You are currently browsing the category archive for the ‘math.CV’ category.

Let be a monic polynomial of degree with complex coefficients. Then by the fundamental theorem of algebra, we can factor as

for some complex zeroes (possibly with repetition).

Now suppose we evolve with respect to time by heat flow, creating a function of two variables with given initial data for which

On the space of polynomials of degree at most , the operator is nilpotent, and one can solve this equation explicitly both forwards and backwards in time by the Taylor series

For instance, if one starts with a quadratic , then the polynomial evolves by the formula

As the polynomial evolves in time, the zeroes evolve also. Assuming for sake of discussion that the zeroes are simple, the inverse function theorem tells us that the zeroes will (locally, at least) evolve smoothly in time. What are the dynamics of this evolution?

For instance, in the quadratic case, the quadratic formula tells us that the zeroes are

and

after arbitrarily choosing a branch of the square root. If are real and the discriminant is initially positive, we see that we start with two real zeroes centred around , which then approach each other until time , at which point the roots collide and then move off from each other in an imaginary direction.

In the general case, we can obtain the equations of motion by implicitly differentiating the defining equation

in time using (2) to obtain

To simplify notation we drop the explicit dependence on time, thus

From (1) and the product rule, we see that

and

(where all indices are understood to range over ) leading to the equations of motion

at least when one avoids those times in which there is a repeated zero. In the case when the zeroes are real, each term represents a (first-order) attraction in the dynamics between and , but the dynamics are more complicated for complex zeroes (e.g. purely imaginary zeroes will experience repulsion rather than attraction, as one already sees in the quadratic example). Curiously, this system resembles that of Dyson brownian motion (except with the brownian motion part removed, and time reversed). I learned of the connection between the ODE (3) and the heat equation from this paper of Csordas, Smith, and Varga, but perhaps it has been mentioned in earlier literature as well.

One interesting consequence of these equations is that if the zeroes are real at some time, then they will stay real as long as the zeroes do not collide. Let us now restrict attention to the case of real simple zeroes, in which case we will rename the zeroes as instead of , and order them as . The evolution

can now be thought of as reverse gradient flow for the “entropy”

(which is also essentially the logarithm of the discriminant of the polynomial) since we have

In particular, we have the monotonicity formula

where is the “energy”

where in the last line we use the antisymmetrisation identity

Among other things, this shows that as one goes backwards in time, the entropy decreases, and so no collisions can occur to the past, only in the future, which is of course consistent with the attractive nature of the dynamics. As is a convex function of the positions , one expects to also evolve in a convex manner in time, that is to say the energy should be increasing. This is indeed the case:

Exercise 1Show that

Symmetric polynomials of the zeroes are polynomial functions of the coefficients and should thus evolve in a polynomial fashion. One can compute this explicitly in simple cases. For instance, the center of mass is an invariant:

The variance decreases linearly:

Exercise 2Establish the virial identity

As the variance (which is proportional to ) cannot become negative, this identity shows that “finite time blowup” must occur – that the zeroes must collide at or before the time .

Exercise 3Show that theStieltjes transformsolves the viscous Burgers equation

either by using the original heat equation (2) and the identity , or else by using the equations of motion (3). This relation between the Burgers equation and the heat equation is known as the Cole-Hopf transformation.

The paper of Csordas, Smith, and Varga mentioned previously gives some other bounds on the lifespan of the dynamics; roughly speaking, they show that if there is one pair of zeroes that are much closer to each other than to the other zeroes then they must collide in a short amount of time (unless there is a collision occuring even earlier at some other location). Their argument extends also to situations where there are an infinite number of zeroes, which they apply to get new results on Newman’s conjecture in analytic number theory. I would be curious to know of further places in the literature where this dynamics has been studied.

By an odd coincidence, I stumbled upon a second question in as many weeks about power series, and once again the only way I know how to prove the result is by complex methods; once again, I am leaving it here as a challenge to any interested readers, and I would be particularly interested in knowing of a proof that was not based on complex analysis (or thinly disguised versions thereof), or for a reference to previous literature where something like this identity has occured. (I suspect for instance that something like this may have shown up before in free probability, based on the answer to part (ii) of the problem.)

