You are currently browsing the tag archive for the ‘square peg problem’ tag.

I’ve just uploaded to the arXiv my paper “An integration approach to the Toeplitz square peg problem“, submitted to Forum of Mathematics, Sigma. This paper resulted from my attempts recently to solve the Toeplitz square peg problem (also known as the inscribed square problem):

Conjecture 1 (Toeplitz square peg problem)Let be a simple closed curve in the plane. Is it necessarily the case that contains four vertices of a square?

See this recent survey of Matschke in the Notices of the AMS for the latest results on this problem.

The route I took to the results in this paper was somewhat convoluted. I was motivated to look at this problem after lecturing recently on the Jordan curve theorem in my class. The problem is superficially similar to the Jordan curve theorem in that the result is known (and rather easy to prove) if is sufficiently regular (e.g. if it is a polygonal path), but seems to be significantly more difficult when the curve is merely assumed to be continuous. Roughly speaking, all the known positive results on the problem have proceeded using (in some form or another) tools from homology: note for instance that one can view the conjecture as asking whether the four-dimensional subset of the eight-dimensional space necessarily intersects the four-dimensional space consisting of the quadruples traversing a square in (say) anti-clockwise order; this space is a four-dimensional linear subspace of , with a two-dimensional subspace of “degenerate” squares removed. If one ignores this degenerate subspace, one can use intersection theory to conclude (under reasonable “transversality” hypotheses) that intersects an odd number of times (up to the cyclic symmetries of the square), which is basically how Conjecture 1 is proven in the regular case. Unfortunately, if one then takes a limit and considers what happens when is just a continuous curve, the odd number of squares created by these homological arguments could conceivably all degenerate to points, thus blocking one from proving the conjecture in the general case.

Inspired by my previous work on finite time blowup for various PDEs, I first tried looking for a counterexample in the category of (locally) self-similar curves that are smooth (or piecewise linear) away from a single origin where it can oscillate infinitely often; this is basically the smoothest type of curve that was not already covered by previous results. By a rescaling and compactness argument, it is not difficult to see that such a counterexample would exist if there was a counterexample to the following periodic version of the conjecture:

Conjecture 2 (Periodic square peg problem)Let be two disjoint simple closed piecewise linear curves in the cylinder which have a winding number of one, that is to say they are homologous to the loop from to . Then the union of and contains the four vertices of a square.

In contrast to Conjecture 1, which is known for polygonal paths, Conjecture 2 is still open even under the hypothesis of polygonal paths; the homological arguments alluded to previously now show that the number of inscribed squares in the periodic setting is *even* rather than *odd*, which is not enough to conclude the conjecture. (This flipping of parity from odd to even due to an infinite amount of oscillation is reminiscent of the “Eilenberg-Mazur swindle“, discussed in this previous post.)

I therefore tried to construct counterexamples to Conjecture 2. I began perturbatively, looking at curves that were small perturbations of constant functions. After some initial Taylor expansion, I was blocked from forming such a counterexample because an inspection of the leading Taylor coefficients required one to construct a continuous periodic function of mean zero that never vanished, which of course was impossible by the intermediate value theorem. I kept expanding to higher and higher order to try to evade this obstruction (this, incidentally, was when I discovered this cute application of Lagrange reversion) but no matter how high an accuracy I went (I think I ended up expanding to sixth order in a perturbative parameter before figuring out what was going on!), this obstruction kept resurfacing again and again. I eventually figured out that this obstruction was being caused by a “conserved integral of motion” for both Conjecture 2 and Conjecture 1, which can in fact be used to largely rule out perturbative constructions. This yielded a new positive result for both conjectures:

We sketch the proof of Theorem 3(i) as follows (the proof of Theorem 3(ii) is very similar). Let be the curve , thus traverses one of the two graphs that comprise . For each time , there is a unique square with first vertex (and the other three vertices, traversed in anticlockwise order, denoted ) such that also lies in the graph of and also lies in the graph of (actually for technical reasons we have to extend by constants to all of in order for this claim to be true). To see this, we simply rotate the graph of clockwise by around , where (by the Lipschitz hypotheses) it must hit the graph of in a unique point, which is , and which then determines the other two vertices of the square. The curve has the same starting and ending point as the graph of or ; using the Lipschitz hypothesis one can show this graph is simple. If the curve ever hits the graph of other than at the endpoints, we have created an inscribed square, so we may assume for contradiction that avoids the graph of , and hence by the Jordan curve theorem the two curves enclose some non-empty bounded open region .

