You are currently browsing the category archive for the ‘math.SP’ category.

Van Vu and I have just uploaded to the arXiv our paper “Random matrices have simple eigenvalues“. Recall that an Hermitian matrix is said to have simple eigenvalues if all of its eigenvalues are distinct. This is a very typical property of matrices to have: for instance, as discussed in this previous post, in the space of all Hermitian matrices, the space of matrices without all eigenvalues simple has codimension three, and for real symmetric cases this space has codimension two. In particular, given any random matrix ensemble of Hermitian or real symmetric matrices with an absolutely continuous distribution, we conclude that random matrices drawn from this ensemble will almost surely have simple eigenvalues.

For discrete random matrix ensembles, though, the above argument breaks down, even though general universality heuristics predict that the statistics of discrete ensembles should behave similarly to those of continuous ensembles. A model case here is the adjacency matrix of an Erdös-Rényi graph – a graph on vertices in which any pair of vertices has an independent probability of being in the graph. For the purposes of this paper one should view as fixed, e.g. , while is an asymptotic parameter going to infinity. In this context, our main result is the following (answering a question of Babai):

Our argument works for more general Wigner-type matrix ensembles, but for sake of illustration we will stick with the Erdös-Renyi case. Previous work on local universality for such matrix models (e.g. the work of Erdos, Knowles, Yau, and Yin) was able to show that any individual eigenvalue gap did not vanish with probability (in fact for some absolute constant ), but because there are different gaps that one has to simultaneously ensure to be non-zero, this did not give Theorem 1 as one is forced to apply the union bound.

Our argument in fact gives simplicity of the spectrum with probability for any fixed ; in a subsequent paper we also show that it gives a quantitative lower bound on the eigenvalue gaps (analogous to how many results on the singularity probability of random matrices can be upgraded to a bound on the least singular value).

The basic idea of argument can be sketched as follows. Suppose that has a repeated eigenvalue . We split

for a random minor and a random sign vector ; crucially, and are independent. If has a repeated eigenvalue , then by the Cauchy interlacing law, also has an eigenvalue . We now write down the eigenvector equation for at :

Extracting the top coefficients, we obtain

If we let be the -eigenvector of , then by taking inner products with we conclude that

we typically expect to be non-zero, in which case we arrive at

In other words, in order for to have a repeated eigenvalue, the top right column of has to be orthogonal to an eigenvector of the minor . Note that and are going to be independent (once we specify which eigenvector of to take as ). On the other hand, thanks to inverse Littlewood-Offord theory (specifically, we use an inverse Littlewood-Offord theorem of Nguyen and Vu), we know that the vector is unlikely to be orthogonal to any given vector independent of , unless the coefficients of are extremely special (specifically, that most of them lie in a generalised arithmetic progression). The main remaining difficulty is then to show that eigenvectors of a random matrix are typically not of this special form, and this relies on a conditioning argument originally used by Komlós to bound the singularity probability of a random sign matrix. (Basically, if an eigenvector has this special form, then one can use a fraction of the rows and columns of the random matrix to determine the eigenvector completely, while still preserving enough randomness in the remaining portion of the matrix so that this vector will in fact not be an eigenvector with high probability.)

The prime number theorem can be expressed as the assertion

is the von Mangoldt function. It is a basic result in analytic number theory, but requires a bit of effort to prove. One “elementary” proof of this theorem proceeds through the Selberg symmetry formula

where the second von Mangoldt function is defined by the formula

(We are avoiding the use of the symbol here to denote Dirichlet convolution, as we will need this symbol to denote ordinary convolution shortly.) For the convenience of the reader, we give a proof of the Selberg symmetry formula below the fold. Actually, for the purposes of proving the prime number theorem, the weaker estimate

In this post I would like to record a somewhat “soft analysis” reformulation of the elementary proof of the prime number theorem in terms of Banach algebras, and specifically in Banach algebra structures on (completions of) the space of compactly supported continuous functions equipped with the convolution operation

This soft argument does not easily give any quantitative decay rate in the prime number theorem, but by the same token it avoids many of the quantitative calculations in the traditional proofs of this theorem. Ultimately, the key “soft analysis” fact used is the spectral radius formula

for any element of a unital commutative Banach algebra , where is the space of characters (i.e., continuous unital algebra homomorphisms from to ) of . This formula is due to Gelfand and may be found in any text on Banach algebras; for sake of completeness we prove it below the fold.

The connection between prime numbers and Banach algebras is given by the following consequence of the Selberg symmetry formula.

Theorem 1 (Construction of a Banach algebra norm)For any , let denote the quantityThen is a seminorm on with the bound

for all . Furthermore, we have the Banach algebra bound

We prove this theorem below the fold. The prime number theorem then follows from Theorem 1 and the following two assertions. The first is an application of the spectral radius formula (6) and some basic Fourier analysis (in particular, the observation that contains a plentiful supply of local units:

Theorem 2 (Non-trivial Banach algebras with many local units have non-trivial spectrum)Let be a seminorm on obeying (7), (8). Suppose that is not identically zero. Then there exists such thatfor all . In particular, by (7), one has

whenever is a non-negative function.

The second is a consequence of the Selberg symmetry formula and the fact that is real (as well as Mertens’ theorem, in the case), and is closely related to the non-vanishing of the Riemann zeta function on the line :

Theorem 3 (Breaking the parity barrier)Let . Then there exists such that is non-negative, and

Assuming Theorems 1, 2, 3, we may now quickly establish the prime number theorem as follows. Theorem 2 and Theorem 3 imply that the seminorm constructed in Theorem 1 is trivial, and thus

as for any Schwartz function (the decay rate in may depend on ). Specialising to functions of the form for some smooth compactly supported on , we conclude that

as ; by the smooth Urysohn lemma this implies that

as for any fixed , and the prime number theorem then follows by a telescoping series argument.

The same argument also yields the prime number theorem in arithmetic progressions, or equivalently that

for any fixed Dirichlet character ; the one difference is that the use of Mertens’ theorem is replaced by the basic fact that the quantity is non-vanishing.

In the traditional foundations of probability theory, one selects a probability space , and makes a distinction between *deterministic* mathematical objects, which do not depend on the sampled state , and *stochastic* (or *random*) mathematical objects, which do depend (but in a measurable fashion) on the sampled state . For instance, a *deterministic real number* would just be an element , whereas a *stochastic real number* (or *real random variable*) would be a measurable function , where in this post will always be endowed with the Borel -algebra. (For readers familiar with nonstandard analysis, the adjectives “deterministic” and “stochastic” will be used here in a manner analogous to the uses of the adjectives “standard” and “nonstandard” in nonstandard analysis. The analogy is particularly close when comparing with the “cheap nonstandard analysis” discussed in this previous blog post. We will also use “relative to ” as a synonym for “stochastic”.)

Actually, for our purposes we will adopt the philosophy of identifying stochastic objects that agree almost surely, so if one was to be completely precise, we should define a stochastic real number to be an *equivalence class* of measurable functions , up to almost sure equivalence. However, we shall often abuse notation and write simply as .

More generally, given any measurable space , we can talk either about deterministic elements , or about stochastic elements of , that is to say equivalence classes of measurable maps up to almost sure equivalence. We will use to denote the set of all stochastic elements of . (For readers familiar with sheaves, it may helpful for the purposes of this post to think of as the space of measurable global sections of the trivial -bundle over .) Of course every deterministic element of can also be viewed as a stochastic element given by (the equivalence class of) the constant function , thus giving an embedding of into . We do not attempt here to give an interpretation of for sets that are not equipped with a -algebra .

Remark 1In my previous post on the foundations of probability theory, I emphasised the freedom to extend the sample space to a larger sample space whenever one wished to inject additional sources of randomness. This is of course an important freedom to possess (and in the current formalism, is the analogue of the important operation of base change in algebraic geometry), but in this post we will focus on a single fixed sample space , and not consider extensions of this space, so that one only has to consider two types of mathematical objects (deterministic and stochastic), as opposed to having many more such types, one for each potential choice of sample space (with the deterministic objects corresponding to the case when the sample space collapses to a point).

Any (measurable) -ary operation on deterministic mathematical objects then extends to their stochastic counterparts by applying the operation pointwise. For instance, the addition operation on deterministic real numbers extends to an addition operation , by defining the class for to be the equivalence class of the function ; this operation is easily seen to be well-defined. More generally, any measurable -ary deterministic operation between measurable spaces extends to an stochastic operation in the obvious manner.

