You are currently browsing the tag archive for the ‘inverse conjecture’ tag.

Note: this post is of a particularly technical nature, in particular presuming familiarity with nilsequences, nilsystems, characteristic factors, etc., and is primarily intended for experts.

As mentioned in the previous post, Ben Green, Tamar Ziegler, and myself proved the following inverse theorem for the Gowers norms:

Theorem 1 (Inverse theorem for Gowers norms)Let and be integers, and let . Suppose that is a function supported on such thatThen there exists a filtered nilmanifold of degree and complexity , a polynomial sequence , and a Lipschitz function of Lipschitz constant such that

This result was conjectured earlier by Ben Green and myself; this conjecture was strongly motivated by an analogous inverse theorem in ergodic theory by Host and Kra, which we formulate here in a form designed to resemble Theorem 1 as closely as possible:

Theorem 2 (Inverse theorem for Gowers-Host-Kra seminorms)Let be an integer, and let be an ergodic, countably generated measure-preserving system. Suppose that one hasfor all non-zero (all spaces are real-valued in this post). Then is an inverse limit (in the category of measure-preserving systems, up to almost everywhere equivalence) of ergodic degree nilsystems, that is to say systems of the form for some degree filtered nilmanifold and a group element that acts ergodically on .

It is a natural question to ask if there is any logical relationship between the two theorems. In the finite field category, one can deduce the combinatorial inverse theorem from the ergodic inverse theorem by a variant of the Furstenberg correspondence principle, as worked out by Tamar Ziegler and myself, however in the current context of -actions, the connection is less clear.

One can split Theorem 2 into two components:

Theorem 3 (Weak inverse theorem for Gowers-Host-Kra seminorms)Let be an integer, and let be an ergodic, countably generated measure-preserving system. Suppose that one hasfor all non-zero , where . Then is a

factorof an inverse limit of ergodic degree nilsystems.

Theorem 4 (Pro-nilsystems closed under factors)Let be an integer. Then any factor of an inverse limit of ergodic degree nilsystems, is again an inverse limit of ergodic degree nilsystems.

Indeed, it is clear that Theorem 2 implies both Theorem 3 and Theorem 4, and conversely that the two latter theorems jointly imply the former. Theorem 4 is, in principle, purely a fact about nilsystems, and should have an independent proof, but this is not known; the only known proofs go through the full machinery needed to prove Theorem 2 (or the closely related theorem of Ziegler). (However, the fact that a factor of a nilsystem is again a nilsystem was established previously by Parry.)

The purpose of this post is to record a partial implication in reverse direction to the correspondence principle:

As mentioned at the start of the post, a fair amount of familiarity with the area is presumed here, and some routine steps will be presented with only a fairly brief explanation.

A few years ago, Ben Green, Tamar Ziegler, and myself proved the following (rather technical-looking) inverse theorem for the Gowers norms:

Theorem 1 (Discrete inverse theorem for Gowers norms)Let and be integers, and let . Suppose that is a function supported on such thatThen there exists a filtered nilmanifold of degree and complexity , a polynomial sequence , and a Lipschitz function of Lipschitz constant such that

For the definitions of “filtered nilmanifold”, “degree”, “complexity”, and “polynomial sequence”, see the paper of Ben, Tammy, and myself. (I should caution the reader that this blog post will presume a fair amount of familiarity with this subfield of additive combinatorics.) This result has a number of applications, for instance to establishing asymptotics for linear equations in the primes, but this will not be the focus of discussion here.

The purpose of this post is to record the observation that this “discrete” inverse theorem, together with an equidistribution theorem for nilsequences that Ben and I worked out in a separate paper, implies a continuous version:

Theorem 2 (Continuous inverse theorem for Gowers norms)Let be an integer, and let . Suppose that is a measurable function supported on such thatThen there exists a filtered nilmanifold of degree and complexity , a (smooth) polynomial sequence , and a Lipschitz function of Lipschitz constant such that

The interval can be easily replaced with any other fixed interval by a change of variables. A key point here is that the bounds are completely uniform in the choice of . Note though that the coefficients of can be arbitrarily large (and this is necessary, as can be seen just by considering functions of the form for some arbitrarily large frequency ).

