Marton's Polynomial Freiman-Ruzsa conjecture

Timothy Gowers, Ben Green, Freddie Manners, Terence Tao

University of California, Los Angeles

Inverse sumset theorems

- A key foundational topic in modern additive combinatorics is that of inverse theorems - theorems that show that objects with large amounts of "approximate additive structure" must in fact be close to objects with "exact additive structure".
- An influential early example of an inverse theorem (stated in modern language) is

Freiman's theorem (1964)

If $A \subset \mathbf{Z}$ is finite non-empty with doubling constant at most K, then A is contained in a convex progression P of cardinality at most $f(K)|A|$ and rank at most $d(K)$, for some functions f, d.

- Here, the doubling constant of A is the quantity $K:=|A+A| /|A|$, where $A \pm B:=\{a \pm b: a \in A, b \in B\}$ denotes the sumset or difference set of A and B, and $|A|$ denotes the cardinality of A.
- Note that $K \geq 1$. We will be interested primarily in the regime where K is somewhat large (and $|A|$ even larger).
- An convex progression of rank d in an additive group G is a set of the form

$$
\left\{n_{1} v_{1}+\cdots+n_{d} v_{d}:\left(n_{1}, \ldots, n_{d}\right) \in B \cap \mathbf{Z}^{d}\right\}
$$

for some symmetric convex body $B \subset \mathbf{R}^{d}$ and $v_{1}, \ldots, v_{d} \in G$.

- This is a modern version of the notion of a generalized arithmetic progression.

There is an equivalent form of Freiman's theorem, in which containment $A \subset P$ is replaced by covering $A \subset P+S$:

Freiman's theorem, alternate form

If $A \subset \mathbf{Z}$ is finite non-empty with doubling constant at most K, then A can be covered by at most $g(K)$ translates of a convex progression P of cardinality at most $f(K)|A|$ and rank at most $d(K)$, for some functions f, g, d.

While seemingly weaker, this form has more efficient quantitative dependencies on K.

Freiman's theorem, alternate form

If $A \subset \mathbf{Z}$ is finite non-empty with doubling constant at most K, then A can be covered by at most $g(K)$ translates of a convex progression P of cardinality at most $f(K)|A|$ and rank at most $d(K)$, for some functions f, g, d.

- For instance, in 2012 Konyagin (refining previous work of Sanders) showed that one can take $d(K)=\log ^{3+o(1)} K$ and $f(K)=g(K)=\exp \left(\log ^{3+o(1)} K\right)$ in this formulation, whereas in the original formulation it is easy to see that $f(K)$ must grow exponentially in K.
- The Polynomial Freiman-Ruzsa conjecture over the integers asserts that (in the above formulation) one can take $d(K)=O(\log K)$ and $f(K)=g(K)=O\left(K^{O(1)}\right)$.
- This remains open.
- Freiman's theorem was extended to arbitrary abelian groups $G=(G,+)$ by Green and Ruzsa in 2007 (with the notion of a convex progression generalized to that of a convex coset progression).
- The Sanders-Konyagin quantitative version of Freiman's theorem extends to this case.
- We will focus on the case of m-torsion groups G for some fixed natural number m. These are abelian groups where $m x=0$ for all $x \in G$.
- A key example are the standard vector spaces F_{2}^{n} for large n; these are the finite 2-torsion groups, and are of particular interest in theoretical computer science.

Marton's PFR conjecture

Freiman-Ruzsa theorem (Ruzsa, 1999)

If G is an m-torsion group and $A \subset G$ is finite non-empty with doubling constant at most K, then A can be covered by at most $g(m, K)$ cosets of a subgroup H of cardinality at most $f(m, K)|A|$, for some functions f, g.

By subdividing the group H, one can always take $f(m, K)=1$ (at the cost of increasing $g(m, K)$ to $m f(m, K) g(m, K)$). Let $g_{*}(m, K)$ denote the optimal value of $g(m, K)$ with $f(m, K)=1$.