Here is a purely algebraic form of the problem:

Problem 1Let be a formal function of one variable . Suppose that is the formal function defined bywhere we use to denote the -fold derivative of with respect to the variable .

- (i) Show that can be formally recovered from by the formula
- (ii) There is a remarkable further formal identity relating with that does not explicitly involve any infinite summation. What is this identity?

To rigorously formulate part (i) of this problem, one could work in the commutative differential ring of formal infinite series generated by polynomial combinations of and its derivatives (with no constant term). Part (ii) is a bit trickier to formulate in this abstract ring; the identity in question is easier to state if are formal power series, or (even better) convergent power series, as it involves operations such as composition or inversion that can be more easily defined in those latter settings.

To illustrate Problem 1(i), let us compute up to third order in , using to denote any quantity involving four or more factors of and its derivatives, and similarly for other exponents than . Then we have

and hence

multiplying, we have

and

and hence after a lot of canceling

Thus Problem 1(i) holds up to errors of at least. In principle one can continue verifying Problem 1(i) to increasingly high order in , but the computations rapidly become quite lengthy, and I do not know of a direct way to ensure that one always obtains the required cancellation at the end of the computation.

Problem 1(i) can also be posed in formal power series: if

is a formal power series with no constant term with complex coefficients with , then one can verify that the series

makes sense as a formal power series with no constant term, thus

For instance it is not difficult to show that . If one further has , then it turns out that

as formal power series. Currently the only way I know how to show this is by first proving the claim for power series with a positive radius of convergence using the Cauchy integral formula, but even this is a bit tricky unless one has managed to guess the identity in (ii) first. (In fact, the way I discovered this problem was by first trying to solve (a variant of) the identity in (ii) by Taylor expansion in the course of attacking another problem, and obtaining the transform in Problem 1 as a consequence.)

The transform that takes to resembles both the exponential function

and Taylor’s formula

but does not seem to be directly connected to either (this is more apparent once one knows the identity in (ii)).

In the previous set of notes we introduced the notion of a *complex diffeomorphism* between two open subsets of the complex plane (or more generally, two Riemann surfaces): an invertible holomorphic map whose inverse was also holomorphic. (Actually, the last part is automatic, thanks to Exercise 40 of Notes 4.) Such maps are also known as biholomorphic maps or conformal maps (although in some literature the notion of “conformal map” is expanded to permit maps such as the complex conjugation map that are angle-preserving but not orientation-preserving, as well as maps such as the exponential map from to that are only locally injective rather than globally injective). Such complex diffeomorphisms can be used in complex analysis (or in the analysis of harmonic functions) to change the underlying domain to a domain that may be more convenient for calculations, thanks to the following basic lemma:

Lemma 1 (Holomorphicity and harmonicity are conformal invariants)Let be a complex diffeomorphism between two Riemann surfaces .

- (i) If is a function to another Riemann surface , then is holomorphic if and only if is holomorphic.
- (ii) If are open subsets of and is a function, then is harmonic if and only if is harmonic.

*Proof:* Part (i) is immediate since the composition of two holomorphic functions is holomorphic. For part (ii), observe that if is harmonic then on any ball in , is the real part of some holomorphic function thanks to Exercise 62 of Notes 3. By part (i), is also holomorphic. Taking real parts we see that is harmonic on each ball in , and hence harmonic on all of , giving one direction of (ii); the other direction is proven similarly.

Exercise 2Establish Lemma 1(ii) by direct calculation, avoiding the use of holomorphic functions. (Hint:the calculations are cleanest if one uses Wirtinger derivatives, as per Exercise 27 of Notes 1.)

Exercise 3Let be a complex diffeomorphism between two open subsets of , let be a point in , let be a natural number, and let be holomorphic. Show that has a zero (resp. a pole) of order at if and only if has a zero (resp. a pole) of order at .

