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Tiling a group by translations

Let G = (G,+) be an additive group (such as a lattice Zd

or Euclidean space Rd ).
A translational tiling (or tiling, for short) of G by a tile F ⊂ G
is a partition (possibly up to null sets) of G into disjoint
translates a + F ,a ∈ A of F along some tiling set A. When
this occurs we write A ⊕ F = G.
If there is a lattice Λ (a discrete cocompact subgroup of G)
such that A is Λ-periodic (A + λ = A for all λ ∈ Λ), we say
that the tiling is periodic.
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One can also consider tilings
(A1 ⊕ F1) ⊎ · · · ⊎ (AJ ⊕ FJ) = G of G by multiple tiles
F1, . . . ,FJ , rather than just one tile. (Tilings by one tile are
sometimes known as monotilings, to distinguish them from
tilings by multiple tiles.)
In the literature one also frequently considers monohedral
tilings (which involve rotations or reflections as well as
translations), but in this talk we will focus exclusively on
translational tilings.
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A periodic monotiling A ⊕ F = R2 of the plane by a pegasus F .
[Escher, 1959]
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A periodic tiling (A1 ⊕ F1)⊎ (A2 ⊕ F2) = R2 of the plane by a cat
F1 and a dog F2. [Nicolas, 1999]

Terence Tao (joint with Rachel Greenfeld) Translational tilings of Eucliden space



A non-periodic monotiling A ⊕ F = R2 of R2 by a square F .
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Connections to other fields

Translational monotilings A ⊕ F = G have additional
algebraic structure that other tilings do not, making them
significantly more “rigid”.
One hint of this is seen by writing the tiling equation
A ⊕ F = G in convolution form

1A ∗ 1F = 1,

which looks tempting to analyze via the Fourier transform.
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The tiling equation A ⊕ F = G also exhibits some unexpected
symmetries.

Reflection symmetry: if A ⊕ F = G, then A ⊕−F = G. This
has a short combinatorial proof (based on the obvious
algebraic fact that a + f = a′ + f ′ ⇐⇒ a − f ′ = a′ − f ).
Dilation symmetry: if G is discrete, A ⊕ F = G, and p is
coprime to |F |, then A ⊕ pF = G. This has a short
elementary number-theoretic proof (based on the
Frobenius identity (a + b)p = ap + bp in any commutative
ring of characteristic p).
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Given a tiling F of a discrete group G, the space of tilings
{A : A ⊕ F = G} can be viewed as a compact space that is
invariant under the action of the group G by translation;
that is to say, it is a topological dynamical system.
It is then tempting to analyze tilings through the lens of
dynamics and ergodic theory.
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Despite all this structure, translational tilings can still
exhibit remarkably complex behavior, particularly in higher
dimensions.
There are now several examples of conjectures about
translational tilings that are true (or suspected to be true) in
low dimensions, but fail in higher dimensions. (Keller’s
conjecture, Fuglede’s conjecture, the periodic tiling
conjecture, ...)
As we shall see, the deceptively simple-looking equation
1A ∗ 1F = 1 can have an incredibly rich solution space!
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Vague questions

Let F be a subset of an additive group G.
Can one determine whether F actually tiles G? That is to
say, whether the tiling equation A ⊕ F = G has a solution
A?
What can one say about the structure of the tiling sets A
associated to a tile F?
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More precise questions

Let F be a finite subset of a discrete group G such as Zd , or a
bounded measurable subset of G = Rd .

Logical decidability: Is the assertion that F tiles G (i.e.,
that there is a solution to A ⊕ F = G) a decidable or
undecidable sentence in ZFC?
Algorithmic decidability: Is there an algorithm that, given
F and E as input, will determine in finite time whether F
tiles G?
Periodic tiling conjecture: [Stein 1974,
Grunbaum–Shephard, 1987; Lagarias–Wang, 1996] If F
tiles G, does this mean that F also tiles G periodically? In
other words, can every non-periodic tiling be “repaired” to
be periodic?
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Logical decidability implies algorithmic decidability! (In
discrete cases, at least.)

Suppose that for each F , the question of whether F tiles G
is logically decidable.
Then we claim that this question is also algorithmically
decidable for arbitrary inputs F . (Assuming of course that
ZFC is consistent.)
The algorithm is simple: get a computer to search in
parallel for proofs or disproofs of the assertion that F tiles
G.
By logical decidability, this algorithm will halt in finite time
and will determine whether F tiles G or not.

(Side remark: the same argument shows that the Gödel
incompleteness theorem is a corollary of the undecidability of
the halting problem for Turing machines.)
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The periodic tiling conjecture implies logical decidability
(and hence algorithmic decidability)! [Wang, 1966]

If F tiles G periodically, then one can use this periodic tiling
to give a finite length proof (in ZFC) that F tiles G.
If F fails to tile G, then (by the compactness theorem) there
is some finite window G ∩ W of G that cannot be tiled by F
(in the sense that there is no A with (A ⊕ F ) ∩ W = G ∩ W ,
and this can be converted to a finite length proof (in ZFC)
that F does not tile E .
If the periodic tiling conjecture holds, then the above two
cases are the only possible cases.

