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Inverse sumset theorems

A key foundational topic in modern additive combinatorics
is that of inverse theorems - theorems that show that
objects with large amounts of “approximate additive
structure” must in fact be close to objects with “exact
additive structure”.
An influential early example of an inverse theorem (stated
in modern language) is

Freiman’s theorem (1964)
If A ⊂ Z is finite non-empty with doubling constant at most K ,
then A is contained in a convex progression P of cardinality at
most f (K )|A| and rank at most d(K ), for some functions f ,d .
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Here, the doubling constant of A is the quantity
K := |A + A|/|A|, where A ± B := {a ± b : a ∈ A,b ∈ B}
denotes the sumset or difference set of A and B, and |A|
denotes the cardinality of A.
Note that K ≥ 1. We will be interested primarily in the
regime where K is somewhat large (and |A| even larger).
An convex progression of rank d in an additive group G is
a set of the form

{n1v1 + · · ·+ ndvd : (n1, . . . ,nd) ∈ B ∩ Zd}

for some symmetric convex body B ⊂ Rd and
v1, . . . , vd ∈ G.
This is a modern version of the notion of a generalized
arithmetic progression.
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There is an equivalent form of Freiman’s theorem, in which
containment A ⊂ P is replaced by covering A ⊂ P + S:

Freiman’s theorem, alternate form
If A ⊂ Z is finite non-empty with doubling constant at most K ,
then A can be covered by at most g(K ) translates of a convex
progression P of cardinality at most f (K )|A| and rank at most
d(K ), for some functions f ,g,d .

While seemingly weaker, this form has more efficient
quantitative dependencies on K .
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Freiman’s theorem, alternate form
If A ⊂ Z is finite non-empty with doubling constant at most K ,
then A can be covered by at most g(K ) translates of a convex
progression P of cardinality at most f (K )|A| and rank at most
d(K ), for some functions f ,g,d .

For instance, in 2012 Konyagin (refining previous work of
Sanders) showed that one can take d(K ) = log3+o(1) K
and f (K ) = g(K ) = exp(log3+o(1) K ) in this formulation,
whereas in the original formulation it is easy to see that
f (K ) must grow exponentially in K .
The Polynomial Freiman–Ruzsa conjecture over the
integers asserts that (in the above formulation) one can
take d(K ) = O(logK ) and f (K ) = g(K ) = O(K O(1)).
This remains open.
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Freiman’s theorem was extended to arbitrary abelian
groups G = (G,+) by Green and Ruzsa in 2007 (with the
notion of a convex progression generalized to that of a
convex coset progression).
The Sanders–Konyagin quantitative version of Freiman’s
theorem extends to this case.
We will focus on the case of m-torsion groups G for some
fixed natural number m. These are abelian groups where
mx = 0 for all x ∈ G.
A key example are the standard vector spaces Fn

2 for large
n; these are the finite 2-torsion groups, and are of
particular interest in theoretical computer science.
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Marton’s PFR conjecture

Freiman–Ruzsa theorem (Ruzsa, 1999)
If G is an m-torsion group and A ⊂ G is finite non-empty with
doubling constant at most K , then A can be covered by at most
g(m,K ) cosets of a subgroup H of cardinality at most
f (m,K )|A|, for some functions f ,g.

By subdividing the group H, one can always take f (m,K ) = 1
(at the cost of increasing g(m,K ) to mf (m,K )g(m,K )).
Let g∗(m,K ) denote the optimal value of g(m,K ) with
f (m,K ) = 1.

Polynomial Freiman–Ruzsa (PFR) conjecture (Marton, 1999)

g∗(m,K ) ≪m K Om(1).

(Technically, Marton conjectured g∗(m,K ) ≤ K Om(1)), but this
version can easily be seen to fail for K very close to 1.)
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History of results towards PFR:
Ruzsa (1999): g∗(m,K ) ≤ K 2mK 4+1.

Green, T. (2009): g∗(2,K ) ≤ 2K O(
√

K ); for downsets,
g∗(2,K ) ≤ 2K O(1).
Schoen (2011): g∗(m,K ) ≤ exp(m exp(O(

√
logK ))).

Sanders (2010): g∗(m,K ) ≤ exp(m log4+o(1) K ).
Konyagin (2012): g∗(m,K ) ≤ exp(m log3+o(1) K ).
GGMT (2023): g∗(2,K ) ≤ 2K 12.
Liao (2023): g∗(2,K ) ≤ 2K 11.
Lean collaboration (2023): Formalized the preceding two
results in Lean.
GGMT (2024): g∗(m,K ) ≤ (2K )O(m3).
Liao (2024): g∗(2,K ) ≤ 2K 9.