There is a similar story for -ary relations , although here one has to make a distinction between a deterministic reading of the relation and a stochastic one. Namely, if we are given stochastic objects for , the relation does not necessarily take values in the deterministic Boolean algebra , but only in the stochastic Boolean algebra – thus may be true with some positive probability and also false with some positive probability (with the event that being stochastically true being determined up to null events). Of course, the deterministic Boolean algebra embeds in the stochastic one, so we can talk about a relation being determinstically true or deterministically false, which (due to our identification of stochastic objects that agree almost surely) means that is almost surely true or almost surely false respectively. For instance given two stochastic objects , one can view their equality relation as having a stochastic truth value. This is distinct from the way the equality symbol is used in mathematical logic, which we will now call “equality in the deterministic sense” to reduce confusion. Thus, in the deterministic sense if and only if the stochastic truth value of is equal to , that is to say that for almost all .

Any universal identity for deterministic operations (or universal implication between identities) extends to their stochastic counterparts: for instance, addition is commutative, associative, and cancellative on the space of deterministic reals , and is therefore commutative, associative, and cancellative on stochastic reals as well. However, one has to be more careful when working with mathematical laws that are not expressible as universal identities, or implications between identities. For instance, is an integral domain: if are deterministic reals such that , then one must have or . However, if are *stochastic* reals such that (in the deterministic sense), then it is no longer necessarily the case that (in the deterministic sense) or that (in the deterministic sense); however, it is still true that “ or ” is true in the deterministic sense if one interprets the boolean operator “or” stochastically, thus “ or ” is true for almost all . Another way to properly obtain a stochastic interpretation of the integral domain property of is to rewrite it as

and then make all sets stochastic to obtain the true statement

thus we have to allow the index for which vanishing occurs to also be stochastic, rather than deterministic. (A technical note: when one proves this statement, one has to select in a measurable fashion; for instance, one can choose to equal when , and otherwise (so that in the “tie-breaking” case when and both vanish, one always selects to equal ).)

Similarly, the law of the excluded middle fails when interpreted deterministically, but remains true when interpreted stochastically: if is a stochastic statement, then it is not necessarily the case that is either deterministically true or deterministically false; however the sentence “ or not-” is still deterministically true if the boolean operator “or” is interpreted stochastically rather than deterministically.

To avoid having to keep pointing out which operations are interpreted stochastically and which ones are interpreted deterministically, we will use the following convention: if we assert that a mathematical sentence involving stochastic objects is true, then (unless otherwise specified) we mean that is deterministically true, assuming that all relations used inside are interpreted stochastically. For instance, if are stochastic reals, when we assert that “Exactly one of , , or is true”, then by default it is understood that the relations , , and the boolean operator “exactly one of” are interpreted stochastically, and the assertion is that the sentence is deterministically true.

In the above discussion, the stochastic objects being considered were elements of a deterministic space , such as the reals . However, it can often be convenient to generalise this situation by allowing the ambient space to also be stochastic. For instance, one might wish to consider a stochastic vector inside a stochastic vector space , or a stochastic edge of a stochastic graph . In order to formally describe this situation within the classical framework of measure theory, one needs to place all the ambient spaces inside a measurable space. This can certainly be done in many contexts (e.g. when considering random graphs on a deterministic set of vertices, or if one is willing to work up to equivalence and place the ambient spaces inside a suitable moduli space), but is not completely natural in other contexts. For instance, if one wishes to consider stochastic vector spaces of potentially unbounded dimension (in particular, potentially larger than any given cardinal that one might specify in advance), then the class of all possible vector spaces is so large that it becomes a proper class rather than a set (even if one works up to equivalence), making it problematic to give this class the structure of a measurable space; furthermore, even once one does so, one needs to take additional care to pin down what it would mean for a random vector lying in a random vector space to depend “measurably” on .

Of course, in any reasonable application one can avoid the set theoretic issues at least by various *ad hoc* means, for instance by restricting the dimension of all spaces involved to some fixed cardinal such as . However, the measure-theoretic issues can require some additional effort to resolve properly.

In this post I would like to describe a different way to formalise stochastic spaces, and stochastic elements of these spaces, by viewing the spaces as measure-theoretic analogue of a sheaf, but being over the probability space rather than over a topological space; stochastic objects are then *sections* of such sheaves. Actually, for minor technical reasons it is convenient to work in the slightly more general setting in which the base space is a finite measure space rather than a probability space, thus can take any value in rather than being normalised to equal . This will allow us to easily localise to subevents of without the need for normalisation, even when is a null event (though we caution that the map from deterministic objects ceases to be injective in this latter case). We will however still continue to use probabilistic terminology. despite the lack of normalisation; thus for instance, sets in will be referred to as *events*, the measure of such a set will be referred to as the *probability* (which is now permitted to exceed in some cases), and an event whose complement is a null event shall be said to hold *almost surely*. It is in fact likely that almost all of the theory below extends to base spaces which are -finite rather than finite (for instance, by damping the measure to become finite, without introducing any further null events), although we will not pursue this further generalisation here.

The approach taken in this post is “topos-theoretic” in nature (although we will not use the language of topoi explicitly here), and is well suited to a “pointless” or “point-free” approach to probability theory, in which the role of the stochastic state is suppressed as much as possible; instead, one strives to always adopt a “relative point of view”, with all objects under consideration being viewed as stochastic objects relative to the underlying base space . In this perspective, the stochastic version of a set is as follows.

Definition 1 (Stochastic set)Unless otherwise specified, we assume that we are given a fixed finite measure space (which we refer to as thebase space). Astochastic set(relative to ) is a tuple consisting of the following objects:

- A set assigned to each event ; and
- A
restriction mapfrom to to each pair of nested events . (Strictly speaking, one should indicate the dependence on in the notation for the restriction map, e.g. using instead of , but we will abuse notation by omitting the dependence.)We refer to elements of as

local stochastic elementsof the stochastic set , localised to the event , and elements of asglobal stochastic elements(or simplyelements) of the stochastic set. (In the language of sheaves, one would use “sections” instead of “elements” here, but I prefer to use the latter terminology here, for compatibility with conventional probabilistic notation, where for instance measurable maps from to are referred to as real random variables, rather than sections of the reals.)Furthermore, we impose the following axioms:

- (Category) The map from to is the identity map, and if are events in , then for all .
- (Null events trivial) If is a null event, then the set is a singleton set. (In particular, is always a singleton set; this is analogous to the convention that for any number .)
- (Countable gluing) Suppose that for each natural number , one has an event and an element such that for all . Then there exists a unique such that for all .
If is an event in , we define the

localisationof the stochastic set to to be the stochastic setrelative to . (Note that there is no need to renormalise the measure on , as we are not demanding that our base space have total measure .)

The following fact is useful for actually verifying that a given object indeed has the structure of a stochastic set:

Exercise 1Show that to verify the countable gluing axiom of a stochastic set, it suffices to do so under the additional hypothesis that the events are disjoint. (Note that this is quite different from the situation with sheaves over a topological space, in which the analogous gluing axiom is often trivial in the disjoint case but has non-trivial content in the overlapping case. This is ultimately because a -algebra is closed under all Boolean operations, whereas a topology is only closed under union and intersection.)

Let us illustrate the concept of a stochastic set with some examples.

Example 1 (Discrete case)A simple case arises when is a discrete space which is at most countable. If we assign a set to each , with a singleton if . One then sets , with the obvious restriction maps, giving rise to a stochastic set . (Thus, a local element of can be viewed as a map on that takes values in for each .) Conversely, it is not difficult to see that any stochastic set over an at most countable discrete probability space is of this form up to isomorphism. In this case, one can think of as a bundle of sets over each point (of positive probability) in the base space . One can extend this bundle interpretation of stochastic sets to reasonably nice sample spaces (such as standard Borel spaces) and similarly reasonable ; however, I would like to avoid this interpretation in the formalism below in order to be able to easily work in settings in which and are very “large” (e.g. not separable in any reasonable sense). Note that we permit some of the to be empty, thus it can be possible for to be empty whilst for some strict subevents of to be non-empty. (This is analogous to how it is possible for a sheaf to have local sections but no global sections.) As such, the space of global elements does not completely determine the stochastic set ; one sometimes needs to localise to an event in order to see the full structure of such a set. Thus it is important to distinguish between a stochastic set and its space of global elements. (As such, it is a slight abuse of the axiom of extensionality to refer to global elements of simply as “elements”, but hopefully this should not cause too much confusion.)