From Lemma 1(ii) we can now define the notion of a harmonic function on a Riemann surface ; such a function is harmonic if, for every coordinate chart in some atlas, the map is harmonic. Lemma 1(ii) ensures that this definition of harmonicity does not depend on the choice of atlas. Similarly, using Exercise 3 one can define what it means for a holomorphic map on a Riemann surface to have a pole or zero of a given order at a point , with the definition being independent of the choice of atlas.

In view of Lemma 1, it is thus natural to ask which Riemann surfaces are complex diffeomorphic to each other, and more generally to understand the space of holomorphic maps from one given Riemann surface to another. We will initially focus attention on three important *model Riemann surfaces*:

- (i) (Elliptic model) The Riemann sphere ;
- (ii) (Parabolic model) The complex plane ; and
- (iii) (Hyperbolic model) The unit disk .

The designation of these model Riemann surfaces as elliptic, parabolic, and hyperbolic comes from Riemannian geometry, where it is natural to endow each of these surfaces with a constant curvature Riemannian metric which is positive, zero, or negative in the elliptic, parabolic, and hyperbolic cases respectively. However, we will not discuss Riemannian geometry further here.

All three model Riemann surfaces are simply connected, but none of them are complex diffeomorphic to any other; indeed, there are no non-constant holomorphic maps from the Riemann sphere to the plane or the disk, nor are there any non-constant holomorphic maps from the plane to the disk (although there are plenty of holomorphic maps going in the opposite directions). The complex automorphisms (that is, the complex diffeomorphisms from a surface to itself) of each of the three surfaces can be classified explicitly. The automorphisms of the Riemann sphere turn out to be the Möbius transformations with , also known as fractional linear transformations. The automorphisms of the complex plane are the linear transformations with , and the automorphisms of the disk are the fractional linear transformations of the form for and . Holomorphic maps from the disk to itself that fix the origin obey a basic but incredibly important estimate known as the Schwarz lemma: they are “dominated” by the identity function in the sense that for all . Among other things, this lemma gives guidance to determine when a given Riemann surface is complex diffeomorphic to a disk; we shall discuss this point further below.

It is a beautiful and fundamental fact in complex analysis that these three model Riemann surfaces are in fact an exhaustive list of the simply connected Riemann surfaces, up to complex diffeomorphism. More precisely, we have the Riemann mapping theorem and the uniformisation theorem:

Theorem 4 (Riemann mapping theorem)Let be a simply connected open subset of that is not all of . Then is complex diffeomorphic to .

Theorem 5 (Uniformisation theorem)Let be a simply connected Riemann surface. Then is complex diffeomorphic to , , or .

As we shall see, every connected Riemann surface can be viewed as the quotient of its simply connected universal cover by a discrete group of automorphisms known as deck transformations. This in principle gives a complete classification of Riemann surfaces up to complex diffeomorphism, although the situation is still somewhat complicated in the hyperbolic case because of the wide variety of discrete groups of automorphisms available in that case.

We will prove the Riemann mapping theorem in these notes, using the elegant argument of Koebe that is based on the Schwarz lemma and Montel’s theorem (Exercise 57 of Notes 4). The uniformisation theorem is however more difficult to establish; we discuss some components of a proof (based on the Perron method of subharmonic functions) here, but stop short of providing a complete proof.

The above theorems show that it is *in principle* possible to conformally map various domains into model domains such as the unit disk, but the proofs of these theorems do not readily produce *explicit* conformal maps for this purpose. For some domains we can just write down a suitable such map. For instance:

Exercise 6 (Cayley transform)Let be the upper half-plane. Show that the Cayley transform , defined byis a complex diffeomorphism from the upper half-plane to the disk , with inverse map given by

Exercise 7Show that for any real numbers , the strip is complex diffeomorphic to the disk . (Hint:use the complex exponential and a linear transformation to map the strip onto the half-plane .)

Exercise 8Show that for any real numbers , the strip is complex diffeomorphic to the disk . (Hint:use a branch of either the complex logarithm, or of a complex power .)

