You are currently browsing the category archive for the ‘math.CV’ category.

Dimitri Shlyakhtenko and I have uploaded to the arXiv our paper Fractional free convolution powers. For me, this project (which we started during the 2018 IPAM program on quantitative linear algebra) was motivated by a desire to understand the behavior of the *minor process* applied to a large random Hermitian matrix , in which one takes the successive upper left minors of and computes their eigenvalues in non-decreasing order. These eigenvalues are related to each other by the Cauchy interlacing inequalities

*Gelfand-Tsetlin pattern*, as discussed in these previous blog posts.

When is large and the matrix is a random matrix with empirical spectral distribution converging to some compactly supported probability measure on the real line, then under suitable hypotheses (e.g., unitary conjugation invariance of the random matrix ensemble ), a “concentration of measure” effect occurs, with the spectral distribution of the minors for for any fixed converging to a specific measure that depends only on and . The reason for this notation is that there is a surprising description of this measure when is a natural number, namely it is the free convolution of copies of , pushed forward by the dilation map . For instance, if is the Wigner semicircular measure , then . At the random matrix level, this reflects the fact that the minor of a GUE matrix is again a GUE matrix (up to a renormalizing constant).

As first observed by Bercovici and Voiculescu and developed further by Nica and Speicher, among other authors, the notion of a free convolution power of can be extended to non-integer , thus giving the notion of a “fractional free convolution power”. This notion can be defined in several different ways. One of them proceeds via the Cauchy transform

of the measure , and can be defined by solving the Burgers-type equation with initial condition (see this previous blog post for a derivation). This equation can be solved explicitly using the*-transform*of , defined by solving the equation for sufficiently large , in which case one can show that (In the case of the semicircular measure , the -transform is simply the identity: .)

Nica and Speicher also gave a free probability interpretation of the fractional free convolution power: if is a noncommutative random variable in a noncommutative probability space with distribution , and is a real projection operator free of with trace , then the “minor” of (viewed as an element of a new noncommutative probability space whose elements are minors , with trace ) has the law of (we give a self-contained proof of this in an appendix to our paper). This suggests that the minor process (or fractional free convolution) can be studied within the framework of free probability theory.

One of the known facts about integer free convolution powers is monotonicity of the *free entropy*

*free Fisher information*which were introduced by Voiculescu as free probability analogues of the classical probability concepts of differential entropy and classical Fisher information. (Here we correct a small typo in the normalization constant of Fisher entropy as presented in Voiculescu’s paper.) Namely, it was shown by Shylakhtenko that the quantity is monotone non-decreasing for integer , and the Fisher information is monotone non-increasing for integer . This is the free probability analogue of the corresponding monotonicities for differential entropy and classical Fisher information that was established by Artstein, Ball, Barthe, and Naor, answering a question of Shannon.

Our first main result is to extend the monotonicity results of Shylakhtenko to fractional . We give two proofs of this fact, one using free probability machinery, and a more self contained (but less motivated) proof using integration by parts and contour integration. The free probability proof relies on the concept of the *free score* of a noncommutative random variable, which is the analogue of the classical score. The free score, also introduced by Voiculescu, can be defined by duality as measuring the perturbation with respect to semicircular noise, or more precisely

The free score interacts very well with the free minor process , in particular by standard calculations one can establish the identity

whenever is a noncommutative random variable, is an algebra of noncommutative random variables, and is a real projection of trace that is free of both and . The monotonicity of free Fisher information then follows from an application of Pythagoras’s theorem (which implies in particular that conditional expectation operators are contractions on ). The monotonicity of free entropy then follows from an integral representation of free entropy as an integral of free Fisher information along the free Ornstein-Uhlenbeck process (or equivalently, free Fisher information is essentially the rate of change of free entropy with respect to perturbation by semicircular noise). The argument also shows when equality holds in the monotonicity inequalities; this occurs precisely when is a semicircular measure up to affine rescaling.After an extensive amount of calculation of all the quantities that were implicit in the above free probability argument (in particular computing the various terms involved in the application of Pythagoras’ theorem), we were able to extract a self-contained proof of monotonicity that relied on differentiating the quantities in and using the differential equation (1). It turns out that if for sufficiently regular , then there is an identity

where is the kernel and . It is not difficult to show that is a positive semi-definite kernel, which gives the required monotonicity. It would be interesting to obtain some more insightful interpretation of the kernel and the identity (2).These monotonicity properties hint at the minor process being associated to some sort of “gradient flow” in the parameter. We were not able to formalize this intuition; indeed, it is not clear what a gradient flow on a varying noncommutative probability space even means. However, after substantial further calculation we were able to formally describe the minor process as the Euler-Lagrange equation for an intriguing Lagrangian functional that we conjecture to have a random matrix interpretation. We first work in “Lagrangian coordinates”, defining the quantity on the “Gelfand-Tsetlin pyramid”

by the formula which is well defined if the density of is sufficiently well behaved. The random matrix interpretation of is that it is the asymptotic location of the eigenvalue of the upper left minor of a random matrix with asymptotic empirical spectral distribution and with unitarily invariant distribution, thus is in some sense a continuum limit of Gelfand-Tsetlin patterns. Thus for instance the Cauchy interlacing laws in this asymptotic limit regime become After a lengthy calculation (involving extensive use of the chain rule and product rule), the equation (1) is equivalent to the Euler-Lagrange equation where is the Lagrangian density Thus the minor process is formally a critical point of the integral . The quantity measures the mean eigenvalue spacing at some location of the Gelfand-Tsetlin pyramid, and the ratio measures mean eigenvalue drift in the minor process. This suggests that this Lagrangian density is some sort of measure of entropy of the asymptotic microscale point process emerging from the minor process at this spacing and drift. There is work of Metcalfe demonstrating that this point process is given by the Boutillier bead model, so we conjecture that this Lagrangian density somehow measures the entropy density of this process.Kari Astala, Steffen Rohde, Eero Saksman and I have (finally!) uploaded to the arXiv our preprint “Homogenization of iterated singular integrals with applications to random quasiconformal maps“. This project started (and was largely completed) over a decade ago, but for various reasons it was not finalised until very recently. The motivation for this project was to study the behaviour of “random” quasiconformal maps. Recall that a (smooth) quasiconformal map is a homeomorphism that obeys the Beltrami equation

for some*Beltrami coefficient*; this can be viewed as a deformation of the Cauchy-Riemann equation . Assuming that is asymptotic to at infinity, one can (formally, at least) solve for in terms of using the