Polynomial Freiman-Ruzsa (PFR) conjecture (Marton, 1999)
$g_{*}(m, K) \ll_{m} K^{O_{m}(1)}$.
(Technically, Marton conjectured $\left.g_{*}(m, K) \leq K^{O_{m}(1)}\right)$, but this version can easily be seen to fail for K very close to 1 .)

History of results towards PFR:

- Ruzsa (1999): $g_{*}(m, K) \leq K^{2} m^{K^{4}+1}$.
- Green, T. (2009): $g_{*}(2, K) \leq 2 K^{O(\sqrt{K})}$; for downsets, $g_{*}(2, K) \leq 2 K^{O(1)}$.
- Schoen (2011): $g_{*}(m, K) \leq \exp (m \exp (O(\sqrt{\log K})))$.
- Sanders (2010): $g_{*}(m, K) \leq \exp \left(m \log ^{4+o(1)} K\right)$.
- Konyagin (2012): $g_{*}(m, K) \leq \exp \left(m \log ^{3+o(1)} K\right)$.
- GGMT (2023): $g_{*}(2, K) \leq 2 K^{12}$.
- Liao (2023): $g_{*}(2, K) \leq 2 K^{11}$.
- Lean collaboration (2023): Formalized the preceding two results in Lean.
- GGMT (2024): $g_{*}(m, K) \leq(2 K)^{O\left(m^{3}\right)}$.
- Liao (2024): $g_{*}(2, K) \leq 2 K^{9}$.

Thus Marton's PFR conjecture holds for all m.

PFR for m-torsion groups does not directly imply PFR for the integers (or vice versa). However, by combining PFR for 2-torsion groups with a previous argument of Green, Manners, and myself, we have a "weak" version of PFR over torsion-free groups:

Weak PFR over Z d (GMT 2023 + GGMT 2023)

If $A \subset \mathbf{Z}^{d}$ is finite non-empty with doubling constant at most K, then A can be covered by $O\left(K^{O(1)}\right)$ translates of a subspace of \mathbf{R}^{d} of dimension $O(\log K)$.

Formalized in Lean with K^{18} translates and dimension at most $40 \log _{2} K$.
PFR over the integers remains a challenging open problem; only a portion of our arguments extend to this case.

By previous work, there are several further consequences of the PFR conjecture. Here are some sample ones:

Approximate homomorphisms close to actual homomorphisms

If $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{k}$ is such that
$\mathbf{P}_{x, y \in \mathbf{F}_{2}^{n}}(f(x)+f(y)=f(x+y)) \geq 1 / K$, then there exists a linear $\operatorname{map} g: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{k}$ such that $\mathbf{P}_{x \in \mathbf{F}_{2}^{k}}(f(x)=g(x)) \gg K^{-O(1)}$.

- This is a routine consequence of PFR and the Balog-Szemerédi-Gowers lemma.
- In fact it is equivalent to the $m=2$ case of PFR (an observation essentially due to Ruzsa).
- Formalized in Lean with $\mathbf{P}_{x \in \mathbf{F}_{2}^{n}}(f(x)=g(x)) \geq 2^{-172} K^{-146}$.

Polynomial inverse theorem for Gowers U^{3} norm

If $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{C}$ is 1 -bounded with $\|f\|_{U^{3}\left(F_{2}^{n}\right)} \geq 1 / K$, then there exists a quadratic polynomial $Q: F_{2}^{n} \rightarrow \mathbf{F}_{2}$ such that $\left|\mathbf{E}_{x \in \mathbf{F}_{2}^{f}} f(x)(-1)^{Q(x)}\right| \gg K^{-O(1)}$.

- This follows from PFR and arguments of Samorodnitsky (2007).
- Was previously known to be equivalent to the $m=2$ case of PFR (Lovett 2012; Green-T. 2010).
- Analogous results hold in odd characteristic.
- For the experts: the polynomial Bogulybov conjecture remains open. However, that conjecture is not needed to establish the polynomial U^{3} inverse theorem.