We will discuss some other explicit conformal maps in this set of notes, such as the Schwarz-Christoffel maps that transform the upper half-plane to polygonal regions. Further examples of conformal mapping can be found in the text of Stein-Shakarchi.

My colleague Tom Liggett recently posed to me the following problem about power series in one real variable . Observe that the power series

has very rapidly decaying coefficients (of order ), leading to an infinite radius of convergence; also, as the series converges to , the series decays very rapidly as approaches . The problem is whether this is essentially the only example of this type. More precisely:

Problem 1Let be a bounded sequence of real numbers, and suppose that the power series(which has an infinite radius of convergence) decays like as , in the sense that the function remains bounded as . Must the sequence be of the form for some constant ?

As it turns out, the problem has a very nice solution using complex analysis methods, which by coincidence I happen to be teaching right now. I am therefore posing as a challenge to my complex analysis students and to other readers of this blog to answer the above problem by complex methods; feel free to post solutions in the comments below (and in particular, if you don’t want to be spoiled, you should probably refrain from reading the comments). In fact, the *only* way I know how to solve this problem currently is by complex methods; I would be interested in seeing a purely real-variable solution that is not simply a thinly disguised version of a complex-variable argument.

(To be fair to my students, the complex variable argument does require one additional tool that is not directly covered in my notes. That tool can be found here.)

In the previous set of notes we saw that functions that were holomorphic on an open set enjoyed a large number of useful properties, particularly if the domain was simply connected. In many situations, though, we need to consider functions that are only holomorphic (or even well-defined) on *most* of a domain , thus they are actually functions outside of some small *singular set* inside . (In this set of notes we only consider *interior* singularities; one can also discuss singular behaviour at the boundary of , but this is a whole separate topic and will not be pursued here.) Since we have only defined the notion of holomorphicity on open sets, we will require the singular sets to be closed, so that the domain on which remains holomorphic is still open. A typical class of examples are the functions of the form that were already encountered in the Cauchy integral formula; if is holomorphic and , such a function would be holomorphic save for a singularity at . Another basic class of examples are the rational functions , which are holomorphic outside of the zeroes of the denominator .

Singularities come in varying levels of “badness” in complex analysis. The least harmful type of singularity is the removable singularity – a point which is an isolated singularity (i.e., an isolated point of the singular set ) where the function is undefined, but for which one can extend the function across the singularity in such a fashion that the function becomes holomorphic in a neighbourhood of the singularity. A typical example is that of the complex sinc function , which has a removable singularity at the origin , which can be removed by declaring the sinc function to equal at . The detection of isolated removable singularities can be accomplished by Riemann’s theorem on removable singularities (Exercise 35 from Notes 3): if a holomorphic function is bounded near an isolated singularity , then the singularity at may be removed.

After removable singularities, the mildest form of singularity one can encounter is that of a pole – an isolated singularity such that can be factored as for some (known as the *order* of the pole), where has a removable singularity at (and is non-zero at once the singularity is removed). Such functions have already made a frequent appearance in previous notes, particularly the case of *simple poles* when . The behaviour near of function with a pole of order is well understood: for instance, goes to infinity as approaches (at a rate comparable to ). These singularities are not, strictly speaking, removable; but if one compactifies the range of the holomorphic function to a slightly larger space known as the Riemann sphere, then the singularity can be removed. In particular, functions which only have isolated singularities that are either poles or removable can be extended to holomorphic functions to the Riemann sphere. Such functions are known as meromorphic functions, and are nearly as well-behaved as holomorphic functions in many ways. In fact, in one key respect, the family of meromorphic functions is better: the meromorphic functions on turn out to form a field, in particular the quotient of two meromorphic functions is again meromorphic (if the denominator is not identically zero).