*Beurling transform*by the Neumann series We looked at the question of the asymptotic behaviour of if is a random field that oscillates at some fine spatial scale . A simple model to keep in mind is where are independent random signs and is a bump function. For models such as these, we show that a homogenisation occurs in the limit ; each multilinear expression converges weakly in probability (and almost surely, if we restrict to a lacunary sequence) to a deterministic limit, and the associated quasiconformal map similarly converges weakly in probability (or almost surely). (Results of this latter type were also recently obtained by Ivrii and Markovic by a more geometric method which is simpler, but is applied to a narrower class of Beltrami coefficients.) In the specific case (1), the limiting quasiconformal map is just the identity map , but if for instance replaces the by non-symmetric random variables then one can have significantly more complicated limits. The convergence theorem for multilinear expressions such as is not specific to the Beurling transform ; any other translation and dilation invariant singular integral can be used here.

The random expression (2) is somewhat reminiscent of a moment of a random matrix, and one can start computing it analogously. For instance, if one has a decomposition such as (1), then (2) expands out as a sum

The random fluctuations of this sum can be treated by a routine second moment estimate, and the main task is to show that the expected value becomes asymptotically independent of .If all the were distinct then one could use independence to factor the expectation to get

which is a relatively straightforward expression to calculate (particularly in the model (1), where all the expectations here in fact vanish). The main difficulty is that there are a number of configurations in (3) in which various of the collide with each other, preventing one from easily factoring the expression. A typical problematic contribution for instance would be a sum of the form This is an example of what we call a*non-split*sum. This can be compared with the

*split sum*If we ignore the constraint in the latter sum, then it splits into where and and one can hope to treat this sum by an induction hypothesis. (To actually deal with constraints such as requires an inclusion-exclusion argument that creates some notational headaches but is ultimately manageable.) As the name suggests, the non-split configurations such as (4) cannot be factored in this fashion, and are the most difficult to handle. A direct computation using the triangle inequality (and a certain amount of combinatorics and induction) reveals that these sums are somewhat localised, in that dyadic portions such as exhibit power decay in (when measured in suitable function space norms), basically because of the large number of times one has to transition back and forth between and . Thus, morally at least, the dominant contribution to a non-split sum such as (4) comes from the local portion when . From the translation and dilation invariance of this type of expression then simplifies to something like (plus negligible errors) for some reasonably decaying function , and this can be shown to converge to a weak limit as .

In principle all of these limits are computable, but the combinatorics is remarkably complicated, and while there is certainly some algebraic structure to the calculations, it does not seem to be easily describable in terms of an existing framework (e.g., that of free probability).

A useful rule of thumb in complex analysis is that holomorphic functions behave like large degree polynomials . This can be evidenced for instance at a “local” level by the Taylor series expansion for a complex analytic function in the disk, or at a “global” level by factorisation theorems such as the Weierstrass factorisation theorem (or the closely related Hadamard factorisation theorem). One can truncate these theorems in a variety of ways (e.g., Taylor’s theorem with remainder) to be able to approximate a holomorphic function by a polynomial on various domains.

In some cases it can be convenient instead to work with polynomials of another variable such as (or more generally for a scaling parameter ). In the case of the Riemann zeta function, defined by meromorphic continuation of the formula

one ends up having the following heuristic approximation in the neighbourhood of a point on the critical line:

Heuristic 1 (Polynomial approximation)Let be a height, let be a “typical” element of , and let be an integer. Let be the linear change of variables

The requirement is necessary since the right-hand side is periodic with period in the variable (or period in the variable), whereas the zeta function is not expected to have any such periodicity, even approximately.

Let us give two non-rigorous justifications of this heuristic. Firstly, it is standard that inside the critical strip (with ) we have an approximate form

of (11). If we group the integers from to into bins depending on what powers of they lie between, we thus have

For with and we heuristically have

and so

where are the partial Dirichlet series

This gives the desired polynomial approximation.

A second non-rigorous justification is as follows. From factorisation theorems such as the Hadamard factorisation theorem we expect to have

where runs over the non-trivial zeroes of , and there are some additional factors arising from the trivial zeroes and poles of which we will ignore here; we will also completely ignore the issue of how to renormalise the product to make it converge properly. In the region , the dominant contribution to this product (besides multiplicative constants) should arise from zeroes that are also in this region. The Riemann-von Mangoldt formula suggests that for “typical” one should have about such zeroes. If one lets be any enumeration of zeroes closest to , and then repeats this set of zeroes periodically by period , one then expects to have an approximation of the form

again ignoring all issues of convergence. If one writes and , then Euler’s famous product formula for sine basically gives

(here we are glossing over some technical issues regarding renormalisation of the infinite products, which can be dealt with by studying the asymptotics as ) and hence we expect

This again gives the desired polynomial approximation.

Below the fold we give a rigorous version of the second argument suitable for “microscale” analysis. More precisely, we will show

Theorem 2Let be an integer going sufficiently slowly to infinity. Let go to zero sufficiently slowly depending on . Let be drawn uniformly at random from . Then with probability (in the limit ), and possibly after adjusting by , there exists a polynomial of degree and obeying the functional equation (9) below, such that

It should be possible to refine the arguments to extend this theorem to the mesoscale setting by letting be anything growing like , and anything growing like ; also we should be able to delete the need to adjust by . We have not attempted these optimisations here.