Another consequence of PFR is

Sum-product theorem in R (Mugdal, 2023)

Let $A \subset \mathbf{R}$ be finite non-empty. Then $|m A|+\left|A^{m}\right| \gg|A|^{f(m)}$ for some $f(m)$ that goes to infinity as $m \rightarrow \infty$.

A famous conjecture of Erdős and Szemerédi (1983) conjectures that one can take $f(m)=m-\varepsilon$ for any $\varepsilon>0$.

Methods of proof

- Ruzsa's original arguments were purely combinatorial (or "physical space") in nature, using tools from what we now call Ruzsa calculus, such as the Plünnecke-Ruzsa inequalities and the Ruzsa covering lemma.
- Later works primarily relied on Fourier-analytic methods, as well as versions of the Croot-Sisask lemma. (An exception is the result for downsets, which instead used the method of compressions.)
- Surprisingly, our arguments use no Fourier methods whatsoever, relying instead on entropy methods (in particular, Shannon entropy inequalities).
- While the proof crucially requires entropy methods, it is possible to describe the heuristic ideas of the proof without reference to entropy.
- A convenient concept in Ruzsa calculus is the Ruzsa distance

$$
d[A ; B]:=\log \frac{|A-B|}{|A|^{1 / 2}|B|^{1 / 2}}
$$

between two finite non-empty sets A, B.

- This distance is symmetric, non-negative, and satisfies the Ruzsa triangle inequality $d[A ; C] \leq d[A ; B]+d[B ; C]$. (But we caution that $d[A ; A] \neq 0$ in general.)
- This distance measures how "commensurable" A and B are.
- For simplicity we work in F_{2}^{n}.
- By Ruzsa calculus, PFR is equivalent to the assertion that every K-doubling subset A of lies within $O(\log K$) (in Ruzsa distance) of a subgroup of F_{2}^{n}.
- By an induction on K, the Ruzsa triangle inequality, and previous results on PFR, it would suffice to show that every K-doubling subset A of lies within $O(\log K)$ of a set of doubling constant at most $O\left(K^{0.99}\right)$ (say).
- Thanks to Ruzsa calculus, many "natural" operations on A will only move the set by $O(\log K)$ in Ruzsa distance.
- So the task is to somehow modify the given K-doubling set A by "natural operations" to improve the doubling constant.

First key example

- Suppose that A is a random subset of a large finite subgroup H of F_{2}^{n}, of density $1 / K$.
- Then the doubling constant of A is K with high probability.
- However, if we replace A with $A+A$, then we will very likely have replaced A with H, which has doubling constant 1 .
- So replacing A by $A+A$ is one of the "natural operations" we would like to perform.

Second key example

- Now suppose that A is the union of K random cosets of a finite subgroup H (of large index).
- Then the doubling constant of A is $\asymp K$ with high probability.
- In this case, replacing A by $A+A$ will likely make the doubling constant worse ($\asymp K^{2}$ rather than $\asymp K$).
- However, replacing A by $A \cap(A+h)$ for "typical" $h \in A-A$ will usually replace A with a coset of H, bringing the doubling constant down to 1 again.
- So replacing A by $A \cap(A+h)$ is another "natural operation" we would like to perform.

Hybrid example

- Now let A be a random subset of K_{1} random cosets of H, of density $1 / K_{2}$, where the cardinality and index of H are both large compared to K_{1}, K_{2}.
- Here the doubling constant of A is typically $\asymp K_{1} K_{2}$.
- Replacing A with $A+A$ typically changes the doubling constant to $\asymp K_{1}^{2}$.
- Replacing A with $A \cap(A+h)$ typically changes the doubling constant to $\asymp K_{2}^{2}$.
- Note that the original doubling constant behaves like the geometric mean of the doubling constant of the two modifications of A.
- Hence, at least one of these operations will improve, or at least not worsen, the doubling constant.