It is likely that one could prove Theorem 2 by carefully going through the proof of Theorem 1 and replacing all instances of with (and making appropriate modifications to the argument to accommodate this). However, the proof of Theorem 1 is quite lengthy. Here, we shall proceed by the usual limiting process of viewing the continuous interval as a limit of the discrete interval as . However there will be some problems taking the limit due to a failure of compactness, and specifically with regards to the coefficients of the polynomial sequence produced by Theorem 1, after normalising these coefficients by . Fortunately, a factorisation theorem from a paper of Ben Green and myself resolves this problem by splitting into a “smooth” part which does enjoy good compactness properties, as well as “totally equidistributed” and “periodic” parts which can be eliminated using the measurability (and thus, approximate smoothness), of .

Ben Green, and I have just uploaded to the arXiv a short (six-page) paper “Yet another proof of Szemeredi’s theorem“, submitted to the 70th birthday conference proceedings for Endre Szemerédi. In this paper we put in print a folklore observation, namely that the inverse conjecture for the Gowers norm, together with the density increment argument, easily implies Szemerédi’s famous theorem on arithmetic progressions. This is unsurprising, given that Gowers’ proof of Szemerédi’s theorem proceeds through a weaker version of the inverse conjecture and a density increment argument, and also given that it is possible to derive Szemerédi’s theorem from knowledge of the characteristic factor for multiple recurrence (the ergodic theory analogue of the inverse conjecture, first established by Host and Kra), as was done by Bergelson, Leibman, and Lesigne (and also implicitly in the earlier paper of Bergelson, Host, and Kra); but to our knowledge the exact derivation of Szemerédi’s theorem from the inverse conjecture was not in the literature. Ordinarily this type of folklore might be considered too trifling (and too well known among experts in the field) to publish; but we felt that the venue of the Szemerédi birthday conference provided a natural venue for this particular observation.

The key point is that one can show (by an elementary argument relying primarily an induction on dimension argument and the Weyl recurrence theorem, i.e. that given any real and any integer , that the expression gets arbitrarily close to an integer) that given a (polynomial) nilsequence , one can subdivide any long arithmetic progression (such as ) into a number of medium-sized progressions, where the nilsequence is nearly constant on each progression. As a consequence of this and the inverse conjecture for the Gowers norm, if a set has no arithmetic progressions, then it must have an elevated density on a subprogression; iterating this observation as per the usual density-increment argument as introduced long ago by Roth, one obtains the claim. (This is very close to the scheme of Gowers’ proof.)

Technically, one might call this the shortest proof of Szemerédi’s theorem in the literature (and would be something like the sixteenth such genuinely distinct proof, by our count), but that would be cheating quite a bit, primarily due to the fact that it assumes the inverse conjecture for the Gowers norm, our current proof of which is checking in at about 100 pages…

Ben Green, Tamar Ziegler and I have just uploaded to the arXiv our paper “An inverse theorem for the Gowers norm“. This paper establishes the next case of the inverse conjecture for the Gowers norm for the integers (after the case, which was done by Ben and myself a few years ago). This conjecture has a number of combinatorial and number-theoretic consequences, for instance by combining this new inverse theorem with previous results, one can now get the correct asymptotic for the number of arithmetic progressions of primes of length five in any large interval .

To state the inverse conjecture properly requires a certain amount of notation. Given a function and a shift , define the multiplicative derivative

and then define the Gowers norm of a function to (essentially) be the quantity

where we extend f by zero outside of . (Actually, we use a slightly different normalisation to ensure that the function 1 has a norm of 1, but never mind this for now.)