Thus Marton’s PFR conjecture holds for all m.
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PFR for m-torsion groups does not directly imply PFR for the
integers (or vice versa). However, by combining PFR for
2-torsion groups with a previous argument of Green, Manners,
and myself, we have a “weak” version of PFR over torsion-free
groups:

Weak PFR over Zd (GMT 2023 + GGMT 2023)

If A ⊂ Zd is finite non-empty with doubling constant at most K ,
then A can be covered by O(K O(1)) translates of a subspace of
Rd of dimension O(logK ).

Formalized in Lean with K 18 translates and dimension at most
40 log2 K .
PFR over the integers remains a challenging open problem;
only a portion of our arguments extend to this case.
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By previous work, there are several further consequences of
the PFR conjecture. Here are some sample ones:

Approximate homomorphisms close to actual homomorphisms

If f : Fn
2 → Fk

2 is such that
Px ,y∈Fn

2
(f (x) + f (y) = f (x + y)) ≥ 1/K , then there exists a linear

map g : Fn
2 → Fk

2 such that Px∈Fk
2
(f (x) = g(x)) ≫ K−O(1).

This is a routine consequence of PFR and the
Balog–Szemerédi–Gowers lemma.
In fact it is equivalent to the m = 2 case of PFR (an
observation essentially due to Ruzsa).
Formalized in Lean with Px∈Fn

2
(f (x) = g(x)) ≥ 2−172K−146.
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Polynomial inverse theorem for Gowers U3 norm

If f : Fn
2 → C is 1-bounded with ∥f∥U3(Fn

2)
≥ 1/K , then there

exists a quadratic polynomial Q : Fn
2 → F2 such that

|Ex∈Fn
2
f (x)(−1)Q(x)| ≫ K−O(1).

This follows from PFR and arguments of Samorodnitsky
(2007).
Was previously known to be equivalent to the m = 2 case
of PFR (Lovett 2012; Green–T. 2010).
Analogous results hold in odd characteristic.
For the experts: the polynomial Bogulybov conjecture
remains open. However, that conjecture is not needed to
establish the polynomial U3 inverse theorem.
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Another consequence of PFR is

Sum-product theorem in R (Mugdal, 2023)

Let A ⊂ R be finite non-empty. Then |mA|+ |Am| ≫ |A|f (m) for
some f (m) that goes to infinity as m → ∞.

A famous conjecture of Erdős and Szemerédi (1983)
conjectures that one can take f (m) = m − ε for any ε > 0.
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Methods of proof

Ruzsa’s original arguments were purely combinatorial (or
“physical space”) in nature, using tools from what we now
call Ruzsa calculus, such as the Plünnecke–Ruzsa
inequalities and the Ruzsa covering lemma.
Later works primarily relied on Fourier-analytic methods,
as well as versions of the Croot-Sisask lemma. (An
exception is the result for downsets, which instead used
the method of compressions.)
Surprisingly, our arguments use no Fourier methods
whatsoever, relying instead on entropy methods (in
particular, Shannon entropy inequalities).
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While the proof crucially requires entropy methods, it is
possible to describe the heuristic ideas of the proof without
reference to entropy.
A convenient concept in Ruzsa calculus is the Ruzsa
distance

d [A;B] := log
|A − B|

|A|1/2|B|1/2

between two finite non-empty sets A,B.
This distance is symmetric, non-negative, and satisfies the
Ruzsa triangle inequality d [A;C] ≤ d [A;B] + d [B;C]. (But
we caution that d [A;A] ̸= 0 in general.)
This distance measures how “commensurable” A and B
are.
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For simplicity we work in Fn
2.