Now for the conserved integral of motion. If we integrate the -form on each of the four curves , we obtain the identity

This identity can be established by the following calculation: one can parameterise

for some Lipschitz functions ; thus for instance . Inserting these parameterisations and doing some canceling, one can write the above integral as

which vanishes because (which represent the sidelengths of the squares determined by vanish at the endpoints .

Using this conserved integral of motion, one can show that

which by Stokes’ theorem then implies that the bounded open region mentioned previously has zero area, which is absurd.

This argument hinged on the curve being simple, so that the Jordan curve theorem could apply. Once one left the perturbative regime of curves of small Lipschitz constant, it became possible for to be self-crossing, but nevertheless there still seemed to be some sort of integral obstruction. I eventually isolated the problem in the form of a strengthened version of Conjecture 2:

Conjecture 4 (Area formulation of square peg problem)Let be simple closed piecewise linear curves of winding number obeying the area identity(note the -form is still well defined on the cylinder ; note also that the curves are allowed to cross each other.) Then there exists a (possibly degenerate) square with vertices (traversed in anticlockwise order) lying on respectively.

It is not difficult to see that Conjecture 4 implies Conjecture 2. Actually I believe that the converse implication is at least morally true, in that any counterexample to Conjecture 4 can be eventually transformed to a counterexample to Conjecture 2 and Conjecture 1. The conserved integral of motion argument can establish Conjecture 4 in many cases, for instance if are graphs of functions of Lipschitz constant less than one.

Conjecture 4 has a model special case, when one of the is assumed to just be a horizontal loop. In this case, the problem collapses to that of producing an intersection between two three-dimensional subsets of a six-dimensional space, rather than to four-dimensional subsets of an eight-dimensional space. More precisely, some elementary transformations reveal that this special case of Conjecture 4 can be formulated in the following fashion in which the geometric notion of a square is replaced by the additive notion of a triple of real numbers summing to zero:

Conjecture 5 (Special case of area formulation)Let be simple closed piecewise linear curves of winding number obeying the area identityThen there exist and with such that for .

This conjecture is easy to establish if one of the curves, say , is the graph of some piecewise linear function , since in that case the curve and the curve enclose the same area in the sense that , and hence must intersect by the Jordan curve theorem (otherwise they would enclose a non-zero amount of area between them), giving the claim. But when none of the are graphs, the situation becomes combinatorially more complicated.

Using some elementary homological arguments (e.g. breaking up closed -cycles into closed paths) and working with a generic horizontal slice of the curves, I was able to show that Conjecture 5 was equivalent to a one-dimensional problem that was largely combinatorial in nature, revolving around the sign patterns of various triple sums with drawn from various finite sets of reals.

Conjecture 6 (Combinatorial form)Let be odd natural numbers, and for each , let be distinct real numbers; we adopt the convention that . Assume the following axioms:

- (i) For any , the sums are non-zero.
- (ii) (Non-crossing) For any and with the same parity, the pairs and are non-crossing in the sense that
- (iii) (Non-crossing sums) For any , , of the same parity, one has
Then one has

Roughly speaking, Conjecture 6 and Conjecture 5 are connected by constructing curves to connect to for by various paths, which either lie to the right of the axis (when is odd) or to the left of the axis (when is even). The axiom (ii) is asserting that the numbers are ordered according to the permutation of a meander (formed by gluing together two non-crossing perfect matchings).

Using various *ad hoc* arguments involving “winding numbers”, it is possible to prove this conjecture in many cases (e.g. if one of the is at most ), to the extent that I have now become confident that this conjecture is true (and have now come full circle from trying to disprove Conjecture 1 to now believing that this conjecture holds also). But it seems that there is some non-trivial combinatorial argument to be made if one is to prove this conjecture; purely homological arguments seem to partially resolve the problem, but are not sufficient by themselves.

While I was not able to resolve the square peg problem, I think these results do provide a roadmap to attacking it, first by focusing on the combinatorial conjecture in Conjecture 6 (or its equivalent form in Conjecture 5), then after that is resolved moving on to Conjecture 4, and then finally to Conjecture 1.

## Recent Comments