
Machine assisted proofs

Terence Tao

University of California, Los Angeles

Jan 3, 2024

Terence Tao Machine assisted proofs

Mathematicians have used machines and computers to assist
them in their research for centuries.

Terence Tao Machine assisted proofs

One of the earliest uses of (human) computers in mathematics
was to build tables, such as logarithm tables and trigonometric
tables.

Terence Tao Machine assisted proofs

Modern tables are still important today, particularly in
experimental mathematics. Some prominent examples:

In the late 18th century, Legendre and Gauss used tables
of prime numbers to conjecture the prime number theorem.
In the 1960s, Birch and Swinnerton-Dyer used tables of
elliptic curve data to formulate the Birch and
Swinnerton-Dyer conjecture.
The Online Encyclopedia of Integer Sequences (OEIS) has
helped discover (or rediscover) countless mathematical
relationships.
Large databases of mathematical objects can be used as
input for machine learning algorithms (more on this later).

Terence Tao Machine assisted proofs

Another venerable mathematical use of machines is in scientific
computing. For instance, in the 1920s, Hendrik Lorentz
assembled a team of human computers to model the fluid flow
around the Afsluitdijk - a major dam then under construction in
the Netherlands. (An early use of floating point arithmetic!)

Terence Tao Machine assisted proofs

Modern computer algebra systems (e.g., Magma,
SAGEMath, Mathematica, Maple, etc.), as well as more
general-purpose programming languages, are now
routinely used to perform symbolic computations in
algebra, analysis, geometry, number theory, and many
other branches of mathematics.
Using tools such as interval arithmetic in place of floating
point arithmetic, one can (sometimes) avoid the possibility
of roundoff errors when using these tools, possibly at the
expense of increased runtime.
A relative of computer algebra systems are satisfiability
(SAT) solvers and satisfiability modulo theories (SMT)
solvers, which can perform complex logical deductions of
conclusions from certain restricted sets of hypotheses, and
generate proof certificates for each such deduction.
Of course, satisfiability is a NP-complete problem, so these
solvers do not scale past a certain point.

Terence Tao Machine assisted proofs

An example of a result proved using a SAT solver:

Boolean Pythaogrean triples theorem (Heule–Kullmann–Marek,
2016)

The set {1, . . . ,7824} can be partitioned into two classes,
neither of which contains a Pythagorean triple (a,b, c) with
a2 + b2 = c2; however, this is not possible for {1, . . . ,7825}.

The proof required 4 CPU-years of computation and generated
a 200 terabyte propositional proof, which was later compressed
to 68 gigabytes.

Terence Tao Machine assisted proofs

But there are also promising new ways to use computers in
mathematical research (besides routine tasks such as writing
papers, email, web search, etc.):

Machine learning algorithms can be used to discover new
mathematical relationships, or generate potential examples
or counterexamples for mathematical problems.
Large language models can (potentially) be used to make
other tools easier and faster to use; they can also suggest
proof strategies or related work, and even generate
(simple) proofs directly.
Formal proof assistants can be used to verify proofs (as
well as the output of large language models), allow truly
large-scale mathematical collaborations, and help build
data sets to train the aforementioned machine learning
algorithms.

There appears to be a great potential for these tools to
complement each other, with one tool counteracting the
weaknesses of another.

Terence Tao Machine assisted proofs

Proof assistants

Early machine-assisted proofs, such as Appel and Haken’s
proof of the four color theorem in 1976, did not use a fully
developed formal proof assistant; instead, the proof was
verified by a combination of computer and human
checking, and was still prone to various (fixable) errors.
A truly computer-verifiable proof of the four color theorem
was first produced in 1996 by Robertson, Sanders,
Seymour, and Thomas.
A fully formalized proof of the theorem was given in 2005
by Werner and Gonthier, in the proof assistant Coq.

Terence Tao Machine assisted proofs

Another celebrated use of machine assistance was in the proof
of the Kepler conjecture:

Kepler Conjecture (Kepler, 1611)

The densest packing in R3 by unit balls is that given by the
hexagonal close packing (or the cubic close packing), both of
which have a density of π

3
√

2
= 0.7404

Terence Tao Machine assisted proofs

A priori, this is an optimization problem in infinitely many
variables (the locations of the centers of the balls), which is
not obviously amenable to computer verification.
Each ball in a packing comes with a Voronoi cell - the
polyhedron of all points closer to the center of that ball than
any other center.
In 1951, Toth observed that certain weighted inequalities
on volumes of finitely many Voronoi cells would lead to
upper bounds on the density of a sphere packing.
In principle, this could lead to a computer-verified proof, if
one could locate such a weighted inequality that gave the
sharp upper bound of π

3
√

2
.

