz inequality (or Weyl differencing or the
van der Corput inequality) twice to obtain the generalised
von Neumann inequality

|Λ3(f ,g,h)| ≤ ∥f∥U2(Z/NZ)

for any 1-bounded g,h, where the Gowers uniformity norm
U2(Z/NZ) is defined by

∥f∥4
U2(Z/NZ) := Ex ,h1,h2∈Z/NZf (x)f (x+h1)f (x+h2)f (x+h1+h2).

The inverse theorem for Λ then follows from an inverse
theorem for U2: If a 1-bounded function f has large
U2(Z/NZ) norm, then it has large inner product with a
linear phase e(αn).
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The U2 inverse theorem can be deduced from the Fourier
identity

∥f∥4
U2(Z/NZ) =

∑
ξ∈Z/NZ

|̂f (ξ)|4

or from spectral theory or representation theory.
This seems to be the one place in the entire theory of
higher order Fourier analysis where some sort of identity
(either a Fourier identity, a trace identity, or a
representation-theoretic identity) is needed.
The U2 norm is part of a hierarchy of Gowers uniformity
norms Uk that determine complexity: a multilinear form Λ
has complexity s if it is controlled by the Us+1 norm.

Terence Tao Circle method from higher order Fourier analysis



Now that we know what functions are negligible for Λ3 (or U2),
the next step is an appropriate structure theorem to decompose
f . Here is an example of such a theorem (ignoring technical
quantitative issues):

Informal structure theorem
Let f be a 1-bounded function. Then we can split

f = fstr + funf

where
fstr is 1-bounded and is a linear combination (with bounded
coefficients) of a bounded number of linear phases
n 7→ e(αn).
funf is Fourier-uniform (small inner products with all linear
phases n 7→ e(αn), hence negligible for U2 (and and thus
also Λ3).

Furthermore, if f is non-negative, so is fstr.
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In practice, such a structure theorem allows one to restrict
attention to the contribution of the structured part fstr when
studying complexity one problems:

Λ3(f ,g,h) ≈ Λ3(fstr,gstr,hstr).

Similar structure theorems are available for other
multilinear forms, so long as one has a good inverse
theorem for that form (or for an associated Gowers
uniformity norm).
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Morally speaking, such decompositions would follow from
the Fourier inversion formula

f (n) =
∑

ξ∈Z/NZ

f̂ (ξ)e(nξ/N)

by taking fstr to be the contribution of the “large” Fourier
coefficients and funf the contribution of the “small” Fourier
coefficients.
But then fstr need not be 1-bounded (or non-negative when
f is non-negative).
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One can proceed instead through the machinery of
conditional expectation. Roughly speaking, fstr is the
orthogonal projection to the Hilbert space generated by the
large Fourier modes. Can be made quantitative using the
energy increment argument.
Nowadays we have slick proofs of structure theorems
based on the Hahn–Banach theorem (Gowers 2010,
Reingold–Trevisan–Tulsiani–Vadhan 2008).
Thanks to the transference principle (Green-T. 2004),
which has a slick modern proof using the technique of
densification (Conlon–Fox–Zhao 2014), we also have
structure theorems for many unbounded functions f , such
as the von Mangoldt function.
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For some explicit choices of functions f , such as (suitable
truncations of) the von Mangoldt function Λ, the inner
products of f with such functions as linear phases e(αn)
can be computed (for both “major arc” and “minor arc” α)
by various techniques in analytic number theory.
This can allow one to extract the structured portion of fstr in
such cases. For instance, the structured component of Λ
(when restricted to {1, . . . ,N}) can basically be taken to be
the function n 7→ W

ϕ(W )1(n,W )=1, for W =
∏

p≤w p and w
growing slowly with N.
This is good enough to answer many questions about
linear equations in primes.
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For more general functions f , the structured component fstr
might involve some bounded number of linear phases
e(α1n), . . . ,e(αkn) where the frequencies α1, . . . , αk are
unknown.
The computation of quantities such as Λ3(f ,g,h) then
hinges on the joint distribution of the fractional parts of the
αjn, that is to say the distribution of

(α1, . . . , αk )n mod Zk

in the torus Rk/Zk . This is achieved through
equidistribution theorems.
In applications we need quite quantitative (and
“single-scale”) information about this distribution, but for
this high-level talk I will only discuss distribution at a
qualitative asymptotic level.
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One of the oldest and most influential equidistribution theorems
is

Equidistribution theorem (Bohl 1909, Weyl 1910, Sierpiński
1910)
If α is an irrational real number, then αn mod 1 is
equidistributed in R/Z. (That is to say,
En∈[N]f (αn) =

∫
R/Z f + o(1) as N → ∞ for any continuous

f : R/Z → C.)