So it is of interest to settle the periodic tiling conjecture.

Terence Tao (joint with Rachel Greenfeld) Translational tilings of Eucliden space



Some positive progress towards the periodic tiling
conjecture:

Trivial when G is a finite abelian group (since all subsets of
G are trivially periodic).
True when G = Z [Newman, 1977], G = R
[Lagarias–Wang, 1996], or G = Z × G0 for a finite G0
[Greenfeld–T., 2021].
True when G = Z2 [Bhattacharya, 2020, Greenfeld–T.,
2020].
True when G = Zd and #F is a prime, or at most 5
[Szegedy, 1998].
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However, once the number of tiles J is large, the periodic
tiling conjecture breaks down.
That is to say, there exist aperiodic tilings - a set of J tiles
that tile a group non-periodically, but cannot tile that group
periodically.
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In fact, the logical decidability and algorithmic
decidability of tilings also fail for large J [Berger, 1966]!
For instance, there are finite subsets F1, . . . ,FJ of Z2 that
tile Z2, but for which it is not possible to prove (or disprove)
in ZFC that they do so.
(Logically) undecidable tilings are necessarily aperiodic
[Wang, 1966], but the converse is not true in general.
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A Penrose tiling, which is perhaps the best known example of
an aperiodic tiling of R2 (in this case, with J = 10 tiles, which

are rotations of two types of rhombi). [Penrose, 1974; Ammann,
1976]
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The Socolar–Taylor tile. The twelve copies of this tile formed by
rotating and reflecting by the symmetries of the regular hexagon

can tile R2, but only aperiodically. [Socolar–Taylor 2010]
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The hat tile. This is a topological disk (connected with no holes)
which has the same aperiodicity property as the Socolar–Taylor

tile. [Smith, Myers, Kaplan, and Goodman–Strauss 2023]
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The spectre tile. This has similar aperiodicity properties to the
hat tile, except that no reflections are needed in order to tile the

plane. [Smith, Myers, Kaplan, and Goodman–Strauss 2023]
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High dimensional tilings turn out to be rather pathological!

Theorem
(Greenfeld–T., 2022) For d sufficiently large, the periodic
tiling conjecture is false in Rd and Zd .
(Greenfeld–Kolountzakis, 2023) The conjecture remains
false in high dimensions even if one requires that the tile is
connected.
(Greenfeld–T., 2022) There exists a finite abelian group G0
such that the periodic tiling conjecture is false in Z2 × G0.
(Greenfeld–T., 2023) The problem of determining whether
a finite set F tiles (a periodic subset of) Zd is both
algorithmically undecidable and logically undecidable for d
sufficiently large.
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Our threshold for “sufficiently large” is explicitly
computable, but enormous.
It remains open whether the periodic tiling conjecture,
logical decidability, or algorithmic decidability could still be
true in Z3 (or in R2), possibly with additional hypotheses on
the tile F .
For this talk we will focus on disproving the periodic tiling
conjecture in Z2 × G0. For the more recent results on
undecidability, see Greenfeld’s talk later this afternoon!
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High-level summary of proof:
A counterexample in Z2 × G0 for some finite abelian G0
can be constructed from a counterexample to a “multiple
periodic tiling conjecture” in Z2 × G1 for some finite abelian
G1.
The multiple tiling problem creates a “tiling language” that
can express many other constraints, and in particular can
set up a “q-adic Sudoku puzzle”.
We construct a q-adic Sudoku puzzle that is solvable only
with non-periodic solutions, to generate the required
counterexamples.
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From a single tiling equation to a system

Our goal is to construct a finite set F ⊂ Z2 × G0 for some
G0 such that solutions to the tiling equation
F ⊕ A = Z2 × G0 exist, but are all non-periodic.
It turns out that it suffices to construct a collection
F1, . . . ,FM ⊂ Z2 × G1 of finite sets for some G1 such that
solutions to the tiling system

Fm ⊕ A = Z2 × G1 for m = 1, . . . ,M

exist, but are all non-periodic.
This is a much more flexible framework that will make it
easier to construct counterexamples.
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The basic idea is to combine all of the tiles Fm ⊂ Z2 × G1 in the
tiling system

Fm ⊕ A = Z2 × G1 for m = 1, . . . ,M

into a single “sandwich”

F :=
M⋃

m=1

Fm × Em

in a larger group Z2 × G0 = Z2 × G1 × Z/NZ, for suitably
chosen sets Em ⊂ Z/NZ.
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If the “sandwich” F is chosen correctly, there will be a
correspondence between solutions of the system
Fm ⊕ A = Z2 × G1, m = 1, . . . ,M and solutions of the single
equation F ⊕ A = Z2 × G0.
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Tiling language