However, despite many high-profile attempts, no
convincing proof along these lines could be located.

Terence Tao Machine assisted proofs

Over the course of many papers from 1994 to 1998,
Thomas Hales proposed a complicated modification of
Toth’s strategy involving more sophisticated polyhedral
partitions of space than the Voronoi decomposition, and an
assignment of a “score” function to each polyhedron.
In principle, linear programming could be used to convert
inequalities between scores of clusters of polyhedra into
upper bounds on the density of sphere packing.

Terence Tao Machine assisted proofs

The method was flexible - perhaps too flexible.

“Samuel Ferguson and I realized that every time we
encountered difficulties in solving the minimization problem, we
could adjust the scoring function σ to skirt the difficulty. The
function σ became more complicated, but with each change we
cut months – or even years – from our work. This incessant
fiddling was unpopular with my colleagues. Every time I
presented my work in progress at a conference, I was
minimizing a different function. Even worse, the function was
mildly incompatible with what I did in earlier papers, and this
required going back and patching the earlier papers.” (Hales,
2006)

Terence Tao Machine assisted proofs

By 1998, Hales and Ferguson finally announced that the
project was successful, deriving the Kepler conjecture from
a linear programming computation applied to a carefully
chosen optimization problem in 150 variables.
While initially the project was not conceived as a
computer-assisted one, machine calculations became
increasingly necessary as the project developed. At the
time of the announcement, the proof consisted of 250
pages of notes and 3 gigabytes of computer programs,
data and results.
The refereeing process at Annals of Mathematics took four
years and a panel of twelve referees. The panel were “99%
certain” of the correctness of the proof, but could not certify
the correctness of the computer calculations.
In the end, the paper was accepted for Annals (initially with
a caveat, that has since been removed).

Terence Tao Machine assisted proofs

In order to dispel doubts about the proof, in 2003 Hales
initiated the Flyspeck project to prove the Kepler conjecture
in the language of a proof assistant, so that the verification
could be performed automatically by a computer.
The project was initially estimated to take twenty years, but
after the combined efforts Hales and 21 collaborators, the
project was completed in 2014, following a formal blueprint
produced by Hales in 2012, and using a combination of the
proof assistants Isabelle and HOL Light.

Terence Tao Machine assisted proofs

Another recent formal proof verification project is the liquid
tensor experiment of Peter Scholze.

This experiment involves Scholze’s theory of condensed
mathematics, which aims to repair some deficiencies with
categories of topological spaces (e.g., topological abelian
groups) by replacing them with a condensed analogue
(such as the category of condensed abelian groups).
A fundamental result in the subject is a certain vanishing
theorem

ExtiCond(Ab)(Mp′(S),V) = 0

of Clausen and Scholze in 2019, for all p-Banach spaces
V and profinite sets S, in the category of condensed
abelian groups.
This theorem is essential to any attempt to study functional
analysis through the algebraic lens of condensed
mathematics.

Terence Tao Machine assisted proofs

Some quotes from Scholze in a blog post from December 2020:
“ I spent much of 2019 obsessed with the proof of this
theorem, almost getting crazy over it. In the end, we were
able to get an argument pinned down on paper, but I think
nobody else has dared to look at the details of this, and so
I still have some small lingering doubts.”
“with this theorem, the hope that the condensed formalism
can be fruitfully applied to real functional analysis stands or
falls. I think the theorem is of utmost foundational
importance, so being 99.9% sure is not enough.”
“while I was very happy to see many study groups on
condensed mathematics throughout the world, to my
knowledge all of them have stopped short of this proof.
(Yes, this proof is not much fun...)”
“I think this may be my most important theorem to date. ...
Better be sure it’s correct...”

Terence Tao Machine assisted proofs

In this blog post, Scholze proposed the “liquid tensor
experiment” to formalize this result in the proof assistant Lean.

This required adding several foundational mathematical
theories (e.g., homological algebra, sheaf and topos
theory, etc.) to Lean’s mathlib library.
A key subtheorem was formalized in May of 2021, and the
full theorem was formalized in July of 2022, by a large
group led by Johan Commelin and Adam Topaz, and with
constant help from Scholze.