Many conjectures and arguments involving the Riemann zeta function can be heuristically translated into arguments involving the polynomials , which one can view as random degree polynomials if is interpreted as a random variable drawn uniformly at random from . These can be viewed as providing a “toy model” for the theory of the Riemann zeta function, in which the complex analysis is simplified to the study of the zeroes and coefficients of this random polynomial (for instance, the role of the gamma function is now played by a monomial in ). This model also makes the zeta function theory more closely resemble the function field analogues of this theory (in which the analogue of the zeta function is also a polynomial (or a rational function) in some variable , as per the Weil conjectures). The parameter is at our disposal to choose, and reflects the scale at which one wishes to study the zeta function. For “macroscopic” questions, at which one wishes to understand the zeta function at unit scales, it is natural to take (or very slightly larger), while for “microscopic” questions one would take close to and only growing very slowly with . For the intermediate “mesoscopic” scales one would take somewhere between and . Unfortunately, the statistical properties of are only understood well at a conjectural level at present; even if one assumes the Riemann hypothesis, our understanding of is largely restricted to the computation of low moments (e.g., the second or fourth moments) of various linear statistics of and related functions (e.g., , , or ).

Let’s now heuristically explore the polynomial analogues of this theory in a bit more detail. The Riemann hypothesis basically corresponds to the assertion that all the zeroes of the polynomial lie on the unit circle (which, after the change of variables , corresponds to being real); in a similar vein, the GUE hypothesis corresponds to having the asymptotic law of a random scalar times the characteristic polynomial of a random unitary matrix. Next, we consider what happens to the functional equation

A routine calculation involving Stirling’s formula reveals that

with ; one also has the closely related approximation

when . Since , applying (5) with and using the approximation (2) suggests a functional equation for :

where is the polynomial with all the coefficients replaced by their complex conjugate. Thus if we write

then the functional equation can be written as

We remark that if we use the heuristic (3) (interpreting the cutoffs in the summation in a suitably vague fashion) then this equation can be viewed as an instance of the Poisson summation formula.

Another consequence of the functional equation is that the zeroes of are symmetric with respect to inversion across the unit circle. This is of course consistent with the Riemann hypothesis, but does not obviously imply it. The phase is of little consequence in this functional equation; one could easily conceal it by working with the phase rotation of instead.

One consequence of the functional equation is that is real for any ; the same is then true for the derivative . Among other things, this implies that cannot vanish unless does also; thus the zeroes of will not lie on the unit circle except where has repeated zeroes. The analogous statement is true for ; the zeroes of will not lie on the critical line except where has repeated zeroes.

Relating to this fact, it is a classical result of Speiser that the Riemann hypothesis is true if and only if all the zeroes of the derivative of the zeta function in the critical strip lie on or to the *right* of the critical line. The analogous result for polynomials is

Proposition 3We have(where all zeroes are counted with multiplicity.) In particular, the zeroes of all lie on the unit circle if and only if the zeroes of lie in the closed unit disk.

*Proof:* From the functional equation we have

Thus it will suffice to show that and have the same number of zeroes outside the closed unit disk.

Set , then is a rational function that does not have a zero or pole at infinity. For not a zero of , we have already seen that and are real, so on dividing we see that is always real, that is to say

(This can also be seen by writing , where runs over the zeroes of , and using the fact that these zeroes are symmetric with respect to reflection across the unit circle.) When is a zero of , has a simple pole at with residue a positive multiple of , and so stays on the right half-plane if one traverses a semicircular arc around outside the unit disk. From this and continuity we see that stays on the right-half plane in a circle slightly larger than the unit circle, and hence by the argument principle it has the same number of zeroes and poles outside of this circle, giving the claim.

From the functional equation and the chain rule, is a zero of if and only if is a zero of . We can thus write the above proposition in the equivalent form

One can use this identity to get a lower bound on the number of zeroes of by the method of mollifiers. Namely, for any other polynomial , we clearly have

By Jensen’s formula, we have for any that

We therefore have

As the logarithm function is concave, we can apply Jensen’s inequality to conclude

where the expectation is over the parameter. It turns out that by choosing the mollifier carefully in order to make behave like the function (while keeping the degree small enough that one can compute the second moment here), and then optimising in , one can use this inequality to get a positive fraction of zeroes of on the unit circle on average. This is the polynomial analogue of a classical argument of Levinson, who used this to show that at least one third of the zeroes of the Riemann zeta function are on the critical line; all later improvements on this fraction have been based on some version of Levinson’s method, mainly focusing on more advanced choices for the mollifier and of the differential operator that implicitly appears in the above approach. (The most recent lower bound I know of is , due to Pratt and Robles. In principle (as observed by Farmer) this bound can get arbitrarily close to if one is allowed to use arbitrarily long mollifiers, but establishing this seems of comparable difficulty to unsolved problems such as the pair correlation conjecture; see this paper of Radziwill for more discussion.) A variant of these techniques can also establish “zero density estimates” of the following form: for any , the number of zeroes of that lie further than from the unit circle is of order on average for some absolute constant . Thus, roughly speaking, most zeroes of lie within of the unit circle. (Analogues of these results for the Riemann zeta function were worked out by Selberg, by Jutila, and by Conrey, with increasingly strong values of .)

The zeroes of tend to live somewhat closer to the origin than the zeroes of . Suppose for instance that we write

where are the zeroes of , then by evaluating at zero we see that

and the right-hand side is of unit magnitude by the functional equation. However, if we differentiate

where are the zeroes of , then by evaluating at zero we now see that

The right-hand side would now be typically expected to be of size , and so on average we expect the to have magnitude like , that is to say pushed inwards from the unit circle by a distance roughly . The analogous result for the Riemann zeta function is that the zeroes of at height lie at a distance roughly to the right of the critical line on the average; see this paper of Levinson and Montgomery for a precise statement.

**Important note:** As this is not a course in probability, we will try to avoid developing the general theory of stochastic calculus (which includes such concepts as filtrations, martingales, and Ito calculus). This will unfortunately limit what we can actually prove rigorously, and so at some places the arguments will be somewhat informal in nature. A rigorous treatment of many of the topics here can be found for instance in Lawler’s Conformally Invariant Processes in the Plane, from which much of the material here is drawn.

In these notes, random variables will be denoted in boldface.

Definition 1A real random variable is said to be normally distributed with mean and variance if one hasfor all test functions . Similarly, a complex random variable is said to be normally distributed with mean and variance if one has

for all test functions , where is the area element on .