Informally, the Gowers norm measures the amount of bias present in the multiplicative derivatives of . In particular, if for some polynomial , then the derivative of is identically 1, and so is the Gowers norm.

However, polynomial phases are not the only functions with large Gowers norm. For instance, consider the function , which is what we call a *quadratic bracket polynomial phase*. This function isn’t quite quadratic, but it is close enough to being quadratic (because one has the approximate linearity relationship holding a good fraction of the time) that it turns out that third derivative is trivial fairly often, and the Gowers norm is comparable to 1. This bracket polynomial phase can be modeled as a *nilsequence* , where is a polynomial orbit on a nilmanifold , which in this case has step 2. (The function F is only piecewise smooth, due to the discontinuity in the floor function , so strictly speaking we would classify this as an *almost nilsequence* rather than a nilsequence, but let us ignore this technical issue here.) In fact, there is a very close relationship between nilsequences and bracket polynomial phases, but I will detail this in a later post.

The inverse conjecture for the Gowers norm, GI(s), asserts that such nilsequences are the only obstruction to the Gowers norm being small. Roughly speaking, it goes like this:

Inverse conjecture, GI(s).(Informal statement) Suppose that is bounded but has large norm. Then there is an s-step nilsequence of “bounded complexity” that correlates with f.

This conjecture is trivial for s=0, is a short consequence of Fourier analysis when s=1, and was proven for s=2 by Ben and myself. In this paper we establish the s=3 case. An equivalent formulation in this case is that any bounded function of large norm must correlate with a “bracket cubic phase”, which is the product of a bounded number of phases from the following list

(*)

for various real numbers .

It appears that our methods also work in higher step, though for technical reasons it is convenient to make a number of adjustments to our arguments to do so, most notably a switch from standard analysis to non-standard analysis, about which I hope to say more later. But there are a number of simplifications available on the s=3 case which make the argument significantly shorter, and so we will be writing the higher s argument in a separate paper.

The arguments largely follow those for the s=2 case (which in turn are based on this paper of Gowers). Two major new ingredients are a deployment of a normal form and equidistribution theory for bracket quadratic phases, and a combinatorial decomposition of frequency space which we call the sunflower decomposition. I will sketch these ideas below the fold.

For a number of reasons, including the start of the summer break for me and my coauthors, a number of papers that we have been working on are being released this week. For instance, Ben Green and I have just uploaded to the arXiv our paper “An equivalence between inverse sumset theorems and inverse conjectures for the norm“, submitted to Math. Proc. Camb. Phil. Soc.. The main result of this short paper (which was briefly announced in this earlier post) is a connection between two types of inverse theorems in additive combinatorics, namely the *inverse sumset theorems* of Freiman type, and *inverse theorems for the Gowers uniformity norm*, and more specifically, for the norm

on finite additive group G, where is a complex-valued function.

As usual, the connection is easiest to state in a finite field model such as . In this case, we have the following inverse sumset theorem of Ruzsa:

Theorem 1.If is such that , then A can be covered by a translate of a subspace of of cardinality at most .

The constant has been improved for large in a sequence of papers, from by Ruzsa, by Green-Ruzsa, by Sanders, by Green and myself, and finally by Konyagin (private communication) which is sharp except for the precise value of the O() implied constant (as can be seen by considering the example when A consists of about 2K independent elements). However, it is conjectured that the polynomial loss can be removed entirely if one modifies the conclusion slightly:

Conjecture 1. (Polynomial Freiman-Ruzsa conjecture for .)If is such that , then A can be covered by translates of subspaces of of cardinality at most |A|.

This conjecture was verified for downsets by Green and myself, but is open in general. This conjecture has a number of equivalent formulations; see this paper of Green for more discussion. In this previous post we show that a stronger version of this conjecture fails.

Meanwhile, for the Gowers norm, we have the following inverse theorem, due to Samorodnitsky:

Theorem 2.Let be a function whose norm is at least 1/K. Then there exists a quadratic polynomial such that .