Of course, if α = a
q is rational, then αn mod 1 is instead

equidistributed in the finite subgroup 1
q Z/Z of Z. Easily

established by estimation of the exponential sums En∈[N]e(kαn)
for k ∈ Z.
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There is a higher-dimensional version:

Higher-dimensional equidistribution

If α1, . . . , αk are real numbers, then (α1, . . . , αk )n mod Zk is
equidistributed in some closed subgroup of Rk/Zk . That is to
say, there exists a closed subtorus T of Rk/Zk and a finite
subgroup H of Rk/Zk such that

En∈[N]f (α1n, . . . , αkn) =
∫

T+H
f + o(1)

for any continuous f : Rk/Zk → C, using Haar probability
measure on T + H.

For instance, if α1 =
√

2 and α2 = 2
√

2 + 1
2 , one has

T = {(x ,2x) : x ∈ R/Z} and H = {(0,0), (0,1/2)}.
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This equidistribution theorem is a simple example of the
deeper phenomenon of measure rigidity: sequences
generated in some way by a nilpotent (or unipotent) group
should be asymptotically equidistributed with respect to a
Haar measure associated to a closed group (as opposed
to, say, a Cantor measure).
The most famous measure rigidity result the celebrated
Ratner’s theorem (Ratner, 1990).
In principle, such equidistribution theorems reduce
counting problems for structured functions to questions in
(Lie) group theory.
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For instance, Roth’s theorem on progressions of length
three roughly speaking asserts that there is a lower bound
Λ3(1A,1A,1A) ≫ 1 whenever A is a subset of Z/NZ of
density ≫ 1.
Using structural decompositions, this theorem basically
reduces to that of understanding the equidistribution of

(αn, α(n + r), α(n + 2r)) ∈ (R/Z)3k

for an arbitrary vector α = (α1, . . . , αk ) of real numbers,
and how it intersects Cartesian products like E × E × E for
some “bounded complexity” subset E of (R/Z)k (think of a
union of boundedly many cubes).
The equidistribution theorem says that this tuple is
equidistributed in a closed subgroup of (R/Z)3k . Key
point: that this subgroup contains a diagonal group
{(g,g,g) : g ∈ G}, where G ≤ (R/Z)k is the
equidistribution group of αn.
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Now let us see what changes when we look at length four
progressions in Z/NZ. We are now faced with a
quartilinear form

Λ4(f ,g,h, k) = En,r∈Z/NZf (n)g(n + r)h(n + 2r)k(n + 3r).

Whereas Λ3 is controlled by the U2 norm, Λ4 is instead
controlled by the U3 norm

∥f∥8
U3(Z/NZ) = En,h1,h2,h3 f (n)f̄ (n + h1)f̄ (n + h2)f̄ (n + h3)

f (n+h1 +h2)f (n+h1 +h3)f (n+h2 +h3)f̄ (n+h1 +h2 +h3).
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Fourier identities are now rather unhelpful: in Fourier
space one has

Λ4(f ,g,h, k) =
∑

ξ,η∈Z/NZ

f̂ (ξ)ĝ(−2ξ + η)ĥ(ξ − 2η)k̂(η)

and
∥f∥U3(Z/NZ) = N1/2∥f̂∥U3(Z/NZ).

But the main reason why linear Fourier analysis is not the
right tool here is that linear phases are no longer the
only source of non-neglibility.
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The old linear identity

αn − 2α(n + r) + α(n + 2r) = 0

still makes n 7→ e(αn) non-negligible (take f (n) = e(αn),
g(n) = e(−2αn), h(n) = e(αn), k(n) = 1).
But we now also have a quadratic identity

αn2 − 3α(n + r)2 + 3α(n + 2r)2 − α(n + 3r)2 = 0

(reflecting the fact that the third derivative of x 7→ αx2

vanishes) which means that quadratic phases such as
n 7→ e(αn2) are also non-negligible if α is an integer
multiple of 1/N.
This is despite such quadratic phase functions typically
have very small Fourier coefficients.
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To make matters worse, there are also generalisations of
quadratic phases, known as bracket quadratic phases,
which are also non-negligible.
For instance, for generic integer multiples α, β of 1/N, the
identity

