
Proof of the Sequence Representation in the

Bounded Power Series

Problem Statement

Let a0, a1, . . . be a bounded sequence of real numbers, and suppose that the
power series

f(x) :=

∞∑
n=0

an
xn

n!

decays like O(e−x) as x → ∞, in the sense that exf(x) remains bounded as
x → ∞. The problem is to show that an = C(−1)n for some constant C.

Proof

Step 1: Converse Statement

If an = C(−1)n for some C, then the power series f(x) can be written as:

f(x) =

∞∑
n=0

C(−1)n
xn

n!
= C

∞∑
n=0

(−1)n
xn

n!
= Ce−x.

This clearly shows that f(x) decays like O(e−x) as x → ∞.

Step 2: Introducing the Laplace Transform

Suppose that an is a bounded sequence of real numbers with f(x) = O(e−x) as
x → ∞. We introduce the Laplace transform

Lf(s) :=
∫ ∞

0

f(x)e−sx dx.

The decay hypothesis f(x) = O(e−x) ensures that the Laplace transform is
well-defined for ℜ(s) > −1 and is holomorphic in this half-plane.
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Step 3: Bound on the Laplace Transform

Using the decay hypothesis, we can show that

Lf(s) = O

(
1

ℜ(s) + 1

)
for ℜ(s) > −1.

Step 4: Power Series Representation

Using the power series expansion

f(x) =

∞∑
n=0

an
xn

n!
,

we find that in the region {s : ℜ(s) > −1, |s| > 1}, the Laplace transform has
the alternate form

Lf(s) =
∞∑

n=0

an
sn+1

,

assuming ℜ(s) > −1 and |s| > 1.

Step 5: Analytic Continuation

By observing that the Laurent series

∞∑
n=0

an
sn+1

is holomorphic on the region {s ∈ C : |s| > 1}, and that this region together
with the previous half-space {s : ℜ(s) > −1} cover the punctured complex
plane, we can use analytic continuation to extend Lf(s) analytically to the
punctured complex plane {s ∈ C : s ̸= −1}.

Step 6: Combining the Bounds

In the region |s| > 1, the Laurent series representation yields the bound

Lf(s) = O

(
1

|s| − 1

)
.

By combining this with the bound

Lf(s) = O

(
1

ℜ(s) + 1

)
for ℜ(s) > −1, we conclude the bound

Lf(s) = O

(
1

|s+ 1|2

)
in a sufficiently small neighborhood of s = −1.
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Step 7: Double Pole at s = −1

This bound implies that Lf(s) has at most a double pole at s = −1, giving a
Laurent series representation of the form

Lf(s) = a

(s+ 1)2
+

b

s+ 1
+ h(s),

where h(s) is holomorphic near s = −1. Evaluating Lf(s) at s = −1 + ε and
sending ε → 0 shows that a must be zero, reducing the series to

Lf(s) = b

s+ 1
+ h(s).

Step 8: Using Liouville’s Theorem

Combining this Laurent series with the bound Lf(s) = O
(

1
|s|−1

)
for |s| > 1,

we use Liouville’s theorem to show that h(s) must vanish, leaving

Lf(s) = b

s+ 1
.

Step 9: Final Formula for an

Comparing this with the power series representation Lf(s) =
∑∞

n=0
an

sn+1 , we
find

b

s+ 1
=

∞∑
n=0

an
sn+1

.

Expanding 1
s+1 as a geometric series, we get

1

s+ 1
=

∞∑
n=0

(−1)n

sn+1
,

so
b

s+ 1
= b

∞∑
n=0

(−1)n

sn+1
.

Comparing coefficients, we conclude

an = b(−1)n.

Thus, an = C(−1)n for some constant C, solving the problem.
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