Example 2 (Measurable spaces as stochastic sets)Returning now to a general base space , any (deterministic) measurable space gives rise to a stochastic set , with being defined as in previous discussion as the measurable functions from to modulo almost everywhere equivalence (in particular, a singleton set when is null), with the usual restriction maps. The constraint of measurability on the maps , together with the quotienting by almost sure equivalence, means that is now more complicated than a plain Cartesian product of fibres, but this still serves as a useful first approximation to what is for the purposes of developing intuition. Indeed, the measurability constraint is so weak (as compared for instance to topological or smooth constraints in other contexts, such as sheaves of continuous or smooth sections of bundles) that the intuition of essentially independent fibres is quite an accurate one, at least if one avoids consideration of an uncountable number of objects simultaneously.

Example 3 (Extended Hilbert modules)This example is the one that motivated this post for me. Suppose that one has an extension of the base space , thus we have a measurable factor map such that the pushforward of the measure by is equal to . Then we have a conditional expectation operator , defined as the adjoint of the pullback map . As is well known, the conditional expectation operator also extends to a contraction ; by monotone convergence we may also extend to a map from measurable functions from to the extended non-negative reals , to measurable functions from to . We then define the “extended Hilbert module” to be the space of functions with finite almost everywhere. This is an extended version of the Hilbert module , which is defined similarly except that is required to lie in ; this is a Hilbert module over which is of particular importance in the Furstenberg-Zimmer structure theory of measure-preserving systems. We can then define the stochastic set by settingwith the obvious restriction maps. In the case that are standard Borel spaces, one can

disintegrateas an integral of probability measures (supported in the fibre ), in which case this stochastic set can be viewed as having fibres (though if is not discrete, there are still some measurability conditions in on the local and global elements that need to be imposed). However, I am interested in the case when are not standard Borel spaces (in fact, I will take them to be algebraic probability spaces, as defined in this previous post), in which case disintegrations are not available. However, it appears that the stochastic analysis developed in this blog post can serve as a substitute for the tool of disintegration in this context.

We make the remark that if is a stochastic set and are events that are equivalent up to null events, then one can identify with (through their common restriction to , with the restriction maps now being bijections). As such, the notion of a stochastic set does not require the full structure of a concrete probability space ; one could also have defined the notion using only the abstract -algebra consisting of modulo null events as the base space, or equivalently one could define stochastic sets over the algebraic probability spaces defined in this previous post. However, we will stick with the classical formalism of concrete probability spaces here so as to keep the notation reasonably familiar.

As a corollary of the above observation, we see that if the base space has total measure , then all stochastic sets are trivial (they are just points).

Exercise 2If is a stochastic set, show that there exists an event with the property that for any event , is non-empty if and only if is contained in modulo null events. (In particular, is unique up to null events.)Hint:consider the numbers for ranging over all events with non-empty, and form a maximising sequence for these numbers. Then use all three axioms of a stochastic set.

One can now start take many of the fundamental objects, operations, and results in set theory (and, hence, in most other categories of mathematics) and establish analogues relative to a finite measure space. Implicitly, what we will be doing in the next few paragraphs is endowing the category of stochastic sets with the structure of an elementary topos. However, to keep things reasonably concrete, we will not explicitly emphasise the topos-theoretic formalism here, although it is certainly lurking in the background.

Firstly, we define a *stochastic function* between two stochastic sets to be a collection of maps for each which form a natural transformation in the sense that for all and nested events . In the case when is discrete and at most countable (and after deleting all null points), a stochastic function is nothing more than a collection of functions for each , with the function then being a direct sum of the factor functions :

Thus (in the discrete, at most countable setting, at least) stochastic functions do not mix together information from different states in a sample space; the value of at depends only on the value of at . The situation is a bit more subtle for continuous probability spaces, due to the identification of stochastic objects that agree almost surely, nevertheness it is still good intuition to think of stochastic functions as essentially being “pointwise” or “local” in nature.

One can now form the stochastic set of functions from to , by setting for any event to be the set of local stochastic functions of the localisations of to ; this is a stochastic set if we use the obvious restriction maps. In the case when is discrete and at most countable, the fibre at a point of positive measure is simply the set of functions from to .

In a similar spirit, we say that one stochastic set is a (stochastic) subset of another , and write , if we have a stochastic inclusion map, thus for all events , with the restriction maps being compatible. We can then define the power set of a stochastic set by setting for any event to be the set of all stochastic subsets of relative to ; it is easy to see that is a stochastic set with the obvious restriction maps (one can also identify with in the obvious fashion). Again, when is discrete and at most countable, the fibre of at a point of positive measure is simply the deterministic power set .

Note that if is a stochastic function and is a stochastic subset of , then the inverse image , defined by setting for any event to be the set of those with , is a stochastic subset of . In particular, given a -ary relation , the inverse image is a stochastic subset of , which by abuse of notation we denote as

In a similar spirit, if is a stochastic subset of and is a stochastic function, we can define the image by setting to be the set of those with ; one easily verifies that this is a stochastic subset of .

Remark 2One should caution that in the definition of the subset relation , it is important that for all events , not just the global event ; in particular, just because a stochastic set has no global sections, does not mean that it is contained in the stochastic empty set .

Now we discuss Boolean operations on stochastic subsets of a given stochastic set . Given two stochastic subsets of , the stochastic intersection is defined by setting to be the set of that lie in both and :

This is easily verified to again be a stochastic subset of . More generally one may define stochastic countable intersections for any sequence of stochastic subsets of . One *could* extend this definition to uncountable families if one wished, but I would advise against it, because some of the usual laws of Boolean algebra (e.g. the de Morgan laws) may break down in this setting.

Stochastic unions are a bit more subtle. The set should not be defined to simply be the union of and , as this would not respect the gluing axiom. Instead, we define to be the set of all such that one can cover by measurable subevents such that for ; then may be verified to be a stochastic subset of . Thus for instance is the stochastic union of and . Similarly for countable unions of stochastic subsets of , although for uncountable unions are extremely problematic (they are disliked by both the measure theory and the countable gluing axiom) and will not be defined here. Finally, the stochastic difference set is defined as the set of all in such that for any subevent of of positive probability. One may verify that in the case when is discrete and at most countable, these Boolean operations correspond to the classical Boolean operations applied separately to each fibre of the relevant sets . We also leave as an exercise to the reader to verify the usual laws of Boolean arithmetic, e.g. the de Morgan laws, provided that one works with at most countable unions and intersections.

One can also consider a stochastic finite union in which the number of sets in the union is itself stochastic. More precisely, let be a stochastic set, let be a stochastic natural number, and let be a stochastic function from the stochastic set (defined by setting )) to the stochastic power set . Here we are considering to be a natural number, to allow for unions that are possibly empty, with used for the positive natural numbers. We also write for the stochastic function . Then we can define the stochastic union by setting for an event to be the set of local elements with the property that there exists a covering of by measurable subevents for , such that one has and . One can verify that is a stochastic set (with the obvious restriction maps). Again, in the model case when is discrete and at most countable, the fibre is what one would expect it to be, namely .

The Cartesian product of two stochastic sets may be defined by setting for all events , with the obvious restriction maps; this is easily seen to be another stochastic set. This lets one define the concept of a -ary operation from stochastic sets to another stochastic set , or a -ary relation . In particular, given for , the relation may be deterministically true, deterministically false, or have some other stochastic truth value.

Remark 3In the degenerate case when is null, stochastic logic becomes a bit weird: all stochastic statements are deterministically true, as are their stochastic negations, since every event in (even the empty set) now holds with full probability. Among other pathologies, the empty set now has a global element over (this is analogous to the notorious convention ), and any two deterministic objects become equal over : .

The following simple observation is crucial to subsequent discussion. If is a sequence taking values in the global elements of a stochastic space , then we may also define global elements for *stochastic* indices as well, by appealing to the countable gluing axiom to glue together restricted to the set for each deterministic natural number to form . With this definition, the map is a stochastic function from to ; indeed, this creates a one-to-one correspondence between external sequences (maps from to ) and stochastic sequences (stochastic functions from to ). Similarly with replaced by any other at most countable set. This observation will be important in allowing many deterministic arguments involving sequences will be able to be carried over to the stochastic setting.

We now specialise from the extremely broad discipline of set theory to the more focused discipline of real analysis. There are two fundamental axioms that underlie real analysis (and in particular distinguishes it from real *algebra*). The first is the Archimedean property, which we phrase in the “no infinitesimal” formulation as follows:

Proposition 2 (Archimedean property)Let be such that for all positive natural numbers . Then .