A

real Brownian motionwith base point is a random, almost surely continuous function (using the locally uniform topology on continuous functions) with the property that (almost surely) , and for any sequence of times , the increments for are independent real random variables that are normally distributed with mean zero and variance . Similarly, acomplex Brownian motionwith base point is a random, almost surely continuous function with the property that and for any sequence of times , the increments for are independent complex random variables that are normally distributed with mean zero and variance .

Remark 2Thanks to the central limit theorem, the hypothesis that the increments be normally distributed can be dropped from the definition of a Brownian motion, so long as one retains the independence and the normalisation of the mean and variance (technically one also needs some uniform integrability on the increments beyond the second moment, but we will not detail this here). A similar statement is also true for the complex Brownian motion (where now we need to normalise the variances and covariances of the real and imaginary parts of the increments).

Real and complex Brownian motions exist from any base point or ; see e.g. this previous blog post for a construction. We have the following simple invariances:

Exercise 3

- (i) (Translation invariance) If is a real Brownian motion with base point , and , show that is a real Brownian motion with base point . Similarly, if is a complex Brownian motion with base point , and , show that is a complex Brownian motion with base point .
- (ii) (Dilation invariance) If is a real Brownian motion with base point , and is non-zero, show that is also a real Brownian motion with base point . Similarly, if is a complex Brownian motion with base point , and is non-zero, show that is also a complex Brownian motion with base point .
- (iii) (Real and imaginary parts) If is a complex Brownian motion with base point , show that and are independent real Brownian motions with base point . Conversely, if are independent real Brownian motions of base point , show that is a complex Brownian motion with base point .

The next lemma is a special case of the optional stopping theorem.

Lemma 4 (Optional stopping identities)

- (i) (Real case) Let be a real Brownian motion with base point . Let be a bounded stopping time – a bounded random variable with the property that for any time , the event that is determined by the values of the trajectory for times up to (or more precisely, this event is measurable with respect to the algebra generated by this proprtion of the trajectory). Then
and

and

- (ii) (Complex case) Let be a real Brownian motion with base point . Let be a bounded stopping time – a bounded random variable with the property that for any time , the event that is determined by the values of the trajectory for times up to . Then

*Proof:* (Slightly informal) We just prove (i) and leave (ii) as an exercise. By translation invariance we can take . Let be an upper bound for . Since is a real normally distributed variable with mean zero and variance , we have

and

and

By the law of total expectation, we thus have

and

and

where the inner conditional expectations are with respect to the event that attains a particular point in . However, from the independent increment nature of Brownian motion, once one conditions to a fixed point , the random variable becomes a real normally distributed variable with mean and variance . Thus we have

and

and

which give the first two claims, and (after some algebra) the identity

which then also gives the third claim.

Exercise 5Prove the second part of Lemma 4.

We now approach conformal maps from yet another perspective. Given an open subset of the complex numbers , define a univalent function on to be a holomorphic function that is also injective. We will primarily be studying this concept in the case when is the unit disk .

Clearly, a univalent function on the unit disk is a conformal map from to the image ; in particular, is simply connected, and not all of (since otherwise the inverse map would violate Liouville’s theorem). In the converse direction, the Riemann mapping theorem tells us that every open simply connected proper subset of the complex numbers is the image of a univalent function on . Furthermore, if contains the origin, then the univalent function with this image becomes unique once we normalise and . Thus the Riemann mapping theorem provides a one-to-one correspondence between open simply connected proper subsets of the complex plane containing the origin, and univalent functions with and . We will focus particular attention on the univalent functions with the normalisation and ; such functions will be called schlicht functions.

One basic example of a univalent function on is the Cayley transform , which is a Möbius transformation from to the right half-plane . (The slight variant is also referred to as the Cayley transform, as is the closely related map , which maps to the upper half-plane.) One can square this map to obtain a further univalent function , which now maps to the complex numbers with the negative real axis removed. One can normalise this function to be schlicht to obtain the Koebe function

which now maps to the complex numbers with the half-line removed. A little more generally, for any we have the *rotated Koebe function*

that is a schlicht function that maps to the complex numbers with the half-line removed.

Every schlicht function has a convergent Taylor expansion

for some complex coefficients with . For instance, the Koebe function has the expansion

and similarly the rotated Koebe function has the expansion

Intuitively, the Koebe function and its rotations should be the “largest” schlicht functions available. This is formalised by the famous Bieberbach conjecture, which asserts that for any schlicht function, the coefficients should obey the bound for all . After a large number of partial results, this conjecture was eventually solved by de Branges; see for instance this survey of Korevaar or this survey of Koepf for a history.

It turns out that to resolve these sorts of questions, it is convenient to restrict attention to schlicht functions that are *odd*, thus for all , and the Taylor expansion now reads

for some complex coefficients with . One can transform a general schlicht function to an odd schlicht function by observing that the function , after removing the singularity at zero, is a non-zero function that equals at the origin, and thus (as is simply connected) has a unique holomorphic square root that also equals at the origin. If one then sets

it is not difficult to verify that is an odd schlicht function which additionally obeys the equation

Conversely, given an odd schlicht function , the formula (4) uniquely determines a schlicht function .

For instance, if is the Koebe function (1), becomes

which maps to the complex numbers with two slits removed, and if is the rotated Koebe function (2), becomes

De Branges established the Bieberbach conjecture by first proving an analogous conjecture for odd schlicht functions known as Robertson’s conjecture. More precisely, we have

Theorem 1 (de Branges’ theorem)Let be a natural number.

- (i) (Robertson conjecture) If is an odd schlicht function, then
- (ii) (Bieberbach conjecture) If is a schlicht function, then

It is easy to see that the Robertson conjecture for a given value of implies the Bieberbach conjecture for the same value of . Indeed, if is schlicht, and is the odd schlicht function given by (3), then from extracting the coefficient of (4) we obtain a formula

for the coefficients of in terms of the coefficients of . Applying the Cauchy-Schwarz inequality, we derive the Bieberbach conjecture for this value of from the Robertson conjecture for the same value of . We remark that Littlewood and Paley had conjectured a stronger form of Robertson’s conjecture, but this was disproved for by Fekete and Szegö.

