Proof of the Sequence Representation in the Bounded Power Series

Problem Statement

Let a_{0}, a_{1}, \ldots be a bounded sequence of real numbers, and suppose that the power series

$$
f(x):=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!}
$$

decays like $O\left(e^{-x}\right)$ as $x \rightarrow \infty$, in the sense that $e^{x} f(x)$ remains bounded as $x \rightarrow \infty$. The problem is to show that $a_{n}=C(-1)^{n}$ for some constant C.

Proof

Step 1: Converse Statement

If $a_{n}=C(-1)^{n}$ for some C, then the power series $f(x)$ can be written as:

$$
f(x)=\sum_{n=0}^{\infty} C(-1)^{n} \frac{x^{n}}{n!}=C \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!}=C e^{-x} .
$$

This clearly shows that $f(x)$ decays like $O\left(e^{-x}\right)$ as $x \rightarrow \infty$.

Step 2: Introducing the Laplace Transform

Suppose that a_{n} is a bounded sequence of real numbers with $f(x)=O\left(e^{-x}\right)$ as $x \rightarrow \infty$. We introduce the Laplace transform

$$
\mathcal{L} f(s):=\int_{0}^{\infty} f(x) e^{-s x} d x
$$

The decay hypothesis $f(x)=O\left(e^{-x}\right)$ ensures that the Laplace transform is well-defined for $\Re(s)>-1$ and is holomorphic in this half-plane

Step 3: Bound on the Laplace Transform

Using the decay hypothesis, we can show that

$$
\mathcal{L} f(s)=O\left(\frac{1}{\Re(s)+1}\right)
$$

for $\Re(s)>-1$.

Step 4: Power Series Representation

Using the power series expansion

$$
f(x)=\sum_{n=0}^{\infty} a_{n} \frac{x^{n}}{n!},
$$

we find that in the region $\{s: \Re(s)>-1,|s|>1\}$, the Laplace transform has the alternate form

$$
\mathcal{L} f(s)=\sum_{n=0}^{\infty} \frac{a_{n}}{s^{n+1}},
$$

assuming $\Re(s)>-1$ and $|s|>1$.

Step 5: Analytic Continuation

By observing that the Laurent series

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{s^{n+1}}
$$

is holomorphic on the region $\{s \in C:|s|>1\}$, and that this region together with the previous half-space $\{s: \Re(s)>-1\}$ cover the punctured complex plane, we can use analytic continuation to extend $\mathcal{L} f(s)$ analytically to the punctured complex plane $\{s \in C: s \neq-1\}$.

Step 6: Combining the Bounds

In the region $|s|>1$, the Laurent series representation yields the bound

$$
\mathcal{L} f(s)=O\left(\frac{1}{|s|-1}\right) .
$$

By combining this with the bound

$$
\mathcal{L} f(s)=O\left(\frac{1}{\Re(s)+1}\right)
$$

for $\Re(s)>-1$, we conclude the bound

$$
\mathcal{L} f(s)=O\left(\frac{1}{|s+1|^{2}}\right)
$$

in a sufficiently small neighborhood of $s=-1$.

Step 7: Double Pole at $s=-1$

This bound implies that $\mathcal{L} f(s)$ has at most a double pole at $s=-1$, giving a Laurent series representation of the form

$$
\mathcal{L} f(s)=\frac{a}{(s+1)^{2}}+\frac{b}{s+1}+h(s)
$$

where $h(s)$ is holomorphic near $s=-1$. Evaluating $\mathcal{L} f(s)$ at $s=-1+\varepsilon$ and sending $\varepsilon \rightarrow 0$ shows that a must be zero, reducing the series to

$$
\mathcal{L} f(s)=\frac{b}{s+1}+h(s)
$$

Step 8: Using Liouville's Theorem

Combining this Laurent series with the bound $\mathcal{L} f(s)=O\left(\frac{1}{|s|-1}\right)$ for $|s|>1$, we use Liouville's theorem to show that $h(s)$ must vanish, leaving

$$
\mathcal{L} f(s)=\frac{b}{s+1}
$$

Step 9: Final Formula for a_{n}

Comparing this with the power series representation $\mathcal{L} f(s)=\sum_{n=0}^{\infty} \frac{a_{n}}{s^{n+1}}$, we find

$$
\frac{b}{s+1}=\sum_{n=0}^{\infty} \frac{a_{n}}{s^{n+1}}
$$

Expanding $\frac{1}{s+1}$ as a geometric series, we get

$$
\begin{aligned}
& \frac{1}{s+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{s^{n+1}} \\
& \frac{b}{s+1}=b \sum_{n=0}^{\infty} \frac{(-1)^{n}}{s^{n+1}} .
\end{aligned}
$$

Comparing coefficients, we conclude

$$
a_{n}=b(-1)^{n} .
$$

Thus, $a_{n}=C(-1)^{n}$ for some constant C, solving the problem.