The other is the least upper bound axiom:

Proposition 3 (Least upper bound axiom)Let be a non-empty subset of which has an upper bound , thus for all . Then there exists a unique real number with the following properties:

- for all .
- For any real , there exists such that .
- .
Furthermore, does not depend on the choice of .

The Archimedean property extends easily to the stochastic setting:

Proposition 4 (Stochastic Archimedean property)Let be such that for all deterministic natural numbers . Then .

Remark 4Here, incidentally, is one place in which this stochastic formalism deviates from the nonstandard analysis formalism, as the latter certainly permits the existence of infinitesimal elements. On the other hand, we caution that stochastic real numbers are permitted to be unbounded, so that formulation of Archimedean property is not valid in the stochastic setting.

The proof is easy and is left to the reader. The least upper bound axiom also extends nicely to the stochastic setting, but the proof requires more work (in particular, our argument uses the monotone convergence theorem):

Theorem 5 (Stochastic least upper bound axiom)Let be a stochastic subset of which has a global upper bound , thus for all , and is globally non-empty in the sense that there is at least one global element . Then there exists a unique stochastic real number with the following properties:

- for all .
- For any stochastic real , there exists such that .
- .
Furthermore, does not depend on the choice of .

For future reference, we note that the same result holds with replaced by throughout, since the latter may be embedded in the former, for instance by mapping to and to . In applications, the above theorem serves as a reasonable substitute for the countable axiom of choice, which does not appear to hold in unrestricted generality relative to a measure space; in particular, it can be used to generate various extremising sequences for stochastic functionals on various stochastic function spaces.

*Proof:* Uniqueness is clear (using the Archimedean property), as well as the independence on , so we turn to existence. By using an order-preserving map from to (e.g. ) we may assume that is a subset of , and that .

We observe that is a lattice: if , then and also lie in . Indeed, may be formed by appealing to the countable gluing axiom to glue (restricted the set ) with (restricted to the set ), and similarly for . (Here we use the fact that relations such as are Borel measurable on .)

Let denote the deterministic quantity

then (by Proposition 3!) is well-defined; here we use the hypothesis that is finite. Thus we may find a sequence of elements of such that

Using the lattice property, we may assume that the are non-decreasing: whenever . If we then define (after choosing measurable representatives of each equivalence class ), then is a stochastic real with .

If , then , and so

From this and (1) we conclude that

From monotone convergence, we conclude that

and so , as required.

Now let be a stochastic real. After choosing measurable representatives of each relevant equivalence class, we see that for almost every , we can find a natural number with . If we choose to be the first such positive natural number when it exists, and (say) otherwise, then is a stochastic positive natural number and . The claim follows.

Remark 5One can abstract away the role of the measure here, leaving only the ideal of null sets. The property that the measure is finite is then replaced by the more general property that given any non-empty family of measurable sets, there is an at most countable union of sets in that family that is an upper bound modulo null sets for all elements in that faily.

Using Proposition 4 and Theorem 5, one can then revisit many of the other foundational results of deterministic real analysis, and develop stochastic analogues; we give some examples of this below the fold (focusing on the Heine-Borel theorem and a case of the spectral theorem). As an application of this formalism, we revisit some of the Furstenberg-Zimmer structural theory of measure-preserving systems, particularly that of relatively compact and relatively weakly mixing systems, and interpret them in this framework, basically as stochastic versions of compact and weakly mixing systems (though with the caveat that the shift map is allowed to act non-trivially on the underlying probability space). As this formalism is “point-free”, in that it avoids explicit use of fibres and disintegrations, it will be well suited for generalising this structure theory to settings in which the underlying probability spaces are not standard Borel, and the underlying groups are uncountable; I hope to discuss such generalisations in future blog posts.

Remark 6Roughly speaking, stochastic real analysis can be viewed as a restricted subset of classical real analysis in which all operations have to be “measurable” with respect to the base space. In particular, indiscriminate application of the axiom of choice is not permitted, and one should largely restrict oneself to performing countable unions and intersections rather than arbitrary unions or intersections. Presumably one can formalise this intuition with a suitable “countable transfer principle”, but I was not able to formulate a clean and general principle of this sort, instead verifying various assertions about stochastic objects by hand rather than by direct transfer from the deterministic setting. However, it would be desirable to have such a principle, since otherwise one is faced with the tedious task of redoing all the foundations of real analysis (or whatever other base theory of mathematics one is going to be working in) in the stochastic setting by carefully repeating all the arguments.More generally, topos theory is a good formalism for capturing precisely the informal idea of performing mathematics with certain operations, such as the axiom of choice, the law of the excluded middle, or arbitrary unions and intersections, being somehow “prohibited” or otherwise “restricted”.

One of the basic tools in modern combinatorics is the probabilistic method, introduced by Erdos, in which a deterministic solution to a given problem is shown to exist by constructing a *random* candidate for a solution, and showing that this candidate solves all the requirements of the problem with positive probability. When the problem requires a real-valued statistic to be suitably large or suitably small, the following trivial observation is often employed:

Proposition 1 (Comparison with mean)Let be a random real-valued variable, whose mean (orfirst moment) is finite. Thenwith positive probability, and

with positive probability.

This proposition is usually applied in conjunction with a computation of the first moment , in which case this version of the probabilistic method becomes an instance of the *first moment method*. (For comparison with other moment methods, such as the second moment method, exponential moment method, and zeroth moment method, see Chapter 1 of my book with Van Vu. For a general discussion of the probabilistic method, see the book by Alon and Spencer of the same name.)

As a typical example in random matrix theory, if one wanted to understand how small or how large the operator norm of a random matrix could be, one might first try to compute the expected operator norm and then apply Proposition 1; see this previous blog post for examples of this strategy (and related strategies, based on comparing with more tractable expressions such as the moments ). (In this blog post, all matrices are complex-valued.)

Recently, in their proof of the Kadison-Singer conjecture (and also in their earlier paper on Ramanujan graphs), Marcus, Spielman, and Srivastava introduced an striking new variant of the first moment method, suited in particular for controlling the operator norm of a Hermitian positive semi-definite matrix . Such matrices have non-negative real eigenvalues, and so in this case is just the largest eigenvalue of . Traditionally, one tries to control the eigenvalues through averaged statistics such as moments or Stieltjes transforms ; again, see this previous blog post. Here we use as short-hand for , where is the identity matrix. Marcus, Spielman, and Srivastava instead rely on the interpretation of the eigenvalues of as the roots of the characteristic polynomial of , thus

where is the largest real root of a non-zero polynomial . (In our applications, we will only ever apply to polynomials that have at least one real root, but for sake of completeness let us set if has no real roots.)

Prior to the work of Marcus, Spielman, and Srivastava, I think it is safe to say that the conventional wisdom in random matrix theory was that the representation (1) of the operator norm was not particularly useful, due to the highly non-linear nature of both the characteristic polynomial map and the maximum root map . (Although, as pointed out to me by Adam Marcus, some related ideas have occurred in graph theory rather than random matrix theory, for instance in the theory of the matching polynomial of a graph.) For instance, a fact as basic as the triangle inequality is extremely difficult to establish through (1). Nevertheless, it turns out that for certain special types of random matrices (particularly those in which a typical instance of this ensemble has a simple relationship to “adjacent” matrices in this ensemble), the polynomials enjoy an extremely rich structure (in particular, they lie in families of real stable polynomials, and hence enjoy good combinatorial interlacing properties) that can be surprisingly useful. In particular, Marcus, Spielman, and Srivastava established the following nonlinear variant of Proposition 1:

Proposition 2 (Comparison with mean)Let . Let be a random matrix, which is the sum of independent Hermitian rank one matrices , each taking a finite number of values. Thenwith positive probability, and

with positive probability.

We prove this proposition below the fold. The hypothesis that each only takes finitely many values is technical and can likely be relaxed substantially, but we will not need to do so here. Despite the superficial similarity with Proposition 1, the proof of Proposition 2 is quite nonlinear; in particular, one needs the interlacing properties of real stable polynomials to proceed. Another key ingredient in the proof is the observation that while the determinant of a matrix generally behaves in a nonlinar fashion on the underlying matrix , it becomes (affine-)linear when one considers rank one perturbations, and so depends in an affine-multilinear fashion on the . More precisely, we have the following deterministic formula, also proven below the fold:

Proposition 3 (Deterministic multilinearisation formula)Let be the sum of deterministic rank one matrices . Then we havefor all , where the

mixed characteristic polynomialof any matrices (not necessarily rank one) is given by the formula

Among other things, this formula gives a useful representation of the mean characteristic polynomial :

Corollary 4 (Random multilinearisation formula)Let be the sum of jointly independent rank one matrices . Then we have

*Proof:* For fixed , the expression is a polynomial combination of the , while the differential operator is a linear combination of differential operators for . As a consequence, we may expand (3) as a linear combination of terms, each of which is a multilinear combination of for some . Taking expectations of both sides of (2) and using the joint independence of the , we obtain the claim.