To prove the Robertson and Bieberbach conjectures, one first takes a logarithm and deduces both conjectures from a similar conjecture about the Taylor coefficients of , known as the *Milin conjecture*. Next, one continuously enlarges the image of the schlicht function to cover all of ; done properly, this places the schlicht function as the initial function in a sequence of univalent maps known as a Loewner chain. The functions obey a useful differential equation known as the Loewner equation, that involves an unspecified forcing term (or , in the case that the image is a slit domain) coming from the boundary; this in turn gives useful differential equations for the Taylor coefficients of , , or . After some elementary calculus manipulations to “integrate” this equations, the Bieberbach, Robertson, and Milin conjectures are then reduced to establishing the non-negativity of a certain explicit hypergeometric function, which is non-trivial to prove (and will not be done here, except for small values of ) but for which several proofs exist in the literature.

The theory of Loewner chains subsequently became fundamental to a more recent topic in complex analysis, that of the Schramm-Loewner equation (SLE), which is the focus of the next and final set of notes.

We now leave the topic of Riemann surfaces, and turn now to the (loosely related) topic of conformal mapping (and quasiconformal mapping). Recall that a conformal map from an open subset of the complex plane to another open set is a map that is holomorphic and bijective, which (by Rouché’s theorem) also forces the derivative of to be nowhere vanishing. We then say that the two open sets are conformally equivalent. From the Cauchy-Riemann equations we see that conformal maps are orientation-preserving and angle-preserving; from the Newton approximation we see that they almost preserve small circles, indeed for small the circle will approximately map to .

In previous quarters, we proved a fundamental theorem about this concept, the Riemann mapping theorem:

Theorem 1 (Riemann mapping theorem)Let be a simply connected open subset of that is not all of . Then is conformally equivalent to the unit disk .

This theorem was proven in these 246A lecture notes, using an argument of Koebe. At a very high level, one can sketch Koebe’s proof of the Riemann mapping theorem as follows: among all the injective holomorphic maps from to that map some fixed point to , pick one that maximises the magnitude of the derivative (ignoring for this discussion the issue of proving that a maximiser exists). If avoids some point in , one can compose with various holomorphic maps and use Schwarz’s lemma and the chain rule to increase without destroying injectivity; see the previous lecture notes for details. The conformal map is unique up to Möbius automorphisms of the disk; one can fix the map by picking two distinct points in , and requiring to be zero and to be positive real.

It is a beautiful observation of Thurston that the concept of a conformal mapping has a discrete counterpart, namely the mapping of one circle packing to another. Furthermore, one can run a version of Koebe’s argument (using now a discrete version of Perron’s method) to prove the Riemann mapping theorem through circle packings. In principle, this leads to a mostly elementary approach to conformal geometry, based on extremely classical mathematics that goes all the way back to Apollonius. However, in order to *prove* the basic existence and uniqueness theorems of circle packing, as well as the convergence to conformal maps in the continuous limit, it seems to be necessary (or at least highly convenient) to use much more modern machinery, including the theory of quasiconformal mapping, and also the Riemann mapping theorem itself (so in particular we are not structuring these notes to provide a completely independent proof of that theorem, though this may well be possible).

To make the above discussion more precise we need some notation.

Definition 2 (Circle packing)A (finite)circle packingis a finite collection of circles in the complex numbers indexed by some finite set , whose interiors are all disjoint (but which are allowed to be tangent to each other), and whose union is connected. Thenerveof a circle packing is the finite graph whose vertices are the centres of the circle packing, with two such centres connected by an edge if the circles are tangent. (In these notes all graphs are undirected, finite and simple, unless otherwise specified.)

It is clear that the nerve of a circle packing is connected and planar, since one can draw the nerve by placing each vertex (tautologically) in its location in the complex plane, and drawing each edge by the line segment between the centres of the circles it connects (this line segment will pass through the point of tangency of the two circles). Later in these notes we will also have to consider some infinite circle packings, most notably the infinite regular hexagonal circle packing.

The first basic theorem in the subject is the following converse statement:

Theorem 3 (Circle packing theorem)Every connected planar graph is the nerve of a circle packing.

Of course, there can be multiple circle packings associated to a given connected planar graph; indeed, since reflections across a line and Möbius transformations map circles to circles (or lines), they will map circle packings to circle packings (unless one or more of the circles is sent to a line). It turns out that once one adds enough edges to the planar graph, the circle packing is otherwise rigid:

Theorem 4 (Koebe-Andreev-Thurston theorem)If a connected planar graph is maximal (i.e., no further edge can be added to it without destroying planarity), then the circle packing given by the above theorem is unique up to reflections and Möbius transformations.

Exercise 5Let be a connected planar graph with vertices. Show that the following are equivalent:

- (i) is a maximal planar graph.
- (ii) has edges.
- (iii) Every drawing of divides the plane into faces that have three edges each. (This includes one unbounded face.)
- (iv) At least one drawing of divides the plane into faces that have three edges each.
(

Hint:use Euler’s formula , where is the number of faces including the unbounded face.)

Thurston conjectured that circle packings can be used to approximate the conformal map arising in the Riemann mapping theorem. Here is an informal statement:

Conjecture 6 (Informal Thurston conjecture)Let be a simply connected domain, with two distinct points . Let be the conformal map from to that maps to the origin and to a positive real. For any small , let be the portion of the regular hexagonal circle packing by circles of radius that are contained in , and let be an circle packing of with all “boundary circles” tangent to , giving rise to an “approximate map” defined on the subset of consisting of the circles of , their interiors, and the interstitial regions between triples of mutually tangent circles. Normalise this map so that is zero and is a positive real. Then converges to as .