Unfortunately, there are isolated singularities that are neither removable or poles, and are known as essential singularities. A typical example is the function , which turns out to have an essential singularity at . The behaviour of such essential singularities is quite wild; we will show here the Casorati-Weierstrass theorem, which shows that the image of near the essential singularity is dense in the complex plane, as well as the more difficult great Picard theorem which asserts that in fact the image can omit at most one point in the complex plane. Nevertheless, around any isolated singularity (even the essential ones) , it is possible to expand as a variant of a Taylor series known as a Laurent series . The coefficient of this series is particularly important for contour integration purposes, and is known as the residue of at the isolated singularity . These residues play a central role in a common generalisation of Cauchy’s theorem and the Cauchy integral formula known as the residue theorem, which is a particularly useful tool for computing (or at least transforming) contour integrals of meromorphic functions, and has proven to be a particularly popular technique to use in analytic number theory. Within complex analysis, one important consequence of the residue theorem is the argument principle, which gives a topological (and analytical) way to control the zeroes and poles of a meromorphic function.

Finally, there are the non-isolated singularities. Little can be said about these singularities in general (for instance, the residue theorem does not directly apply in the presence of such singularities), but certain types of non-isolated singularities are still relatively easy to understand. One particularly common example of such non-isolated singularity arises when trying to invert a non-injective function, such as the complex exponential or a power function , leading to branches of multivalued functions such as the complex logarithm or the root function respectively. Such branches will typically have a non-isolated singularity along a branch cut; this branch cut can be moved around the complex domain by switching from one branch to another, but usually cannot be eliminated entirely, unless one is willing to lift up the domain to a more general type of domain known as a Riemann surface. As such, one can view branch cuts as being an “artificial” form of singularity, being an artefact of a choice of local coordinates of a Riemann surface, rather than reflecting any intrinsic singularity of the function itself. The further study of Riemann surfaces is an important topic in complex analysis (as well as the related fields of complex geometry and algebraic geometry), but unfortunately this topic will probably be postponed to the next course in this sequence (which I will not be teaching).

Having discussed differentiation of complex mappings in the preceding notes, we now turn to the integration of complex maps. We first briefly review the situation of integration of (suitably regular) real functions of one variable. Actually there are *three* closely related concepts of integration that arise in this setting:

- (i) The signed definite integral , which is usually interpreted as the Riemann integral (or equivalently, the Darboux integral), which can be defined as the limit (if it exists) of the Riemann sums
where is some partition of , is an element of the interval , and the limit is taken as the maximum mesh size goes to zero. It is convenient to adopt the convention that for ; alternatively one can interpret as the limit of the Riemann sums (1), where now the (reversed) partition goes leftwards from to , rather than rightwards from to .

- (ii) The
*unsigned definite integral*, usually interpreted as the Lebesgue integral. The precise definition of this integral is a little complicated (see e.g. this previous post), but roughly speaking the idea is to approximate by simple functions for some coefficients and sets , and then approximate the integral by the quantities , where is the Lebesgue measure of . In contrast to the signed definite integral, no orientation is imposed or used on the underlying domain of integration, which is viewed as an “undirected” set . - (iii) The
*indefinite integral*or antiderivative , defined as any function whose derivative exists and is equal to on . Famously, the antiderivative is only defined up to the addition of an arbitrary constant , thus for instance .

There are some other variants of the above integrals (e.g. the Henstock-Kurzweil integral, discussed for instance in this previous post), which can handle slightly different classes of functions and have slightly different properties than the standard integrals listed here, but we will not need to discuss such alternative integrals in this course (with the exception of some improper and principal value integrals, which we will encounter in later notes).

The above three notions of integration are closely related to each other. For instance, if is a Riemann integrable function, then the signed definite integral and unsigned definite integral coincide (when the former is oriented correctly), thus

and

If is continuous, then by the fundamental theorem of calculus, it possesses an antiderivative , which is well defined up to an additive constant , and

for any , thus for instance and .

All three of the above integration concepts have analogues in complex analysis. By far the most important notion will be the complex analogue of the signed definite integral, namely the contour integral , in which the directed line segment from one real number to another is now replaced by a type of curve in the complex plane known as a contour. The contour integral can be viewed as the special case of the more general line integral , that is of particular relevance in complex analysis. There are also analogues of the Lebesgue integral, namely the arclength measure integrals and the area integrals , but these play only an auxiliary role in the subject. Finally, we still have the notion of an antiderivative (also known as a *primitive*) of a complex function .