In view of Proposition 2, we can now hope to control the operator norm of certain special types of random matrices (and specifically, the sum of independent Hermitian positive semi-definite rank one matrices) by first controlling the mean of the random characteristic polynomial . Pursuing this philosophy, Marcus, Spielman, and Srivastava establish the following result, which they then use to prove the Kadison-Singer conjecture:

Theorem 5 (Marcus-Spielman-Srivastava theorem)Let . Let be jointly independent random vectors in , with each taking a finite number of values. Suppose that we have the normalisationwhere we are using the convention that is the identity matrix whenever necessary. Suppose also that we have the smallness condition

for some and all . Then one has

Note that the upper bound in (5) must be at least (by taking to be deterministic) and also must be at least (by taking the to always have magnitude at least ). Thus the bound in (5) is asymptotically tight both in the regime and in the regime ; the latter regime will be particularly useful for applications to Kadison-Singer. It should also be noted that if one uses more traditional random matrix theory methods (based on tools such as Proposition 1, as well as more sophisticated variants of these tools, such as the concentration of measure results of Rudelson and Ahlswede-Winter), one obtains a bound of with high probability, which is insufficient for the application to the Kadison-Singer problem; see this article of Tropp. Thus, Theorem 5 obtains a sharper bound, at the cost of trading in “high probability” for “positive probability”.

In the paper of Marcus, Spielman and Srivastava, Theorem 5 is used to deduce a conjecture of Weaver, which was already known to imply the Kadison-Singer conjecture; actually, a slight modification of their argument gives the paving conjecture of Kadison and Singer, from which the original Kadison-Singer conjecture may be readily deduced. We give these implications below the fold. (See also this survey article for some background on the Kadison-Singer problem.)

Let us now summarise how Theorem 5 is proven. In the spirit of semi-definite programming, we rephrase the above theorem in terms of the rank one Hermitian positive semi-definite matrices :

Theorem 6 (Marcus-Spielman-Srivastava theorem again)Let be jointly independent random rank one Hermitian positive semi-definite matrices such that the sum has meanand such that

for some and all . Then one has

with positive probability.

In view of (1) and Proposition 2, this theorem follows from the following control on the mean characteristic polynomial:

Theorem 7 (Control of mean characteristic polynomial)Let be jointly independent random rank one Hermitian positive semi-definite matrices such that the sum has meanand such that

for some and all . Then one has

This result is proven using the multilinearisation formula (Corollary 4) and some convexity properties of real stable polynomials; we give the proof below the fold.

Thanks to Adam Marcus, Assaf Naor and Sorin Popa for many useful explanations on various aspects of the Kadison-Singer problem.

Let be a field. A definable set over is a set of the form

where is a natural number, and is a predicate involving the ring operations of , the equality symbol , an arbitrary number of constants and free variables in , the quantifiers , boolean operators such as , and parentheses and colons, where the quantifiers are always understood to be over the field . Thus, for instance, the set of quadratic residues

is definable over , and any algebraic variety over is also a definable set over . Henceforth we will abbreviate “definable over ” simply as “definable”.

If is a finite field, then every subset of is definable, since finite sets are automatically definable. However, we can obtain a more interesting notion in this case by restricting the *complexity* of a definable set. We say that is a *definable set of complexity at most * if , and can be written in the form (1) for some predicate of length at most (where all operators, quantifiers, relations, variables, constants, and punctuation symbols are considered to have unit length). Thus, for instance, a hypersurface in dimensions of degree would be a definable set of complexity . We will then be interested in the regime where the complexity remains bounded, but the field size (or field characteristic) becomes large.

In a recent paper, I established (in the large characteristic case) the following regularity lemma for dense definable graphs, which significantly strengthens the Szemerédi regularity lemma in this context, by eliminating “bad” pairs, giving a polynomially strong regularity, and also giving definability of the cells:

Lemma 1 (Algebraic regularity lemma)Let be a finite field, let be definable non-empty sets of complexity at most , and let also be definable with complexity at most . Assume that the characteristic of is sufficiently large depending on . Then we may partition and with , with the following properties:

My original proof of this lemma was quite complicated, based on an explicit calculation of the “square”

of using the Lang-Weil bound and some facts about the étale fundamental group. It was the reliance on the latter which was the main reason why the result was restricted to the large characteristic setting. (I then applied this lemma to classify expanding polynomials over finite fields of large characteristic, but I will not discuss these applications here; see this previous blog post for more discussion.)

Recently, Anand Pillay and Sergei Starchenko (and independently, Udi Hrushovski) have observed that the theory of the étale fundamental group is not necessary in the argument, and the lemma can in fact be deduced from quite general model theoretic techniques, in particular using (a local version of) the concept of stability. One of the consequences of this new proof of the lemma is that the hypothesis of large characteristic can be omitted; the lemma is now known to be valid for arbitrary finite fields (although its content is trivial if the field is not sufficiently large depending on the complexity at most ).

Inspired by this, I decided to see if I could find yet another proof of the algebraic regularity lemma, again avoiding the theory of the étale fundamental group. It turns out that the spectral proof of the Szemerédi regularity lemma (discussed in this previous blog post) adapts very nicely to this setting. The key fact needed about definable sets over finite fields is that their cardinality takes on an essentially discrete set of values. More precisely, we have the following fundamental result of Chatzidakis, van den Dries, and Macintyre:

Proposition 2Let be a finite field, and let .

- (Discretised cardinality) If is a non-empty definable set of complexity at most , then one has
where is a natural number, and is a positive rational number with numerator and denominator . In particular, we have .

- (Definable cardinality) Assume is sufficiently large depending on . If , and are definable sets of complexity at most , so that can be viewed as a definable subset of that is definably parameterised by , then for each natural number and each positive rational with numerator and denominator , the set
is definable with complexity , where the implied constants in the asymptotic notation used to define (4) are the same as those that appearing in (3). (Informally: the “dimension” and “measure” of depends definably on .)

We will take this proposition as a black box; a proof can be obtained by combining the description of definable sets over pseudofinite fields (discussed in this previous post) with the Lang-Weil bound (discussed in this previous post). (The former fact is phrased using nonstandard analysis, but one can use standard compactness-and-contradiction arguments to convert such statements to statements in standard analysis, as discussed in this post.)

The above proposition places severe restrictions on the cardinality of definable sets; for instance, it shows that one cannot have a definable set of complexity at most and cardinality , if is sufficiently large depending on . If are definable sets of complexity at most , it shows that for some rational with numerator and denominator ; furthermore, if , we may improve this bound to . In particular, we obtain the following “self-improving” properties:

- If are definable of complexity at most and for some , then (if is sufficiently small depending on and is sufficiently large depending on ) this forces .
- If are definable of complexity at most and for some and positive rational , then (if is sufficiently small depending on and is sufficiently large depending on ) this forces .

It turns out that these self-improving properties can be applied to the coefficients of various matrices (basically powers of the adjacency matrix associated to ) that arise in the spectral proof of the regularity lemma to significantly improve the bounds in that lemma; we describe how this is done below the fold. We also make some connections to the stability-based proofs of Pillay-Starchenko and Hrushovski.

Perhaps the most important structural result about general large dense graphs is the Szemerédi regularity lemma. Here is a standard formulation of that lemma:

Lemma 1 (Szemerédi regularity lemma)Let be a graph on vertices, and let . Then there exists a partition for some with the property that for all but at most of the pairs , the pair is-regularin the sense thatwhenever are such that and , and is the edge density between and . Furthermore, the partition is

equitablein the sense that for all .

There are many proofs of this lemma, which is actually not that difficult to establish; see for instance these previous blog posts for some examples. In this post I would like to record one further proof, based on the spectral decomposition of the adjacency matrix of , which is essentially due to Frieze and Kannan. (Strictly speaking, Frieze and Kannan used a variant of this argument to establish a weaker form of the regularity lemma, but it is not difficult to modify the Frieze-Kannan argument to obtain the usual form of the regularity lemma instead. Some closely related spectral regularity lemmas were also developed by Szegedy.) I found recently (while speaking at the Abel conference in honour of this year’s laureate, Endre Szemerédi) that this particular argument is not as widely known among graph theory experts as I had thought, so I thought I would record it here.