Heuristic argument

- In general, given a finite non-empty set $A \subset G$ and a homomorphism $\pi: G \rightarrow H$, the doubling constant of A is heuristically at least as large as the doubling constant of $\pi(A)$, times the doubling constant of typical fibers $\pi^{-1}(\{h\}), h \in \pi(A)$. Let us informally refer to this as the "fibring inequality".
- The fibring inequality is justified when the fibers $\pi^{-1}(\{h\})$, $h \in \pi(A)$ all have comparable size.
- Near-equality in the fibring inequality is only expected when the fiber sumsets $\pi^{-1}(\{h\})+\pi^{-1}(\{k\})$ depend "primarily" on $h+k$ rather than on h and k separately.
- Applying this heuristic to $A \times A \subset G^{2}$ and the addition homomorphism $\pi:(x, y) \mapsto x+y$, we expect that in general, the doubling constant of A is at least the geometric mean of the doubling constant of $A+A$ and of the typical fiber $A \cap(A+h)$.
- This leads to at least one natural operation improving the doubling constant, unless the fibring inequality is close to equality.
- Heuristically, this implies that the sumset of $A \cap(A+h)$ and $A \cap(A+k)$ depend primarily on $h+k$, rather than on h and k separately.
- Alternatively: if $a_{1}, a_{2}, a_{3}, a_{4} \in A, h=a_{2}+a_{1}$, and $k=a_{4}+a_{3}$, and we fix the value of $h+k=a_{2}+a_{1}+a_{4}+a_{3}$, then $h=a_{2}+a_{1}$ has no significant influence on the sum $a_{1}+a_{3}$.
- We thus have to handle the "endgame" situation in which, after fixing $a_{2}+a_{1}+a_{4}+a_{3}, a_{2}+a_{1}$ and $a_{1}+a_{3}$ behave like independent random variables.
- Key observation in characteristic two:
$\left(a_{2}+a_{1}\right)+\left(a_{1}+a_{3}\right)=a_{2}+a_{3}$ has the same distribution as either $a_{2}+a_{1}$ or $a_{1}+a_{3}$, even after fixing $a_{2}+a_{1}+a_{4}+a_{3}$.
- Thus, the region where the random variable $a_{2}+a_{1}$ (or $a_{1}+a_{3}$) is concentrated should have quite a small doubling constant.
- In the $m=2$ case, this provides the final "natural operation" needed to obtain the desired improvement in the doubling constant!

Making things rigorous

- To make this argument rigorous, we should work with pairs A, B of sets rather than a single set A (because we will often need to sum one fiber against another).
- This is a minor technicality that can be dealt with primarily by appropriate notational changes.
- The biggest problem is that the fibring inequality is false in general, due to the variable sizes of fibers $\pi^{-1}(\{h\})$.
- In fact, one can even construct (moderately pathological) examples where a projection $\pi(A)$ has strictly larger doubling constant than A !
- To resolve this problem, we replace sets A with random variables X. The analogue of the logarithm $\log |A|$ of cardinality $|A|$ is then the Shannon entropy

$$
\mathbf{H}[X]:=\sum_{x} \mathbf{P}[X=x] \log \frac{1}{\mathbf{P}[X=x]}
$$

- Instead of taking fibers, one works with conditional entropies

$$
\mathbf{H}[X \mid Y]:=\sum_{y} \mathbf{P}[Y=y] \mathbf{H}[X \mid Y=y]
$$

- Heuristically, the entropic formulation makes the "microstate" fibers "essentially" the same size (the Shannon-McMillan-Breiman equipartition theorem).
- Another key notion from information theory is the conditional mutual information

$$
\mathbf{I}[X: Y \mid Z]:=\mathbf{H}[X \mid Z]+\mathbf{H}[Y \mid Z]-\mathbf{H}[X, Y \mid Z] .
$$

- We have the important submodularity inequality

$$
\mathrm{I}[X: Y \mid Z] \geq 0
$$

with equality if and only if X, Y are conditionally independent over Z.

- Thus, conditional mutual information is a quantitative measure of conditional independence.
- The analogue of the logarithm $\log K$ of the doubling constant is the entropic doubling constant

$$
\sigma[X]:=\mathbf{H}\left[X+X^{\prime}\right]-\mathbf{H}[X]
$$

where X^{\prime} is an independent copy of X.