As it turns out, the fundamental theorem of calculus continues to hold in the complex plane: under suitable regularity assumptions on a complex function and a primitive of that function, one has

whenever is a contour from to that lies in the domain of . In particular, functions that possess a primitive must be conservative in the sense that for any closed contour. This property of being conservative is not typical, in that “most” functions will not be conservative. However, there is a remarkable and far-reaching theorem, the Cauchy integral theorem (also known as the Cauchy-Goursat theorem), which asserts that any holomorphic function is conservative, so long as the domain is simply connected (or if one restricts attention to contractible closed contours). We will explore this theorem and several of its consequences the next set of notes.

At the core of almost any undergraduate real analysis course are the concepts of differentiation and integration, with these two basic operations being tied together by the fundamental theorem of calculus (and its higher dimensional generalisations, such as Stokes’ theorem). Similarly, the notion of the complex derivative and the complex line integral (that is to say, the contour integral) lie at the core of any introductory complex analysis course. Once again, they are tied to each other by the fundamental theorem of calculus; but in the complex case there is a further variant of the fundamental theorem, namely Cauchy’s theorem, which endows complex differentiable functions with many important and surprising properties that are often not shared by their real differentiable counterparts. We will give complex differentiable functions another name to emphasise this extra structure, by referring to such functions as holomorphic functions. (This term is also useful to distinguish these functions from the slightly less well-behaved meromorphic functions, which we will discuss in later notes.)

In this set of notes we will focus solely on the concept of complex differentiation, deferring the discussion of contour integration to the next set of notes. To begin with, the theory of complex differentiation will greatly resemble the theory of real differentiation; the definitions look almost identical, and well known laws of differential calculus such as the product rule, quotient rule, and chain rule carry over *verbatim* to the complex setting, and the theory of complex power series is similarly almost identical to the theory of real power series. However, when one compares the “one-dimensional” differentiation theory of the complex numbers with the “two-dimensional” differentiation theory of two real variables, we find that the dimensional discrepancy forces complex differentiable functions to obey a real-variable constraint, namely the Cauchy-Riemann equations. These equations make complex differentiable functions substantially more “rigid” than their real-variable counterparts; they imply for instance that the imaginary part of a complex differentiable function is essentially determined (up to constants) by the real part, and vice versa. Furthermore, even when considered separately, the real and imaginary components of complex differentiable functions are forced to obey the strong constraint of being *harmonic*. In later notes we will see these constraints manifest themselves in integral form, particularly through Cauchy’s theorem and the closely related Cauchy integral formula.

Despite all the constraints that holomorphic functions have to obey, a surprisingly large number of the functions of a complex variable that one actually encounters in applications turn out to be holomorphic. For instance, any polynomial with complex coefficients will be holomorphic, as will the complex exponential . From this and the laws of differential calculus one can then generate many further holomorphic functions. Also, as we will show presently, complex power series will automatically be holomorphic inside their disk of convergence. On the other hand, there are certainly basic complex functions of interest that are *not* holomorphic, such as the complex conjugation function , the absolute value function , or the real and imaginary part functions . We will also encounter functions that are only holomorphic at some portions of the complex plane, but not on others; for instance, rational functions will be holomorphic except at those few points where the denominator vanishes, and are prime examples of the *meromorphic* functions mentioned previously. Later on we will also consider functions such as branches of the logarithm or square root, which will be holomorphic outside of a *branch cut* corresponding to the choice of branch. It is a basic but important skill in complex analysis to be able to quickly recognise which functions are holomorphic and which ones are not, as many of useful theorems available to the former (such as Cauchy’s theorem) break down spectacularly for the latter. Indeed, in my experience, one of the most common “rookie errors” that beginning complex analysis students make is the error of attempting to apply a theorem about holomorphic functions to a function that is not at all holomorphic. This stands in contrast to the situation in real analysis, in which one can often obtain correct conclusions by formally applying the laws of differential or integral calculus to functions that might not actually be differentiable or integrable in a classical sense. (This latter phenomenon, by the way, can be largely explained using the theory of distributions, as covered for instance in this previous post, but this is beyond the scope of the current course.)