For reasons of exposition, it is convenient to first establish a slightly weaker form of the lemma, in which one drops the hypothesis of equitability (but then has to weight the cells by their magnitude when counting bad pairs):

Lemma 2 (Szemerédi regularity lemma, weakened variant). Let be a graph on vertices, and let . Then there exists a partition for some with the property that for all pairs outside of an exceptional set , one haswhenever , for some real number , where is the number of edges between and . Furthermore, we have

Let us now prove Lemma 2. We enumerate (after relabeling) as . The adjacency matrix of the graph is then a self-adjoint matrix, and thus admits an eigenvalue decomposition

for some orthonormal basis of and some eigenvalues , which we arrange in decreasing order of magnitude:

We can compute the trace of as

Among other things, this implies that

Let be a function (depending on ) to be chosen later, with for all . Applying (3) and the pigeonhole principle (or the finite convergence principle, see this blog post), we can find such that

(Indeed, the bound on is basically iterated times.) We can now split

where is the “structured” component

and is the “pseudorandom” component

We now design a vertex partition to make approximately constant on most cells. For each , we partition into cells on which (viewed as a function from to ) only fluctuates by , plus an exceptional cell of size coming from the values where is excessively large (larger than ). Combining all these partitions together, we can write for some , where has cardinality at most , and for all , the eigenfunctions all fluctuate by at most . In particular, if , then (by (4) and (6)) the entries of fluctuate by at most on each block . If we let be the mean value of these entries on , we thus have

for any and , where we view the indicator functions as column vectors of dimension .

Next, we observe from (3) and (7) that . If we let be the coefficients of , we thus have

and hence by Markov’s inequality we have

for all pairs outside of an exceptional set with

for any , by (10) and the Cauchy-Schwarz inequality.

Finally, to control we see from (4) and (8) that has an operator norm of at most . In particular, we have from the Cauchy-Schwarz inequality that

Let be the set of all pairs where either , , , or

One easily verifies that (2) holds. If is not in , then by summing (9), (11), (12) and using (5), we see that

for all . The left-hand side is just . As , we have

and so (since )

If we let be a sufficiently rapidly growing function of that depends on , the second error term in (13) can be absorbed in the first, and (1) follows. This concludes the proof of Lemma 2.

To prove Lemma 1, one argues similarly (after modifying as necessary), except that the initial partition of constructed above needs to be subdivided further into equitable components (of size ), plus some remainder sets which can be aggregated into an exceptional component of size (and which can then be redistributed amongst the other components to arrive at a truly equitable partition). We omit the details.

Remark 1It is easy to verify that needs to be growing exponentially in in order for the above argument to work, which leads to tower-exponential bounds in the number of cells in the partition. It was shown by Gowers that a tower-exponential bound is actually necessary here. By varying , one basically obtains thestrong regularity lemmafirst established by Alon, Fischer, Krivelevich, and Szegedy; in the opposite direction, setting essentially gives theweak regularity lemmaof Frieze and Kannan.

Remark 2If we specialise to a Cayley graph, in which is a finite abelian group and for some (symmetric) subset of , then the eigenvectors are characters, and one essentially recovers thearithmetic regularity lemmaof Green, in which the vertex partition classes are given by Bohr sets (and one can then place additional regularity properties on these Bohr sets with some additional arguments). The components of , representing high, medium, and low eigenvalues of , then become a decomposition associated to high, medium, and low Fourier coefficients of .

Remark 3The use of spectral theory here is parallel to the use of Fourier analysis to establish results such as Roth’s theorem on arithmetic progressions of length three. In analogy with this, one could view hypergraph regularity as being a sort of “higher order spectral theory”, although this spectral perspective is not as convenient as it is in the graph case.

Van Vu and I have just uploaded to the arXiv our paper “Random matrices: Universality of local spectral statistics of non-Hermitian matrices“. The main result of this paper is a “Four Moment Theorem” that establishes universality for local spectral statistics of *non-Hermitian* matrices with independent entries, under the additional hypotheses that the entries of the matrix decay exponentially, and match moments with either the real or complex gaussian ensemble to fourth order. This is the non-Hermitian analogue of a long string of recent results establishing universality of local statistics in the Hermitian case (as discussed for instance in this recent survey of Van and myself, and also in several other places).

The complex case is somewhat easier to describe. Given a (non-Hermitian) random matrix ensemble of matrices, one can arbitrarily enumerate the (geometric) eigenvalues as , and one can then define the -point correlation functions to be the symmetric functions such that

In the case when is drawn from the complex gaussian ensemble, so that all the entries are independent complex gaussians of mean zero and variance one, it is a classical result of Ginibre that the asymptotics of near some point as and is fixed are given by the determinantal rule

for , where is the reproducing kernel

(There is also an asymptotic for the boundary case , but it is more complicated to state.) In particular, we see that for almost every , which is a manifestation of the well-known *circular law* for these matrices; but the circular law only captures the macroscopic structure of the spectrum, whereas the asymptotic (1) describes the microscopic structure.

Our first main result is that the asymptotic (1) for also holds (in the sense of vague convergence) when is a matrix whose entries are independent with mean zero, variance one, exponentially decaying tails, and which all match moments with the complex gaussian to fourth order. (Actually we prove a stronger result than this which is valid for all bounded and has more uniform bounds, but is a bit more technical to state.) An analogous result is also established for real gaussians (but now one has to separate the correlation function into components depending on how many eigenvalues are real and how many are strictly complex; also, the limiting distribution is more complicated, being described by Pfaffians rather than determinants). Among other things, this allows us to partially extend some known results on complex or real gaussian ensembles to more general ensembles. For instance, there is a central limit theorem of Rider which establishes a central limit theorem for the number of eigenvalues of a complex gaussian matrix in a mesoscopic disk; from our results, we can extend this central limit theorem to matrices that match the complex gaussian ensemble to fourth order, provided that the disk is small enough (for technical reasons, our error bounds are not strong enough to handle large disks). Similarly, extending some results of Edelman-Kostlan-Shub and of Forrester-Nagao, we can show that for a matrix matching the real gaussian ensemble to fourth order, the number of real eigenvalues is with probability for some absolute constant .

There are several steps involved in the proof. The first step is to apply the *Girko Hermitisation trick* to replace the problem of understanding the spectrum of a non-Hermitian matrix, with that of understanding the spectrum of various Hermitian matrices. The two identities that realise this trick are, firstly, Jensen’s formula

that relates the local distribution of eigenvalues to the log-determinants , and secondly the elementary identity

that relates the log-determinants of to the log-determinants of the Hermitian matrices

The main difficulty is then to obtain concentration and universality results for the Hermitian log-determinants . This turns out to be a task that is analogous to the task of obtaining concentration for Wigner matrices (as we did in this recent paper), as well as central limit theorems for log-determinants of Wigner matrices (as we did in this other recent paper). In both of these papers, the main idea was to use the Four Moment Theorem for Wigner matrices (which can now be proven relatively easily by a combination of the local semi-circular law and resolvent swapping methods), combined with (in the latter paper) a central limit theorem for the gaussian unitary ensemble (GUE). This latter task was achieved by using the convenient Trotter normal form to tridiagonalise a GUE matrix, which has the effect of revealing the determinant of that matrix as the solution to a certain linear stochastic difference equation, and one can analyse the distribution of that solution via such tools as the martingale central limit theorem.

The matrices are somewhat more complicated than Wigner matrices (for instance, the semi-circular law must be replaced by a distorted Marchenko-Pastur law), but the same general strategy works to obtain concentration and universality for their log-determinants. The main new difficulty that arises is that the analogue of the Trotter norm for gaussian random matrices is not tridiagonal, but rather Hessenberg (i.e. upper-triangular except for the lower diagonal). This ultimately has the effect of expressing the relevant determinant as the solution to a *nonlinear* stochastic difference equation, which is a bit trickier to solve for. Fortunately, it turns out that one only needs good lower bounds on the solution, as one can use the second moment method to upper bound the determinant and hence the log-determinant (following a classical computation of Turan). This simplifies the analysis on the equation somewhat.