- Similarly we have the entropic Ruzsa distance

$$
d[X ; Y]:=\mathbf{H}\left[X^{\prime}-Y^{\prime}\right]-\frac{1}{2} \mathbf{H}[X]-\frac{1}{2} \mathbf{H}[Y]
$$

where X^{\prime}, Y^{\prime} are independent copies of X, Y.

- Many "Ruzsa calculus" inequalities in additive combinatorics have entropic analogues, which can be proven by judicious applications of submodularity.
- For instance, the submodularity inequality

$$
\mathrm{I}[X-Y: Z \mid X-Z] \geq 0
$$

can be rearranged (with additional basic entropy facts) to conclude the entropic Ruzsa triangle inequality

$$
d[X ; Z] \leq d[X ; Y]+d[Y ; Z]
$$

- Similarly, if X_{1}, X_{2} are independent copies of X in G and $\pi: G \rightarrow H$ is a homomorphism, the submodularity inequality

$$
\mathrm{I}\left[X_{1}+X_{2}: \pi\left(X_{1}\right), \pi\left(X_{2}\right) \mid \pi\left(X_{1}+X_{2}\right)\right] \geq 0
$$

gives (among other things) the contraction property

$$
\sigma[\pi(X)] \leq \sigma[X]
$$

that failed in the combinatorial setting.

- With these tools, one can obtain a rigorous entropic version of the fibring inequality, and make the previous PFR argument rigorous for $m=2$.
- Many technical optimizations can then be performed to get explicit bounds such as $g_{*}(2, K) \leq 2 K^{12}$ or $g_{*}(2, K) \leq 2 K^{11}$.
- For $m>2$, one uses a similar strategy, but with (entropic) doubling constant replaced by a "multidistance" relating m different variables X_{1}, \ldots, X_{m} :

$$
D\left[X_{1}, \ldots, X_{m}\right]:=\mathbf{H}\left[X_{1}^{\prime}+\cdots+X_{m}^{\prime}\right]-\frac{1}{m} \sum_{i=1}^{m} \mathbf{H}\left[X_{i}\right]
$$

where $X_{1}^{\prime}, \ldots, X_{m}^{\prime}$ are independent copies of X_{1}, \ldots, X_{m} respectively.

- One then creates an $m \times m$ array $X_{i, j}$ of such variables, and shows that it is possible to improve the multidistance by natural operations unless the random variables

are almost independent conditioning on $\sum_{i=1}^{m} \sum_{j=1}^{m} X_{i, j}$.
- The key is then to use the m-torsion to note that the difference

$$
\sum_{i=1}^{m} \sum_{j=1}^{m} i X_{i, j}-\sum_{i=1}^{m} \sum_{j=1}^{m} j X_{i, j}=\sum_{i=1}^{m} \sum_{j=1}^{m}(i-j) X_{i, j}
$$

has the same distribution as either of the two double sums, even after conditioning.

PFR over the integers?

- One can set up the same basic strategy of trying to improve something like the entropic doubling constant through natural operations.
- The problem now is that there is a new example of random variable whose entropic doubling does not improve through such operations: discrete gaussians (concentrated over a large convex progression).
- What is missing is a way to "detect" discrete gaussian structure by purely entropic means (without already assuming PFR).

Lean formalization

- Shortly after the $m=2$ case of PFR was established, Yaël Dillies and I launched a project to formalize the proof in the formal proof assistant language Lean.
- With many contributions from approximately twenty volunteers, this formalization was completed in three weeks.
- A major component of this formalization was the development of the basic theory of Shannon entropy, which is now in the process of being uploaded to Lean's central math library Mathlib.
- The first step in formalization was to create a blueprint.
- This is a human-readable version of the proof (written in a version of LaTeX) that breaks down the proof into many lemmas, linked together by a dependency graph.