We view the individual equations Fm ⊕ A = Z2 × G1 of a
system of tiling equations as a sentence in a tiling
language that gives some constraints on the set A.
Our strategy is to explore this tiling language and see what
kinds of constraints we may place on such sets A using
this language.
We aim to build up a “library” of useful constraints of this
type, much as how a programming language can develop a
library of useful subroutines.
Then, we use this library to “program” an interesting
system of constraints that admits only non-periodic
solutions.
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Sample sentence 1: “I am a graph”

For instance, the assertion that a set A ⊂ G × H is a graph
A = {(x , f (x)) : x ∈ G} of some function f : G → H can be
encoded as the tiling equation

({0} × H)⊕ A = G × H;

this is a fancy way of writing the vertical line test from an
undergraduate math course.
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Sample sentence 2: “I am a periodized permutation”

We have seen how to express the property of a set
A ⊂ Z × Z/NZ being the graph {(x , f (x)) : x ∈ Z} of a function
f : Z → Z/NZ.
We can encode the additional property that f takes the form
f (x) = σ(x mod N) for some permutation σ : Z/NZ → Z/NZ by
the additional tiling equation

({1, . . . ,N} × {0})⊕ A = Z × Z/NZ.
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With other constructions like this, one can (modulo some
technicalities) encode sentences such as

“f is a function that is periodic in a given direction v ”.
“f is a function that is boolean in that it takes only two
values, such as {0,1}.”
“f1, . . . , fM are boolean functions that jointly take values in
some specified subset Ω of {0,1}M .”

This is an expressive enough library of sentences to start
encoding Sudoku-type puzzles.
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Standard Sudoku

Recall that a standard solution to a Sudoku puzzle consists of a
function from a 9 × 9 board to a set of digits {1, . . . ,9}, such
that the restriction of the function to any row, column, or 3 × 3
block is a permutation.
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q-adic Sudoku

We introduce the notion of a “q-adic Sudoku solutions” for a
given base q (which for technical reasons we take to be a
power of two), which is a function from a board with finitely
many columns and infinitely many rows to {1, . . . ,q − 1}, which
has a certain structure on every row and diagonal (and more
generally any line of integer slope).
Using the tiling language described earlier, one can identify
q-adic Sudoku solutions with the solution A to a certain system
of tiling equations Fm ⊕ A = Z2 × G1.
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A q-adic function

To define the Sudoku puzzle more precisely, we introduce the
“q-adic function” fq : Z → {1, . . . ,q − 1}, defined by fq(n) = a
when n = qi(qm + a) for some integers i ,m and
a = 1, . . . ,q − 1 (and with the convention fq(0) = 1).
In other words, fq(n) is the final non-zero digit in the base q
expansion of n. This function is almost periodic (a limit in
density of periodic functions), but not actually periodic.
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A Sudoku solution is a function F on a half-infinite board
{1, . . . ,q2} × Z to {1, . . . ,q − 1} whose restriction
n 7→ F (n, jn + i) to any line of integer slope is a rescaled
version n 7→ ci,j fq(ai,jn + bi,j) mod q of fq for some integer
coefficients ci,j ,ai,j ,bi,j .
The Sudoku solution is said to have good columns if every
column agrees with a q-periodized permutation, outside of a
single coset of qZ.
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The key proposition in our argument is then

Proposition (Greenfeld–T., 2022)
Let q be a sufficiently large power of 2. Then there exist q-adic
Sudoku solutions with good columns, but they are all
non-periodic.

Because q-adic Sudoku solutions can be identified with
solutions to certain system of tiling equations in Z2 × G1, this
allows us to contradict the periodic tiling conjecture.
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First step: approximate affineness

There are two main steps in the proposition.
By definition, q-adic Sudoku solutions are “approximately
affine” along all rows and diagonals. It turns out that this implies
(for q large enough) that such solutions are also “approximately
affine” in a two-dimensional sense. This is a variant of the
following simple result, which we leave to the audience:

Proposition

Suppose that F : R2 → R is a function which is affine on every
horizontal line {(x , y) : y = c}, diagonal {(x , y) : y − x = c}
and antidiagonal {(x , y) : y + x = c} for all c ∈ R. Then F is
affine (i.e., F (x , y) = Ax + By + C for some reals A,B,C).

Note that we need all three families of lines to give the
proposition, otherwise there are counterexamples such as
F (x , y) = y(y − x).
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Normal form

Once one establishes that q-adic solutions are approximately
affine, there is a normalization available to place them in a
“normal form” in which they are essentially constant on all rows
outside of those indexed by a coset of qZ.
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Second step: “Tetris”

If one deletes all rows outside of the exceptional coset (similar
to how the game “Tetris” deletes rows that have been
completely filled), one ends up with a new q-adic Sudoku
solution that is related to the previous one.
By carefully analyzing this new solution and iterating the
process, one can establish non-periodicity of such solutions.
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Thanks for listening!
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