⌊αn⌋βn − 3⌊α(n + r)⌋β(n + r) + 3⌊α(n + 2r)⌋β(n + 2r)

−⌊α(n + 3r)⌋β(n + 3r) = 0

holds a positive fraction of the time, basically because
⌊x + y⌋ = ⌊x⌋+ ⌊y⌋ holds for a positive fraction of reals
x , y .
Hence the bracket quadratic phase n 7→ e(⌊αn⌋βn) is
non-negligible, as is any function with a large inner product
with such a bracket quadratic phase.
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It is a non-trivial fact that these are basically the only
non-negligible functions for Λ4, making the length four
arithmetic progressions problem a “complexity two” problem,
suitable for attack by quadratic Fourier analysis.

Informal inverse theorem (Green–T. 2008)
Let f be a 1-bounded function which is non-negligible for Λ4 (or
U3). Then f has large inner product with a bracket quadratic

n 7→ e(⌊α1n⌋β1n + · · ·+ ⌊αkn⌋βkn⌋+ γn)

for some integer multiples α1, . . . , αk , β1, . . . , βk , γ of 1/N and
some bounded k .
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The proof of this theorem uses the U2 inverse theorem and
additive combinatorics, following the arguments of
(Gowers, 1998).
Higher order versions are also available (Green–T.–Ziegler
2012, Camarena–Szegedy 2010, Szegedy 2012,
Candela–Szegedy 2017, Gutman–Manners–Varju 2018,
Manners 2018). The proofs are intricate (usually involving
an induction on the order k of the uniformity norm Uk ), and
many use the machinery of nonstandard analysis to allow
one to apply theorems from continuous mathematics to
this discrete setting.
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To use this theorem in applications one would like to
combine it with an equidistribution theorem for bracket
quadratics.
This is very messy if done directly.
It turns out that to get the cleanest equidistribution theory
for quadratic and higher Fourier analysis, one should
replace the bracket quadratic phases with an equivalent
class of structured functions, namely the degree two
nilsequences F (g(n)Γ), where G/Γ is a degree 2
nilmanifold, g : Z → G is a polynomial map, and
F : G/Γ → C is a Lipschitz function (we will not define
these terms precisely here).
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A basic example of a degree 2 nilmanifold is the Heisenberg
nilmanifold

G/Γ :=

1 R R
0 1 R
0 0 1

 /

1 Z Z
0 1 Z
0 0 1

 .

If

g(n) :=

1 αn 0
0 1 βn
0 0 1


then one has

g(n)Γ =

1 {αn} {−αn⌊βn⌋}
0 1 {βn}
0 0 1

 Γ

and one can begin to see the relation between bracket
polynomials and nilmanifolds.
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The following equidistribution theorem allows one (in principle
at least) to calculate expressions involving nilsequences:

Informal nilmanifold equidistribution

If g : Z → G is a polynomial map, then g(n)Γ is equidistributed
in a finite union of closed orbits giHxi , for some closed
subgroup H of G, some gi ∈ G, and some rational xi ∈ G/Γ.

The qualitative version of this theorem was proven in (Leibman
2005); a quantitative version in (Green–T. 2012). When
combined with the other higher order Fourier analysis tools, has
many applications (e.g., counting solutions to linear or
(sometimes) polynomial equations in primes).

Terence Tao Circle method from higher order Fourier analysis



Some more recent developments in the subject:
The technique of densification (Conlon–Fox–Zhao 2014)
that can allow one to efficiently model sparse sets (or
sparsely supported functions) by dense sets (or densely
supported functions), in the presence of a pseudorandom
majorant;
Concatenation theorems (T.–Ziegler 2016;
Peluse–Prendiville 2019) that allow one to “concatenate”
local structure into global structure;
The technique of degree lowering (Peluse–Prendiville
2019) that can make the true complexity of a pattern
significantly lower than the naive complexity;
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Quantitative inverse theorems (Manners 2018,
Gowers–Milićević 2017, 2020);
Formulations using nonstandard analysis and “nilspaces”
(Camarena–Szegedy 2010, Candela 2017,
Gutman–Manners–Varju 2019, 2020);
Quantitative equidistribution theorems for polynomials over
finite fields (Milićević 2019, Janzer 2020,
Cohen–Moshkowitz 2021, Adiprasito–Kazhdan–Ziegler
2021, Lampert–Ziegler 2021).
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Thanks for listening!
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