Terence Tao Machine assisted proofs

In addition to formally verifying the proof, numerous minor
errors were found and fixed, and multiple small
simplifications discovered.
One major simplification encountered during the process
was to replace the difficult theory of the Breen–Deligne
resolution with a simpler construction that was weaker, but
easier to verify the properties of, and still useful for this
project (and likely for other problems also).
The substantial expansion of Lean’s mathlib library has
allowed for other formalization projects to become much
easier.

Terence Tao Machine assisted proofs

The formalization proceeded in parallel with creating a
human-readable “blueprint” of the proof that synthesizes the
formal and informal proof in an interactive fashion, and has
allowed both Scholze and others to understand the proof much
better.

Terence Tao Machine assisted proofs

Partly inspired by this work, software tools are now being
developed to automatically convert formal proofs (in languages
such as Lean) into human-readable interactive proofs.

(Example from a talk of Patrick Massot, 2023)

Terence Tao Machine assisted proofs

One notable feature of proof formalization projects is that they
lend themselves to large collaborations that do not require high
pre-established levels of trust. I recently led a project to
formalize the following recent result, answering a question of
Katalin Marton:

Polynomial Freiman–Ruzsa conjecture (Gowers, Green,
Manners, T. 2023)
Let A be a finite subset of an elementary 2-group G such that
|A + A| ≤ K |A|. Then A can be covered by at most 2K 12 cosets
of a subgroup H of G of cardinality at most A.

This result was proven (by traditional means) in a 33-page,
mostly self-contained paper. It was formalized in Lean in three
weeks by a group of approximately twenty people.

Terence Tao Machine assisted proofs

Like the liquid tensor experiment, the formalization was
organized through a human-readable blueprint, which broke up
the main result into many intermediate propositions, the
relationships between which can be visualized as a
dependency graph.

Terence Tao Machine assisted proofs

Each node in the graph can be formalized independently, using
the predecessor results as “black boxes”. The process is quite
parallelizable, and does not require high levels of
pre-established trust between the participants, as the Lean
compiler can be used to automatically verify contributions.

Terence Tao Machine assisted proofs

This format allows for division of labor. A contributor who is
expert in Lean can focus on formalizing one portion of the
blueprint into Lean, without necessarily being a broader expert
all the mathematical fields involved. Conversely, a
mathematician who is not particularly familiar in Lean can work
on the human-readable blueprint of the proof, leaving the
technical formalization of the proof to others.

Terence Tao Machine assisted proofs

The formalization project revealed only minor typos in the
human-generated proof, and generated many additions to
Lean’s Mathlib (e.g., the foundational theory of Shannon
entropy and related aspects of probability theory).
While the formal proof took longer generate than the
human-readable proof, modifying the formal proof without
generating errors takes about as much time as for a
human-readable version. (For instance, we implemented a
recent improvement of the exponent from 12 to 11 in a
matter of days, and discovered a further numerical
improvement of a related result in the course of the
formalization process.)
It seems possible to scale up the size of such projects to
formalize more substantial results. For instance, Kevin
Buzzard just launched a five-year project to formalize the
entire proof of Fermat’s last theorem in Lean, again relying
on a blueprint to organize the project.

Terence Tao Machine assisted proofs

Machine learning

Both machine learning (ML) and non-ML tools are being used
to close in on a notorious open problem in fluid equations - to
demonstrate finite time blowup for the incompressible Euler
equations.

Numerical simulations (e.g., by Lou–Hou in 2014)
suggested that there were solutions that exhibited
self-similar behavior, but due to the finite accuracy of the
simulations, the results were not rigorously conclusive.
However, if one could use numerics to obtain approximate
solutions that were very close to being self-similar, it would
be possible in principle to perform a rigorous stability
analysis (in self-similar coordinates) to then prove the
existence of a solution that blew up in finite time.

Terence Tao Machine assisted proofs

In 2022, there were two different approaches to generate
approximate self-similar solutions; one (by Chen–Hou)
using traditional numerical PDE methods, and a slightly
earlier one (by Wang–Lai–Gómez-Serrano–Buckmaster)
using a Physics Informed Neural Network (PINN).
The Chen–Hou approach was also able to perform (with
additional computer assistance) the rigorous stability
analysis, establishing for the first time a rigorous finite time
blowup result for smooth solutions to the incompressible
Euler equations outside of a cylindrical boundary.
There is now much activity using a variety of machine
assisted methods to establish blowup for other fluid
equations, though the most infamous problem of all - the
Navier–Stokes global regularity problem - likely remains
out of reach for now.