While this result is the first local universality result in the category of random matrices with independent entries, there are still two limitations to the result which one would like to remove. The first is the moment matching hypotheses on the matrix. Very recently, one of the ingredients of our paper, namely the local circular law, was proved without moment matching hypotheses by Bourgade, Yau, and Yin (provided one stays away from the edge of the spectrum); however, as of this time of writing the other main ingredient – the universality of the log-determinant – still requires moment matching. (The standard tool for obtaining universality without moment matching hypotheses is the heat flow method (and more specifically, the local relaxation flow method), but the analogue of Dyson Brownian motion in the non-Hermitian setting appears to be somewhat intractible, being a coupled flow on both the eigenvalues and eigenvectors rather than just on the eigenvalues alone.)

I’ve just uploaded to the arXiv my paper The asymptotic distribution of a single eigenvalue gap of a Wigner matrix, submitted to Probability Theory and Related Fields. This paper (like several of my previous papers) is concerned with the asymptotic distribution of the eigenvalues of a random Wigner matrix in the limit , with a particular focus on matrices drawn from the Gaussian Unitary Ensemble (GUE). This paper is focused on the *bulk* of the spectrum, i.e. to eigenvalues with for some fixed .

The location of an individual eigenvalue is by now quite well understood. If we normalise the entries of the matrix to have mean zero and variance , then in the asymptotic limit , the Wigner semicircle law tells us that with probability one has

where the *classical location* of the eigenvalue is given by the formula

and the semicircular distribution is given by the formula

Actually, one can improve the error term here from to for any (see this previous recent paper of Van and myself for more discussion of these sorts of estimates, sometimes known as *eigenvalue rigidity* estimates).

From the semicircle law (and the fundamental theorem of calculus), one expects the eigenvalue spacing to have an average size of . It is thus natural to introduce the normalised eigenvalue spacing

and ask what the distribution of is.

As mentioned previously, we will focus on the bulk case , and begin with the model case when is drawn from GUE. (In the edge case when is close to or to , the distribution is given by the famous Tracy-Widom law.) Here, the distribution was almost (but as we shall see, not quite) worked out by Gaudin and Mehta. By using the theory of determinantal processes, they were able to compute a quantity closely related to , namely the probability

that an interval near of length comparable to the expected eigenvalue spacing is devoid of eigenvalues. For in the bulk and fixed , they showed that this probability is equal to

where is the Dyson projection

to Fourier modes in , and is the Fredholm determinant. As shown by Jimbo, Miwa, Tetsuji, Mori, and Sato, this determinant can also be expressed in terms of a solution to a Painleve V ODE, though we will not need this fact here. In view of this asymptotic and some standard integration by parts manipulations, it becomes plausible to propose that will be asymptotically distributed according to the *Gaudin-Mehta distribution* , where

A reasonably accurate approximation for is given by the *Wigner surmise* , which was presciently proposed by Wigner as early as 1957; it is exact for but not in the asymptotic limit .

Unfortunately, when one tries to make this argument rigorous, one finds that the asymptotic for (1) does not control a single gap , but rather an ensemble of gaps , where is drawn from an interval of some moderate size (e.g. ); see for instance this paper of Deift, Kriecherbauer, McLaughlin, Venakides, and Zhou for a more precise formalisation of this statement (which is phrased slightly differently, in which one samples all gaps inside a fixed window of spectrum, rather than inside a fixed range of eigenvalue indices ). (This result is stated for GUE, but can be extended to other Wigner ensembles by the Four Moment Theorem, at least if one assumes a moment matching condition; see this previous paper with Van Vu for details. The moment condition can in fact be removed, as was done in this subsequent paper with Erdos, Ramirez, Schlein, Vu, and Yau.)

The problem is that when one specifies a given window of spectrum such as , one cannot quite pin down in advance which eigenvalues are going to lie to the left or right of this window; even with the strongest eigenvalue rigidity results available, there is a natural uncertainty of or so in the index (as can be quantified quite precisely by this central limit theorem of Gustavsson).

The main difficulty here is that there could potentially be some strange coupling between the event (1) of an interval being devoid of eigenvalues, and the number of eigenvalues to the left of that interval. For instance, one could conceive of a possible scenario in which the interval in (1) tends to have many eigenvalues when is even, but very few when is odd. In this sort of situation, the gaps may have different behaviour for even than for odd , and such anomalies would not be picked up in the averaged statistics in which is allowed to range over some moderately large interval.

The main result of the current paper is that these anomalies do not actually occur, and that all of the eigenvalue gaps in the bulk are asymptotically governed by the Gaudin-Mehta law without the need for averaging in the parameter. Again, this is shown first for GUE, and then extended to other Wigner matrices obeying a matching moment condition using the Four Moment Theorem. (It is likely that the moment matching condition can be removed here, but I was unable to achieve this, despite all the recent advances in establishing universality of local spectral statistics for Wigner matrices, mainly because the universality results in the literature are more focused on specific energy levels than on specific eigenvalue indices . To make matters worse, in some cases universality is currently known only after an additional averaging in the energy parameter.)

The main task in the proof is to show that the random variable is largely decoupled from the event in (1) when is drawn from GUE. To do this we use some of the theory of determinantal processes, and in particular the nice fact that when one conditions a determinantal process to the event that a certain spatial region (such as an interval) contains no points of the process, then one obtains a new determinantal process (with a kernel that is closely related to the original kernel). The main task is then to obtain a sufficiently good control on the distance between the new determinantal kernel and the old one, which we do by some functional-analytic considerations involving the manipulation of norms of operators (and specifically, the operator norm, Hilbert-Schmidt norm, and nuclear norm). Amusingly, the Fredholm alternative makes a key appearance, as I end up having to invert a compact perturbation of the identity at one point (specifically, I need to invert , where is the Dyson projection and is an interval). As such, the bounds in my paper become ineffective, though I am sure that with more work one can invert this particular perturbation of the identity by hand, without the need to invoke the Fredholm alternative.

Van Vu and I have just uploaded to the arXiv our paper Random matrices: Sharp concentration of eigenvalues, submitted to the Electronic Journal of Probability. As with many of our previous papers, this paper is concerned with the distribution of the eigenvalues of a random Wigner matrix (such as a matrix drawn from the Gaussian Unitary Ensemble (GUE) or Gaussian Orthogonal Ensemble (GOE)). To simplify the discussion we shall mostly restrict attention to the *bulk* of the spectrum, i.e. to eigenvalues with for some fixed , although analogues of most of the results below have also been obtained at the edge of the spectrum.

If we normalise the entries of the matrix to have mean zero and variance , then in the asymptotic limit , we have the Wigner semicircle law, which asserts that the eigenvalues are asymptotically distributed according to the semicircular distribution , where

An essentially equivalent way of saying this is that for large , we expect the eigenvalue of to stay close to the *classical location* , defined by the formula

In particular, from the Wigner semicircle law it can be shown that asymptotically almost surely, one has

In the modern study of the spectrum of Wigner matrices (and in particular as a key tool in establishing universality results), it has become of interest to improve the error term in (1) as much as possible. A typical early result in this direction was by Bai, who used the Stieltjes transform method to obtain polynomial convergence rates of the shape for some absolute constant ; see also the subsequent papers of Alon-Krivelevich-Vu and of of Meckes, who were able to obtain such convergence rates (with exponentially high probability) by using concentration of measure tools, such as Talagrand’s inequality. On the other hand, in the case of the GUE ensemble it is known (by this paper of Gustavsson) that has variance comparable to in the bulk, so that the optimal error term in (1) should be about . (One may think that if one wanted bounds on (1) that were uniform in , one would need to enlarge the error term further, but this does not appear to be the case, due to strong correlations between the ; note for instance this recent result of Ben Arous and Bourgarde that the largest gap between eigenvalues in the bulk is typically of order .)

A significant advance in this direction was achieved by Erdos, Schlein, and Yau in a series of papers where they used a combination of Stieltjes transform and concentration of measure methods to obtain *local semicircle laws* which showed, among other things, that one had asymptotics of the form

with exponentially high probability for intervals in the bulk that were as short as for some , where is the number of eigenvalues. These asymptotics are consistent with a good error term in (1), and are already sufficient for many applications, but do not quite imply a strong concentration result for individual eigenvalues (basically because they do not preclude long-range or “secular” shifts in the spectrum that involve large blocks of eigenvalues at mesoscopic scales). Nevertheless, this was rectified in a subsequent paper of Erdos, Yau, and Yin, which roughly speaking obtained a bound of the form

in the bulk with exponentially high probability, for Wigner matrices obeying some exponential decay conditions on the entries. This was achieved by a rather delicate high moment calculation, in which the contribution of the diagonal entries of the resolvent (whose average forms the Stieltjes transform) was shown to mostly cancel each other out.