Remark 1In this set of notes it will be convenient to impose some unnecessarily generous regularity hypotheses (e.g. continuous second differentiability) on the holomorphic functions one is studying in order to make the proofs simpler. In later notes, we will discover that these hypotheses are in fact redundant, due to the phenomenon ofelliptic regularitythat ensures that holomorphic functions are automatically smooth.

Kronecker is famously reported to have said, “God created the natural numbers; all else is the work of man”. The truth of this statement (literal or otherwise) is debatable; but one can certainly view the other standard number systems as (iterated) completions of the natural numbers in various senses. For instance:

- The integers are the additive completion of the natural numbers (the minimal additive group that contains a copy of ).
- The rationals are the multiplicative completion of the integers (the minimal field that contains a copy of ).
- The reals are the metric completion of the rationals (the minimal complete metric space that contains a copy of ).
- The complex numbers are the algebraic completion of the reals (the minimal algebraically closed field that contains a copy of ).

These descriptions of the standard number systems are elegant and conceptual, but not entirely suitable for *constructing* the number systems in a non-circular manner from more primitive foundations. For instance, one cannot quite define the reals from scratch as the metric completion of the rationals , because the definition of a metric space itself requires the notion of the reals! (One can of course construct by other means, for instance by using Dedekind cuts or by using uniform spaces in place of metric spaces.) The definition of the complex numbers as the algebraic completion of the reals does not suffer from such a non-circularity issue, but a certain amount of field theory is required to work with this definition initially. For the purposes of quickly constructing the complex numbers, it is thus more traditional to first define as a quadratic extension of the reals , and more precisely as the extension formed by adjoining a square root of to the reals, that is to say a solution to the equation . It is not immediately obvious that this extension is in fact algebraically closed; this is the content of the famous fundamental theorem of algebra, which we will prove later in this course.

The two equivalent definitions of – as the algebraic closure, and as a quadratic extension, of the reals respectively – each reveal important features of the complex numbers in applications. Because is algebraically closed, all polynomials over the complex numbers split completely, which leads to a good spectral theory for both finite-dimensional matrices and infinite-dimensional operators; in particular, one expects to be able to diagonalise most matrices and operators. Applying this theory to constant coefficient ordinary differential equations leads to a unified theory of such solutions, in which real-variable ODE behaviour such as exponential growth or decay, polynomial growth, and sinusoidal oscillation all become aspects of a single object, the complex exponential (or more generally, the matrix exponential ). Applying this theory more generally to diagonalise arbitrary translation-invariant operators over some locally compact abelian group, one arrives at Fourier analysis, which is thus most naturally phrased in terms of complex-valued functions rather than real-valued ones. If one drops the assumption that the underlying group is abelian, one instead discovers the representation theory of unitary representations, which is simpler to study than the real-valued counterpart of orthogonal representations. For closely related reasons, the theory of complex Lie groups is simpler than that of real Lie groups.

Meanwhile, the fact that the complex numbers are a quadratic extension of the reals lets one view the complex numbers geometrically as a two-dimensional plane over the reals (the Argand plane). Whereas a point singularity in the real line disconnects that line, a point singularity in the Argand plane leaves the rest of the plane connected (although, importantly, the punctured plane is no longer simply connected). As we shall see, this fact causes singularities in complex analytic functions to be better behaved than singularities of real analytic functions, ultimately leading to the powerful residue calculus for computing complex integrals. Remarkably, this calculus, when combined with the quintessentially complex-variable technique of *contour shifting*, can also be used to compute some (though certainly not all) definite integrals of *real*-valued functions that would be much more difficult to compute by purely real-variable methods; this is a prime example of Hadamard’s famous dictum that “the shortest path between two truths in the real domain passes through the complex domain”.