By Ruzsa calculus, PFR is equivalent to the assertion that
every K -doubling subset A of lies within O(logK ) (in Ruzsa
distance) of a subgroup of Fn

2.
By an induction on K , the Ruzsa triangle inequality, and
previous results on PFR, it would suffice to show that every
K -doubling subset A of lies within O(logK ) of a set of
doubling constant at most O(K 0.99) (say).
Thanks to Ruzsa calculus, many “natural” operations on A
will only move the set by O(logK ) in Ruzsa distance.
So the task is to somehow modify the given K -doubling set
A by “natural operations” to improve the doubling constant.
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First key example

Suppose that A is a random subset of a large finite
subgroup H of Fn

2, of density 1/K .
Then the doubling constant of A is K with high probability.
However, if we replace A with A + A, then we will very likely
have replaced A with H, which has doubling constant 1.
So replacing A by A + A is one of the “natural operations”
we would like to perform.
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Second key example

Now suppose that A is the union of K random cosets of a
finite subgroup H (of large index).
Then the doubling constant of A is ≍ K with high
probability.
In this case, replacing A by A + A will likely make the
doubling constant worse (≍ K 2 rather than ≍ K ).
However, replacing A by A ∩ (A + h) for “typical” h ∈ A − A
will usually replace A with a coset of H, bringing the
doubling constant down to 1 again.
So replacing A by A ∩ (A + h) is another “natural operation”
we would like to perform.
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Hybrid example

Now let A be a random subset of K1 random cosets of H,
of density 1/K2, where the cardinality and index of H are
both large compared to K1,K2.
Here the doubling constant of A is typically ≍ K1K2.
Replacing A with A + A typically changes the doubling
constant to ≍ K 2

1 .
Replacing A with A ∩ (A + h) typically changes the
doubling constant to ≍ K 2

2 .
Note that the original doubling constant behaves like the
geometric mean of the doubling constant of the two
modifications of A.
Hence, at least one of these operations will improve, or at
least not worsen, the doubling constant.
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Heuristic argument

In general, given a finite non-empty set A ⊂ G and a
homomorphism π : G → H, the doubling constant of A is
heuristically at least as large as the doubling constant of
π(A), times the doubling constant of typical fibers
π−1({h}), h ∈ π(A). Let us informally refer to this as the
“fibring inequality”.
The fibring inequality is justified when the fibers π−1({h}),
h ∈ π(A) all have comparable size.
Near-equality in the fibring inequality is only expected
when the fiber sumsets π−1({h}) + π−1({k}) depend
“primarily” on h + k rather than on h and k separately.
Applying this heuristic to A × A ⊂ G2 and the addition
homomorphism π : (x , y) 7→ x + y , we expect that in
general, the doubling constant of A is at least the
geometric mean of the doubling constant of A + A and of
the typical fiber A ∩ (A + h).
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This leads to at least one natural operation improving the
doubling constant, unless the fibring inequality is close to
equality.
Heuristically, this implies that the sumset of A∩ (A+ h) and
A∩ (A+ k) depend primarily on h + k , rather than on h and
k separately.
Alternatively: if a1,a2,a3,a4 ∈ A, h = a2 + a1, and
k = a4 + a3, and we fix the value of
h + k = a2 + a1 + a4 + a3, then h = a2 + a1 has no
significant influence on the sum a1 + a3.
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We thus have to handle the “endgame” situation in which,
after fixing a2 + a1 + a4 + a3, a2 + a1 and a1 + a3 behave
like independent random variables.
Key observation in characteristic two:
(a2 + a1)+ (a1 + a3) = a2 + a3 has the same distribution as
either a2 + a1 or a1 + a3, even after fixing a2 + a1 + a4 + a3.
Thus, the region where the random variable a2 + a1 (or
a1 + a3) is concentrated should have quite a small doubling
constant.
In the m = 2 case, this provides the final “natural
operation” needed to obtain the desired improvement in
the doubling constant!
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Making things rigorous

To make this argument rigorous, we should work with pairs
A,B of sets rather than a single set A (because we will
often need to sum one fiber against another).
This is a minor technicality that can be dealt with primarily
by appropriate notational changes.
The biggest problem is that the fibring inequality is false in
general, due to the variable sizes of fibers π−1({h}).
In fact, one can even construct (moderately pathological)
examples where a projection π(A) has strictly larger
doubling constant than A!
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To resolve this problem, we replace sets A with random
variables X . The analogue of the logarithm log |A| of
cardinality |A| is then the Shannon entropy

H[X ] :=
∑

x

P[X = x ] log
1

P[X = x ]
.

Instead of taking fibers, one works with conditional
entropies

H[X |Y ] :=
∑

y

P[Y = y ]H[X |Y = y ].

Heuristically, the entropic formulation makes the
“microstate” fibers “essentially” the same size (the
Shannon-McMillan-Breiman equipartition theorem).
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Another key notion from information theory is the
conditional mutual information

I[X : Y |Z ] := H[X |Z ] + H[Y |Z ]− H[X ,Y |Z ].