As the GUE computations show, this concentration result is sharp up to the quasilogarithmic factor . The main result of this paper is to improve the concentration result to one more in line with the GUE case, namely

with exponentially high probability (see the paper for a more precise statement of results). The one catch is that an additional hypothesis is required, namely that the entries of the Wigner matrix have vanishing third moment. We also obtain similar results for the edge of the spectrum (but with a different scaling).

Our arguments are rather different from those of Erdos, Yau, and Yin, and thus provide an alternate approach to establishing eigenvalue concentration. The main tool is the Lindeberg exchange strategy, which is also used to prove the Four Moment Theorem (although we do not directly invoke the Four Moment Theorem in our analysis). The main novelty is that this exchange strategy is now used to establish large deviation estimates (i.e. exponentially small tail probabilities) rather than universality of the limiting distribution. Roughly speaking, the basic point is as follows. The Lindeberg exchange strategy seeks to compare a function of many independent random variables with the same function of a different set of random variables (which match moments with the original set of variables to some order, such as to second or fourth order) by exchanging the random variables one at a time. Typically, one tries to upper bound expressions such as

for various smooth test functions , by performing a Taylor expansion in the variable being swapped and taking advantage of the matching moment hypotheses. In previous implementations of this strategy, was a bounded test function, which allowed one to get control of the bulk of the distribution of , and in particular in controlling probabilities such as

for various thresholds and , but did not give good control on the tail as the error terms tended to be polynomially decaying in rather than exponentially decaying. However, it turns out that one can modify the exchange strategy to deal with moments such as

for various moderately large (e.g. of size comparable to ), obtaining results such as

after performing all the relevant exchanges. As such, one can then use large deviation estimates on to deduce large deviation estimates on .

In this paper we also take advantage of a simplification, first noted by Erdos, Yau, and Yin, that Four Moment Theorems become somewhat easier to prove if one works with resolvents (and the closely related Stieltjes transform ) rather than with individual eigenvalues, as the Taylor expansion of resolvents are very simple (essentially being a Neumann series). The relationship between the Stieltjes transform and the location of individual eigenvalues can be seen by taking advantage of the identity

for any energy level , which can be verified from elementary calculus. (In practice, we would truncate near zero and near infinity to avoid some divergences, but this is a minor technicality.) As such, a concentration result for the Stieltjes transform can be used to establish an analogous concentration result for the eigenvalue counting functions , which in turn can be used to deduce concentration results for individual eigenvalues by some basic combinatorial manipulations.

Let be a self-adjoint operator on a finite-dimensional Hilbert space . The behaviour of this operator can be completely described by the spectral theorem for finite-dimensional self-adjoint operators (i.e. Hermitian matrices, when viewed in coordinates), which provides a sequence of eigenvalues and an orthonormal basis of eigenfunctions such that for all . In particular, given any function on the spectrum of , one can then define the linear operator by the formula

which then gives a functional calculus, in the sense that the map is a -algebra isometric homomorphism from the algebra of bounded continuous functions from to , to the algebra of bounded linear operators on . Thus, for instance, one can define heat operators for , Schrödinger operators for , resolvents for , and (if is positive) wave operators for . These will be bounded operators (and, in the case of the Schrödinger and wave operators, unitary operators, and in the case of the heat operators with positive, they will be contractions). Among other things, this functional calculus can then be used to solve differential equations such as the heat equation

The functional calculus can also be associated to a spectral measure. Indeed, for any vectors , there is a complex measure on with the property that

indeed, one can set to be the discrete measure on defined by the formula

One can also view this complex measure as a coefficient

of a projection-valued measure on , defined by setting

Finally, one can view as unitarily equivalent to a multiplication operator on , where is the real-valued function , and the intertwining map is given by

so that .

It is an important fact in analysis that many of these above assertions extend to operators on an infinite-dimensional Hilbert space , so long as one one is careful about what “self-adjoint operator” means; these facts are collectively referred to as the *spectral theorem*. For instance, it turns out that most of the above claims have analogues for *bounded* self-adjoint operators . However, in the theory of partial differential equations, one often needs to apply the spectral theorem to *unbounded*, densely defined linear operators , which (initially, at least), are only defined on a dense subspace of the Hilbert space . A very typical situation arises when is the square-integrable functions on some domain or manifold (which may have a boundary or be otherwise “incomplete”), and are the smooth compactly supported functions on , and is some linear differential operator. It is then of interest to obtain the spectral theorem for such operators, so that one build operators such as or to solve equations such as (1), (2), (3), (4).

In order to do this, some necessary conditions on the densely defined operator must be imposed. The most obvious is that of *symmetry*, which asserts that

for all . In some applications, one also wants to impose *positive definiteness*, which asserts that

for all . These hypotheses are sufficient in the case when is bounded, and in particular when is finite dimensional. However, as it turns out, for unbounded operators these conditions are not, by themselves, enough to obtain a good spectral theory. For instance, one consequence of the spectral theorem should be that the resolvents are well-defined for any strictly complex , which by duality implies that the image of should be dense in . However, this can fail if one just assumes symmetry, or symmetry and positive definiteness. A well-known example occurs when is the Hilbert space , is the space of test functions, and is the one-dimensional Laplacian . Then is symmetric and positive, but the operator does not have dense image for any complex , since

for all test functions , as can be seen from a routine integration by parts. As such, the resolvent map is not everywhere uniquely defined. There is also a lack of uniqueness for the wave, heat, and Schrödinger equations for this operator (note that there are no spatial boundary conditions specified in these equations).

Another example occurs when , , is the momentum operator . Then the resolvent can be uniquely defined for in the upper half-plane, but not in the lower half-plane, due to the obstruction

for all test functions (note that the function lies in when is in the lower half-plane). For related reasons, the translation operators have a problem with either uniqueness or existence (depending on whether is positive or negative), due to the unspecified boundary behaviour at the origin.

The key property that lets one avoid this bad behaviour is that of essential self-adjointness. Once is essentially self-adjoint, then spectral theorem becomes applicable again, leading to all the expected behaviour (e.g. existence and uniqueness for the various PDE given above).

Unfortunately, the concept of essential self-adjointness is defined rather abstractly, and is difficult to verify directly; unlike the symmetry condition (5) or the positive condition (6), it is not a “local” condition that can be easily verified just by testing on various inputs, but is instead a more “global” condition. In practice, to verify this property, one needs to invoke one of a number of a partial converses to the spectral theorem, which roughly speaking asserts that if at least one of the expected consequences of the spectral theorem is true for some symmetric densely defined operator , then is self-adjoint. Examples of “expected consequences” include:

- Existence of resolvents (or equivalently, dense image for );
- Existence of a contractive heat propagator semigroup (in the positive case);
- Existence of a unitary Schrödinger propagator group ;
- Existence of a unitary wave propagator group (in the positive case);
- Existence of a “reasonable” functional calculus.
- Unitary equivalence with a multiplication operator.

Thus, to actually verify essential self-adjointness of a differential operator, one typically has to first solve a PDE (such as the wave, Schrödinger, heat, or Helmholtz equation) by some non-spectral method (e.g. by a contraction mapping argument, or a perturbation argument based on an operator already known to be essentially self-adjoint). Once one can solve one of the PDEs, then one can apply one of the known converse spectral theorems to obtain essential self-adjointness, and then by the forward spectral theorem one can then solve all the other PDEs as well. But there is no getting out of that first step, which requires some input (typically of an ODE, PDE, or geometric nature) that is external to what abstract spectral theory can provide. For instance, if one wants to establish essential self-adjointness of the Laplace-Beltrami operator on a smooth Riemannian manifold (using as the domain space), it turns out (under reasonable regularity hypotheses) that essential self-adjointness is equivalent to geodesic completeness of the manifold, which is a global ODE condition rather than a local one: one needs geodesics to continue indefinitely in order to be able to (unitarily) solve PDEs such as the wave equation, which in turn leads to essential self-adjointness. (Note that the domains and in the previous examples were not geodesically complete.) For this reason, essential self-adjointness of a differential operator is sometimes referred to as *quantum completeness* (with the completeness of the associated Hamilton-Jacobi flow then being the analogous *classical completeness*).

In these notes, I wanted to record (mostly for my own benefit) the forward and converse spectral theorems, and to verify essential self-adjointness of the Laplace-Beltrami operator on geodesically complete manifolds. This is extremely standard analysis (covered, for instance, in the texts of Reed and Simon), but I wanted to write it down myself to make sure that I really understood this foundational material properly.

## Recent Comments