A rigorous version of this conjecture was proven by Rodin and Sullivan. Besides some elementary geometric lemmas (regarding the relative sizes of various configurations of tangent circles), the main ingredients are a rigidity result for the regular hexagonal circle packing, and the theory of quasiconformal maps. Quasiconformal maps are what seem on the surface to be a very broad generalisation of the notion of a conformal map. Informally, conformal maps take infinitesimal circles to infinitesimal circles, whereas quasiconformal maps take infinitesimal circles to infinitesimal ellipses of bounded eccentricity. In terms of Wirtinger derivatives, conformal maps obey the Cauchy-Riemann equation , while (sufficiently smooth) quasiconformal maps only obey an inequality . As such, quasiconformal maps are considerably more plentiful than conformal maps, and in particular it is possible to create piecewise smooth quasiconformal maps by gluing together various simple maps such as affine maps or Möbius transformations; such piecewise maps will naturally arise when trying to rigorously build the map alluded to in the above conjecture. On the other hand, it turns out that quasiconformal maps still have many vestiges of the rigidity properties enjoyed by conformal maps; for instance, there are quasiconformal analogues of fundamental theorems in conformal mapping such as the Schwarz reflection principle, Liouville’s theorem, or Hurwitz’s theorem. Among other things, these quasiconformal rigidity theorems allow one to create conformal maps from the limit of quasiconformal maps in many circumstances, and this will be how the Thurston conjecture will be proven. A key technical tool in establishing these sorts of rigidity theorems will be the theory of an important quasiconformal (quasi-)invariant, the *conformal modulus* (or, equivalently, the extremal length, which is the reciprocal of the modulus).

The fundamental object of study in real differential geometry are the real manifolds: Hausdorff topological spaces that locally look like open subsets of a Euclidean space , and which can be equipped with an atlas of coordinate charts from open subsets covering to open subsets in , which are homeomorphisms; in particular, the *transition maps* defined by are all continuous. (It is also common to impose the requirement that the manifold be second countable, though this will not be important for the current discussion.) A *smooth real manifold* is a real manifold in which the transition maps are all smooth.

In a similar fashion, the fundamental object of study in complex differential geometry are the complex manifolds, in which the model space is rather than , and the transition maps are required to be holomorphic (and not merely smooth or continuous). In the real case, the one-dimensional manifolds (curves) are quite simple to understand, particularly if one requires the manifold to be connected; for instance, all compact connected one-dimensional real manifolds are homeomorphic to the unit circle (why?). However, in the complex case, the connected one-dimensional manifolds – the ones that look locally like subsets of – are much richer, and are known as Riemann surfaces. For sake of completeness we give the (somewhat lengthy) formal definition:

Definition 1 (Riemann surface)If is a Hausdorff connected topological space, a (one-dimensional complex) atlas is a collection of homeomorphisms from open subsets of that cover to open subsets of the complex numbers , such that the transition maps defined by are all holomorphic. Here is an arbitrary index set. Two atlases , on are said to beequivalentif their union is also an atlas, thus the transition maps and their inverses are all holomorphic. A Riemann surface is a Hausdorff connected topological space equipped with an equivalence class of one-dimensional complex atlases.A map from one Riemann surface to another is

holomorphicif the maps are holomorphic for any charts , of an atlas of and respectively; it is not hard to see that this definition does not depend on the choice of atlas. It is also clear that the composition of two holomorphic maps is holomorphic (and in fact the class of Riemann surfaces with their holomorphic maps forms a category).

Here are some basic examples of Riemann surfaces.

Example 2 (Quotients of )The complex numbers clearly form a Riemann surface (using the identity map as the single chart for an atlas). Of course, maps that are holomorphic in the usual sense will also be holomorphic in the sense of the above definition, and vice versa, so the notion of holomorphicity for Riemann surfaces is compatible with that of holomorphicity for complex maps. More generally, given any discrete additive subgroup of , the quotient is a Riemann surface. There are an infinite number of possible atlases to use here; one such is to pick a sufficiently small neighbourhood of the origin in and take the atlas where and for all . In particular, given any non-real complex number , the complex torus formed by quotienting by the lattice is a Riemann surface.

Example 3Any open connected subset of is a Riemann surface. By the Riemann mapping theorem, all simply connected open , other than itself, are isomorphic (as Riemann surfaces) to the unit disk (or, equivalently, to the upper half-plane).

Example 4 (Riemann sphere)The Riemann sphere , as a topological manifold, is the one-point compactification of . Topologically, this is a sphere and is in particular connected. One can cover the Riemann sphere by the two open sets and , and give these two open sets the charts and defined by for , for , and . This is a complex atlas since the is holomorphic on .An alternate way of viewing the Riemann sphere is as the projective line . Topologically, this is the punctured complex plane quotiented out by non-zero complex dilations, thus elements of this space are equivalence classes with the usual quotient topology. One can cover this space by two open sets and and give these two open sets the charts and defined by for , . This is a complex atlas, basically because for and is holomorphic on .

Exercise 5Verify that the Riemann sphere is isomorphic (as a Riemann surface) to the projective line.

Example 6 (Smooth algebraic plane curves)Let be a complex polynomial in three variables which is homogeneous of some degree , thusDefine the complex projective plane to be the punctured space quotiented out by non-zero complex dilations, with the usual quotient topology. (There is another important topology to place here of fundamental importance in algebraic geometry, namely the Zariski topology, but we will ignore this topology here.) This is a compact space, whose elements are equivalence classes . Inside this plane we can define the (projective, degree ) algebraic curve

this is well defined thanks to (1). It is easy to verify that is a closed subset of and hence compact; it is non-empty thanks to the fundamental theorem of algebra.

Suppose that is

irreducible, which means that it is not the product of polynomials of smaller degree. As we shall show in the appendix, this makes the algebraic curve connected. (Actually, algebraic curves remain connected even in the reducible case, thanks to Bezout’s theorem, but we will not prove that theorem here.) We will in fact make the strongernonsingularityhypothesis: there is no triple such that the four numbers simultaneously vanish for . (This looks like four constraints, but is in fact essentially just three, due to the Euler identitythat arises from differentiating (1) in . The fact that nonsingularity implies irreducibility is another consequence of Bezout’s theorem, which is not proven here.) For instance, the polynomial is irreducible but singular (there is a “cusp” singularity at ). With this hypothesis, we call the curve

smooth.Now suppose is a point in ; without loss of generality we may take non-zero, and then we can normalise . Now one can think of as an inhomogeneous polynomial in just two variables , and by nondegeneracy we see that the gradient is non-zero whenever . By the (complexified) implicit function theorem, this ensures that the

affine algebraic curveis a Riemann surface in a neighbourhood of ; we leave this as an exercise. This can be used to give a coordinate chart for in a neighbourhood of when . Similarly when is non-zero. This can be shown to give an atlas on , which (assuming the connectedness claim that we will prove later) gives the structure of a Riemann surface.