We have the important submodularity inequality

I[X : Y |Z ] ≥ 0

with equality if and only if X ,Y are conditionally
independent over Z .
Thus, conditional mutual information is a quantitative
measure of conditional independence.
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The analogue of the logarithm logK of the doubling
constant is the entropic doubling constant

σ[X ] := H[X + X ′]− H[X ]

where X ′ is an independent copy of X .
Similarly we have the entropic Ruzsa distance

d [X ;Y ] := H[X ′ − Y ′]− 1
2

H[X ]− 1
2

H[Y ]

where X ′,Y ′ are independent copies of X ,Y .
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Many “Ruzsa calculus” inequalities in additive
combinatorics have entropic analogues, which can be
proven by judicious applications of submodularity.
For instance, the submodularity inequality

I[X − Y : Z |X − Z ] ≥ 0

can be rearranged (with additional basic entropy facts) to
conclude the entropic Ruzsa triangle inequality

d [X ;Z ] ≤ d [X ;Y ] + d [Y ;Z ].

Similarly, if X1,X2 are independent copies of X in G and
π : G → H is a homomorphism, the submodularity
inequality

I[X1 + X2 : π(X1), π(X2)|π(X1 + X2)] ≥ 0

gives (among other things) the contraction property

σ[π(X )] ≤ σ[X ]

that failed in the combinatorial setting.
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With these tools, one can obtain a rigorous entropic
version of the fibring inequality, and make the previous
PFR argument rigorous for m = 2.
Many technical optimizations can then be performed to get
explicit bounds such as g∗(2,K ) ≤ 2K 12 or
g∗(2,K ) ≤ 2K 11.
For m > 2, one uses a similar strategy, but with (entropic)
doubling constant replaced by a “multidistance” relating m
different variables X1, . . . ,Xm:

D[X1, . . . ,Xm] := H[X ′
1 + · · ·+ X ′

m]−
1
m

m∑
i=1

H[Xi ],

where X ′
1, . . . ,X

′
m are independent copies of X1, . . . ,Xm

respectively.
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One then creates an m × m array Xi,j of such variables,
and shows that it is possible to improve the multidistance
by natural operations unless the random variables

m∑
i=1

m∑
j=1

iXi,j ,

m∑
i=1

m∑
j=1

jXi,j

are almost independent conditioning on
∑m

i=1
∑m

j=1 Xi,j .
The key is then to use the m-torsion to note that the
difference

m∑
i=1

m∑
j=1

iXi,j −
m∑

i=1

m∑
j=1

jXi,j =
m∑

i=1

m∑
j=1

(i − j)Xi,j

has the same distribution as either of the two double sums,
even after conditioning.
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PFR over the integers?

One can set up the same basic strategy of trying to
improve something like the entropic doubling constant
through natural operations.
The problem now is that there is a new example of random
variable whose entropic doubling does not improve through
such operations: discrete gaussians (concentrated over a
large convex progression).
What is missing is a way to “detect” discrete gaussian
structure by purely entropic means (without already
assuming PFR).
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Lean formalization

Shortly after the m = 2 case of PFR was established, Yaël
Dillies and I launched a project to formalize the proof in the
formal proof assistant language Lean.
With many contributions from approximately twenty
volunteers, this formalization was completed in three
weeks.
A major component of this formalization was the
development of the basic theory of Shannon entropy, which
is now in the process of being uploaded to Lean’s central
math library Mathlib.
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The first step in formalization was to create a blueprint.
This is a human-readable version of the proof (written in a
version of LaTeX) that breaks down the proof into many
lemmas, linked together by a dependency graph.
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Each node of the graph comes with a human-readable
proof of the statement associated to that node, assuming
all the results of the dependent nodes.
Individuals then volunteer to formalize in the proof of
selected nodes.
This can be done in any order and is a highly parallelizable
process.
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One does not need to understand the entire project in
order to formalize a single node.
For instance, much of the work on formalizing the theory of
Shannon entropy was done by probabilists with no prior
experience in additive combinatorics.
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Because Lean verifies the validity of all contributed proofs,
no prior trust amongst contributors was required.
This allows for far larger collaborations than traditional
math projects.
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AI tools such as Github Copilot were modestly helpful in
the formalization process, essentially serving as an
advanced “autocomplete” feature.
In the future, I expect AI tools to automate more of the
tedious steps of proof formalization. Eventually, it may
become faster to write a correct formal proof than a correct
informal one!
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Thanks for listening!
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