Theorem 7.2 (PFR)
If $A \subset \mathbf{F}_{2}^{n}$ and $|A+A| \leq K|A|$, then A can be covered by most $2 K^{12}$ translates of a subspace H of \mathbf{F}_{2}^{n} with $|H| \leq|A|$.
LaTeX Lean

- Each node of the graph comes with a human-readable proof of the statement associated to that node, assuming all the results of the dependent nodes.
- Individuals then volunteer to formalize in the proof of selected nodes.
- This can be done in any order and is a highly parallelizable process.
Theorem 7.2 (PFR)

If $A \subset \mathbf{F}_{2}^{n}$ and $\|A+A\| \leq K\|A\|$, then A can be covered by most $2 K^{12}$ translates of a
subspace H of \mathbf{F}_{2}^{n} with $\|H\| \leq\|A\|$.
Proof
\qquadLet U_{A} be the uniform distribution on A (which exists by Lemma $\underline{2.5}$), thus $H\left[U_{A}\right]=\log \|A\|$ by Lemma 2.7 . By Lemma 2.3 and the fact that $U_{A}+U_{A}$ is supported on $A+A, H\left[U_{A}+U_{A}\right] \leq \log \|A+A\|$. By Definition $\underline{3.7}$, the doubling condition $\|A+A\| \leq K\|A\|$ therefore gives
$\qquad d\left[U_{A} ; U_{A}\right] \leq \log K$.

By Theorem $\underline{6.16}$, we may thus find a subspace H of \mathbb{F}_{2}^{n} such that

- One does not need to understand the entire project in order to formalize a single node.
- For instance, much of the work on formalizing the theory of Shannon entropy was done by probabilists with no prior experience in additive combinatorics.

```
theorem PFR_conjecture
                                    source
    {G : Type u_1} [AddCommGroup G] [ElementaryAddCommGroup G 2]
    [Fintype G] [DecidableEq G] {A : Set G} {K : \mathbb{R}}
    (hoA : Set.Nonempty A)
    (hA : \uparrow(Nat.card \uparrow(A + A )) \leqK * \uparrow(Nat.card \uparrowA)) :
    \exists H c,
    \uparrow(Nat.card \uparrowc) \leq 2 * K ^ 12 ^
    Nat.card iH \leq Nat.card \uparrowA ^ A\subseteqc + \uparrowH
```

- Because Lean verifies the validity of all contributed proofs, no prior trust amongst contributors was required.
- This allows for far larger collaborations than traditional math projects.

```
/-- $$ d[X;Y] \geq 0.$$ -/
```

lemma rdist_nonneg : $0 \leq \mathrm{d}\left[\mathrm{X} ; \mu \mathrm{\#} \mathrm{Y}\right.$; μ^{\prime}] := by suffices : $0 \leq 2$ * d[X ; μ \# Y ; μ^{\prime}]

- linarith
have h : |H[X ; $\mu]-H\left[Y ; \mu^{\prime}\right] \mid \leq 2$ * $d\left[X ; \mu \# Y ; \mu^{\prime}\right]:=$ by exact diff_ent_le_rdist
have h' : $0 \leq|H[X ; \mu]-H[Y ; \mu ']|:=$ by exact abs_nonneg ($\mathrm{H}[\mathrm{X} ; \mu]-\mathrm{H}\left[\mathrm{Y} ; \mu^{\prime}\right]$)
exact ge_trans $\mathrm{h} \mathrm{h}^{\prime}$
- Al tools such as Github Copilot were modestly helpful in the formalization process, essentially serving as an advanced "autocomplete" feature.
- In the future, I expect Al tools to automate more of the tedious steps of proof formalization. Eventually, it may become faster to write a correct formal proof than a correct informal one!

```
/-- $$ d[X;Y] \geq 0.$$ -/
lemma rdist_nonneg : 0 \leq d[ X ; \mu # Y ; \mu' ] := by
    suffices : 0 \leq 2 * d[ X ; \mu # Y ; \mu' ]
    . linarith
    have h : |H[X ; \mu] - H[Y ; \mu']| \leq 2 * d[X ; \mu # Y ; \mu' ] := by
    rw [abs_of_nonneg (entropy_nonneg _), abs_of_nonneg (entropy_nonneg _)]
    exact diff_ent_le_rdist
```

 sorry
 Thanks for listening!