Exercise 7State and prove a complex version of the implicit function theorem that justifies the above claim that the charts in the above example form an atlas, and an algebraic curve associated to a non-singular polynomial is a Riemann surface.

- (i) Show that all (irreducible plane projective) algebraic curves of degree are isomorphic to the Riemann sphere. (Hint: reduce to an explicit linear polynomial such as .)
- (ii) Show that all (irreducible plane projective) algebraic curves of degree are isomorphic to the Riemann sphere. (Hint: to reduce computation, first use some linear algebra to reduce the homogeneous quadratic polynomial to a standard form, such as or .)

Exercise 9If are complex numbers, show that the projective cubic curveis nonsingular if and only if the discriminant is non-zero. (When this occurs, the curve is called an elliptic curve (in Weierstrass form), which is a fundamentally important example of a Riemann surface in many areas of mathematics, and number theory in particular. One can also define the discriminant for polynomials of higher degree, but we will not do so here.)

A recurring theme in mathematics is that an object is often best studied by understanding spaces of “good” functions on . In complex analysis, there are two basic types of good functions:

Definition 10Let be a Riemann surface. Aholomorphic functionon is a holomorphic map from to ; the space of all such functions will be denoted . Ameromorphic functionon is a holomorphic map from to the Riemann sphere , that is not identically equal to ; the space of all such functions will be denoted .

One can also define holomorphicity and meromorphicity in terms of charts: a function is holomorphic if and only if, for any chart , the map is holomorphic in the usual complex analysis sense; similarly, a function is meromorphic if and only if the preimage is discrete (otherwise, by analytic continuation and the connectedness of , will be identically equal to ) and for any chart , the map becomes a meromorphic function in the usual complex analysis sense, after removing the discrete set of complex numbers where this map is infinite. One consequence of this alternate definition is that the space of holomorphic functions is a commutative complex algebra (a complex vector space closed under pointwise multiplication), while the space of meromorphic functions is a complex field (a commutative complex algebra where every non-zero element has an inverse). Another consequence is that one can define the notion of a zero of given order , or a pole of order , for a holomorphic or meromorphic function, by composing with a chart map and using the usual complex analysis notions there, noting (from the holomorphicity of transition maps and their inverses) that this does not depend on the choice of chart. (However, one cannot similarly define the residue of a meromorphic function on this way, as the residue turns out to be chart-dependent thanks to the chain rule. Residues should instead be applied to meromorphic -forms, a concept we will introduce later.) A third consequence is analytic continuation: if two holomorphic or meromorphic functions on agree on a non-empty open set, then they agree everywhere.

On the complex numbers , there are of course many holomorphic functions and meromorphic functions; for instance any power series with an infinite radius of convergence will give a holomorphic function, and the quotient of any two such functions (with non-zero denominator) will give a meromorphic function. Furthermore, we have extremely wide latitude in how to specify the zeroes of the holomorphic function, or the zeroes and poles of the meromorphic function, thanks to tools such as the Weierstrass factorisation theorem or the Mittag-Leffler theorem (covered in previous quarters).

It turns out, however, that the situation changes dramatically when the Riemann surface is *compact*, with the holomorphic and meromorphic functions becoming much more rigid. First of all, compactness eliminates all holomorphic functions except for the constants:

Lemma 11Let be a holomorphic function on a compact Riemann surface . Then is constant.

This result should be seen as a close sibling of Liouville’s theorem that all bounded entire functions are constant. (Indeed, in the case of a complex torus, this lemma is a corollary of Liouville’s theorem.)

*Proof:* As is continuous and is compact, must attain a maximum at some point . Working in a chart around and applying the maximum principle, we conclude that is constant in a neighbourhood of , and hence is constant everywhere by analytic continuation.

This dramatically cuts down the number of possible meromorphic functions – indeed, for an abstract Riemann surface, it is not immediately obvious that there are any non-constant meromorphic functions at all! As the poles are isolated and the surface is compact, a meromorphic function can only have finitely many poles, and if one prescribes the location of the poles and the maximum order at each pole, then we shall see that the space of meromorphic functions is now finite dimensional. The precise dimensions of these spaces are in fact rather interesting, and obey a basic duality law known as the Riemann-Roch theorem. We will give a mostly self-contained proof of the Riemann-Roch theorem in these notes, omitting only some facts about genus and Euler characteristic, as well as construction of certain meromorphic -forms (also known as Abelian differentials).

A more detailed study of Riemann surface (and more generally, complex manifolds) can be found for instance in Griffiths and Harris’s “Principles of Algebraic Geometry“.

Next quarter (starting Monday, April 2) I will be teaching Math 246C (complex analysis) here at UCLA. This is the third in a three-series graduate course on complex analysis; a few years ago I taught the first course in this series (246A), so this course can be thought of in some sense as a sequel to that one (and would certainly assume knowledge of the material in that course as a prerequisite), although it also assumes knowledge of material from the second course 246B (which covers such topics as Weierstrass factorization and the theory of harmonic functions).

246C is primarily a topics course, and tends to be a somewhat miscellaneous collection of complex analysis subjects that were not covered in the previous two installments of the series. The initial topics I have in mind to cover are

- Elliptic functions;
- The Riemann-Roch theorem;
- Circle packings;
- The Bieberbach conjecture (proven by de Branges); and
- the Schramm-Loewner equation (SLE).
- This list is however subject to change (it is the first time I will have taught on any of these topics, and I am not yet certain on the most logical way to arrange them; also I am not completely certain that I will be able to cover all the above topics in ten weeks). I welcome reference recommendations and other suggestions from readers who have taught on one or more of these topics.

As usual, I will be posting lecture notes on this blog as the course progresses.