Terence Tao Machine assisted proofs

An interesting interaction between ML and human approaches
to mathematics occurred in work by Alex Davies, András
Juhász, Marc Lackenby, and Nenad Tomasev in 2021 in knot
theory.

(“On Knots III”, P. Tait, 1885)

Terence Tao Machine assisted proofs

Knot theory produces a wide array of knot invariants
associated to a given knot: signature, Jones polynomial,
HOMFLY polynomial, hyperbolic invariants, and so forth.
These authors were seeking a connection between a
knot’s hyperbolic invariants (a collection of real and
complex numbers) and its signature (an integer).

(“Hyperbolic invariants of knots and links”, C. Adams, M.
Hildebrand, J. Weeks, 1991)

Terence Tao Machine assisted proofs

By training a neural network on a database of over two
million knots, they found that the network could predict the
signature from the hyperbolic invariants with high accuracy.
So there was a connection! And one which was not
already predicted from existing theory.
However, the relation produced by the neural net was a
highly opaque “black box”; it was not clear from that
network exactly what the relation was.

Terence Tao Machine assisted proofs

But one could perform a saliency analysis - see how
sensitive the neural net relation is to perturbation of one of
its input parameters.
This revealed that only three of the two dozen hyperbolic
invariants had a significant effect on this relation.

(“Using machine learning to formulate mathematical
conjectures”, M. Lackenby, 2023)

Terence Tao Machine assisted proofs

By visually inspecting scatterplots of the signature against
these three invariants, they conjectured a more
comprehensible relationship between these quantities.
Further numerics disproved their initial conjecture, but
suggested a modified version of the conjecture which they
were able to prove rigorously.

Terence Tao Machine assisted proofs

Large language models
The recent emergence of powerful Large Language Models,
such as GPT-4, shows promise. Here, GPT is able to solve a
problem from the 2022 International Mathematical Olympiad:

“Sparks of AI”, Bubeck et al., 2023Terence Tao Machine assisted proofs

On the other hand, it can hallucinate mathematical nonsense,
and even struggle with basic arithmetic:

From a presentation of Bubeck and Eldan, 2023

Terence Tao Machine assisted proofs

However, there are interesting experiments in boosting the
power of large language models to do mathematics, either
by connecting them with more traditional computational
tools (such as Wolfram Alpha), by testing their output
through a formal proof assistant and using that as
feedback to reinforce the training of the model, or by
combining them with more traditional mathematical
problem solving strategies.
Conversing with these models can also stimulate
mathematical thought more indirectly, by suggesting “blue
sky” proof approaches, locating related relevant concepts,
or simply by being a patient listener to bounce ideas off of.

Terence Tao Machine assisted proofs

The Github Copilot tool is an AI that suggests potential code in
various languages (including Lean) as an auto-complete, and
has a moderate success rate in speeding up the process of
writing code.
More advanced AI tools (e.g., Lean Copilot) are in development
to suggest entire proofs of short mathematical statements,
using proof assistants to filter out hallucinations and provide
feedback to the AI.

Terence Tao Machine assisted proofs

Where are we at now with machine assisted proofs?
Computers by themselves still seem unlikely to resolve
major mathematical problems on their own.
However, they are increasingly being used to generate
assist human mathematicians in a variety of creative ways,
beyond just brute-force case checking or computation.
For instance, we have seen they can be useful at
generating conjectures or uncovering intriguing
mathematical phenomena.
Automated provers could also be used to explore the
space of proofs itself, beyond the small set of
“human-generatable” proofs that often require one to stay
close to other sources of intuition, such as existing
literature or connections to other ways of thinking.

Terence Tao Machine assisted proofs

While AI technology shows great potential, in the
immediate term, I expect it to have the most impact on
tasks peripheral to mathematical research rather than
central to it, such as automatically summarizing large
amounts of literature or suggesting related work.
Proof formalization continues to make steady
improvements in speed and ease of use. The “de Bruijn
factor” (the ratio between the difficulty of writing a correct
formal proof and a correct informal proof) is still well above
one (I estimate ∼ 20), but dropping. Once AI integration
takes place, this factor could potentially drop below one,
which would be transformative to our field.

Terence Tao Machine assisted proofs

Thanks for listening!

Terence Tao Machine assisted proofs