Note that the quadratic phases are the only functions taking values in [-1,1] whose norm attains its maximal value of 1.

It is conjectured that the exponentially weak correlation here can be strengthened to a polynomial one:

Conjecture 2. (Polynomial inverse conjecture for the norm).Let be a function whose norm is at least 1/K. Then there exists a quadratic polynomial such that .

The first main result of this paper is

Theorem 3.Conjecture 1 and Conjecture 2 are equivalent.

This result was also independently observed by Shachar Lovett (private communication). We also establish an analogous result for the cyclic group , in which the notion of polynomial is replaced by that of a subexponential , and in which the notion of a quadratic polynomial is replaced by a 2-step nilsequence; the precise statement is a bit technical and will not be given here. We also observe a partial partial analogue of the correpsondence between inverse sumset theorems and Gowers norms in the higher order case, in particular observing that inverse theorems imply a certain rigidity result for “Freiman-quadratic polynomials” (a quadratic version of Conjecture 3 below).

Below the fold, we sketch the proof of Theorem 3.

Tamar Ziegler and I have just uploaded to the arXiv our paper, “The inverse conjecture for the Gowers norm over finite fields via the correspondence principle“, submitted to Analysis & PDE. As announced a few months ago in this blog post, this paper establishes (most of) the inverse conjecture for the Gowers norm from an ergodic theory analogue of this conjecture (in a forthcoming paper by Vitaly Bergelson, Tamar Ziegler, and myself, which should be ready shortly), using a variant of the Furstenberg correspondence principle. Our papers were held up for a while due to some unexpected technical difficulties arising in the low characteristic case; as a consequence, our paper only establishes the full inverse conjecture in the high characteristic case , and gives a partial result in the low characteristic case .

In the rest of this post, I would like to describe the inverse conjecture (in both combinatorial and ergodic forms), and sketch how one deduces one from the other via the correspondence principle (together with two additional ingredients, namely a statistical sampling lemma and a local testability result for polynomials).

Recently, I had tentatively announced a forthcoming result with Ben Green establishing the “Gowers inverse conjecture” (or more accurately, the “inverse conjecture for the Gowers uniformity norm”) for vector spaces over a finite field , in the special case when p=2 and when the function for which the inverse conjecture is to be applied is assumed to be a polynomial phase of bounded degree (thus , where is a polynomial of some degree ). See my FOCS article for some further discussion of this conjecture, which has applications to both polynomiality testing and to various structural decompositions involving the Gowers norm.

This conjecture can be informally stated as follows. By iterating the obvious fact that the derivative of a polynomial of degree at most d is a polynomial of degree at most d-1, we see that a function is a polynomial of degree at most d if and only if

for all . From this one can deduce that a function bounded in magnitude by 1 is a polynomial phase of degree at most d if and only if the *Gowers norm*

is equal to its maximal value of 1. The inverse conjecture for the Gowers norm, in its usual formulation, says that, more generally, if a function bounded in magnitude by 1 has large Gowers norm (e.g. ) then f has some non-trivial correlation with some polynomial phase g (e.g. for some ). Informally, this conjecture asserts that if a function has biased derivatives, then one should be able to “integrate” this bias and conclude that the function is biased relative to a polynomial of degree d. The conjecture has already been proven for . There are analogues of this conjecture for cyclic groups which are of relevance to Szemerédi’s theorem and to counting linear patterns in primes, but I will not discuss those here.

At the time of the announcement, our paper had not quite been fully written up. This turned out to be a little unfortunate, because soon afterwards we discovered that our arguments at one point had to go through a version of Newton’s interpolation formula, which involves a factor of d! in the denominator and so is only valid when the characteristic p of the field exceeds the degree. So our arguments in fact are only valid in the range , and in particular are rather trivial in the important case ; my previous announcement should thus be amended accordingly.

## Recent Comments