[Update: Mar 13: removed elliptic functions, as I have just learned that this was already covered in the prior 246B course.]

Let be a monic polynomial of degree with complex coefficients. Then by the fundamental theorem of algebra, we can factor as

for some complex zeroes (possibly with repetition).

Now suppose we evolve with respect to time by heat flow, creating a function of two variables with given initial data for which

On the space of polynomials of degree at most , the operator is nilpotent, and one can solve this equation explicitly both forwards and backwards in time by the Taylor series

For instance, if one starts with a quadratic , then the polynomial evolves by the formula

As the polynomial evolves in time, the zeroes evolve also. Assuming for sake of discussion that the zeroes are simple, the inverse function theorem tells us that the zeroes will (locally, at least) evolve smoothly in time. What are the dynamics of this evolution?

For instance, in the quadratic case, the quadratic formula tells us that the zeroes are

and

after arbitrarily choosing a branch of the square root. If are real and the discriminant is initially positive, we see that we start with two real zeroes centred around , which then approach each other until time , at which point the roots collide and then move off from each other in an imaginary direction.

In the general case, we can obtain the equations of motion by implicitly differentiating the defining equation

in time using (2) to obtain

To simplify notation we drop the explicit dependence on time, thus

From (1) and the product rule, we see that

and

(where all indices are understood to range over ) leading to the equations of motion

at least when one avoids those times in which there is a repeated zero. In the case when the zeroes are real, each term represents a (first-order) attraction in the dynamics between and , but the dynamics are more complicated for complex zeroes (e.g. purely imaginary zeroes will experience repulsion rather than attraction, as one already sees in the quadratic example). Curiously, this system resembles that of Dyson brownian motion (except with the brownian motion part removed, and time reversed). I learned of the connection between the ODE (3) and the heat equation from this paper of Csordas, Smith, and Varga, but perhaps it has been mentioned in earlier literature as well.

One interesting consequence of these equations is that if the zeroes are real at some time, then they will stay real as long as the zeroes do not collide. Let us now restrict attention to the case of real simple zeroes, in which case we will rename the zeroes as instead of , and order them as . The evolution

can now be thought of as reverse gradient flow for the “entropy”

(which is also essentially the logarithm of the discriminant of the polynomial) since we have

In particular, we have the monotonicity formula

where is the “energy”

where in the last line we use the antisymmetrisation identity

Among other things, this shows that as one goes backwards in time, the entropy decreases, and so no collisions can occur to the past, only in the future, which is of course consistent with the attractive nature of the dynamics. As is a convex function of the positions , one expects to also evolve in a convex manner in time, that is to say the energy should be increasing. This is indeed the case:

Exercise 1Show that

Symmetric polynomials of the zeroes are polynomial functions of the coefficients and should thus evolve in a polynomial fashion. One can compute this explicitly in simple cases. For instance, the center of mass is an invariant:

The variance decreases linearly:

Exercise 2Establish the virial identity

As the variance (which is proportional to ) cannot become negative, this identity shows that “finite time blowup” must occur – that the zeroes must collide at or before the time .

Exercise 3Show that theStieltjes transformsolves the viscous Burgers equation

either by using the original heat equation (2) and the identity , or else by using the equations of motion (3). This relation between the Burgers equation and the heat equation is known as the Cole-Hopf transformation.

The paper of Csordas, Smith, and Varga mentioned previously gives some other bounds on the lifespan of the dynamics; roughly speaking, they show that if there is one pair of zeroes that are much closer to each other than to the other zeroes then they must collide in a short amount of time (unless there is a collision occuring even earlier at some other location). Their argument extends also to situations where there are an infinite number of zeroes, which they apply to get new results on Newman’s conjecture in analytic number theory. I would be curious to know of further places in the literature where this dynamics has been studied.

By an odd coincidence, I stumbled upon a second question in as many weeks about power series, and once again the only way I know how to prove the result is by complex methods; once again, I am leaving it here as a challenge to any interested readers, and I would be particularly interested in knowing of a proof that was not based on complex analysis (or thinly disguised versions thereof), or for a reference to previous literature where something like this identity has occured. (I suspect for instance that something like this may have shown up before in free probability, based on the answer to part (ii) of the problem.)

Here is a purely algebraic form of the problem:

Problem 1Let be a formal function of one variable . Suppose that is the formal function defined bywhere we use to denote the -fold derivative of with respect to the variable .

- (i) Show that can be formally recovered from by the formula
- (ii) There is a remarkable further formal identity relating with that does not explicitly involve any infinite summation. What is this identity?

To rigorously formulate part (i) of this problem, one could work in the commutative differential ring of formal infinite series generated by polynomial combinations of and its derivatives (with no constant term). Part (ii) is a bit trickier to formulate in this abstract ring; the identity in question is easier to state if are formal power series, or (even better) convergent power series, as it involves operations such as composition or inversion that can be more easily defined in those latter settings.

To illustrate Problem 1(i), let us compute up to third order in , using to denote any quantity involving four or more factors of and its derivatives, and similarly for other exponents than . Then we have

and hence

multiplying, we have

and

and hence after a lot of canceling

Thus Problem 1(i) holds up to errors of at least. In principle one can continue verifying Problem 1(i) to increasingly high order in , but the computations rapidly become quite lengthy, and I do not know of a direct way to ensure that one always obtains the required cancellation at the end of the computation.

Problem 1(i) can also be posed in formal power series: if

is a formal power series with no constant term with complex coefficients with , then one can verify that the series

makes sense as a formal power series with no constant term, thus

For instance it is not difficult to show that . If one further has , then it turns out that

as formal power series. Currently the only way I know how to show this is by first proving the claim for power series with a positive radius of convergence using the Cauchy integral formula, but even this is a bit tricky unless one has managed to guess the identity in (ii) first. (In fact, the way I discovered this problem was by first trying to solve (a variant of) the identity in (ii) by Taylor expansion in the course of attacking another problem, and obtaining the transform in Problem 1 as a consequence.)

The transform that takes to resembles both the exponential function

and Taylor’s formula

but does not seem to be directly connected to either (this is more apparent once one knows the identity in (ii)).

## Recent Comments