Another important geometric feature of the Argand plane is the angle between two tangent vectors to a point in the plane. As it turns out, the operation of multiplication by a complex scalar preserves the magnitude and orientation of such angles; the same fact is true for any non-degenerate complex analytic mapping, as can be seen by performing a Taylor expansion to first order. This fact ties the study of complex mappings closely to that of the conformal geometry of the plane (and more generally, of two-dimensional surfaces and domains). In particular, one can use complex analytic maps to conformally transform one two-dimensional domain to another, leading among other things to the famous Riemann mapping theorem, and to the classification of Riemann surfaces.

If one Taylor expands complex analytic maps to second order rather than first order, one discovers a further important property of these maps, namely that they are harmonic. This fact makes the class of complex analytic maps extremely rigid and well behaved analytically; indeed, the entire theory of elliptic PDE now comes into play, giving useful properties such as elliptic regularity and the maximum principle. In fact, due to the magic of residue calculus and contour shifting, we already obtain these properties for maps that are merely complex differentiable rather than complex analytic, which leads to the striking fact that complex differentiable functions are automatically analytic (in contrast to the real-variable case, in which real differentiable functions can be very far from being analytic).

The geometric structure of the complex numbers (and more generally of complex manifolds and complex varieties), when combined with the algebraic closure of the complex numbers, leads to the beautiful subject of *complex algebraic geometry*, which motivates the much more general theory developed in modern algebraic geometry. However, we will not develop the algebraic geometry aspects of complex analysis here.

Last, but not least, because of the good behaviour of Taylor series in the complex plane, complex analysis is an excellent setting in which to manipulate various generating functions, particularly Fourier series (which can be viewed as boundary values of power (or Laurent) series ), as well as Dirichlet series . The theory of contour integration provides a very useful dictionary between the asymptotic behaviour of the sequence , and the complex analytic behaviour of the Dirichlet or Fourier series, particularly with regard to its poles and other singularities. This turns out to be a particularly handy dictionary in analytic number theory, for instance relating the distribution of the primes to the Riemann zeta function. Nowadays, many of the analytic number theory results first obtained through complex analysis (such as the prime number theorem) can also be obtained by more “real-variable” methods; however the complex-analytic viewpoint is still extremely valuable and illuminating.

We will frequently touch upon many of these connections to other fields of mathematics in these lecture notes. However, these are mostly side remarks intended to provide context, and it is certainly possible to skip most of these tangents and focus purely on the complex analysis material in these notes if desired.

Note: complex analysis is a very visual subject, and one should draw plenty of pictures while learning it. I am however not planning to put too many pictures in these notes, partly as it is somewhat inconvenient to do so on this blog from a technical perspective, but also because pictures that one draws on one’s own are likely to be far more useful to you than pictures that were supplied by someone else.

An extremely large portion of mathematics is concerned with locating solutions to equations such as

for in some suitable domain space (either finite-dimensional or infinite-dimensional), and various maps or . To solve the fixed point iteration equation (1), the simplest general method available is the fixed point iteration method: one starts with an initial *approximate solution* to (1), so that , and then recursively constructs the sequence by . If behaves enough like a “contraction”, and the domain is complete, then one can expect the to converge to a limit , which should then be a solution to (1). For instance, if is a map from a metric space to itself, which is a contraction in the sense that

for all and some , then with as above we have

for any , and so the distances between successive elements of the sequence decay at at least a geometric rate. This leads to the contraction mapping theorem, which has many important consequences, such as the inverse function theorem and the Picard existence theorem.

A slightly more complicated instance of this strategy arises when trying to *linearise* a complex map defined in a neighbourhood of a fixed point. For simplicity we normalise the fixed point to be the origin, thus and . When studying the complex dynamics , , of such a map, it can be useful to try to conjugate to another function , where is a holomorphic function defined and invertible near with , since the dynamics of will be conjguate to that of . Note that if and , then from the chain rule any conjugate of will also have and . Thus, the “simplest” function one can hope to conjugate to is the linear function . Let us say that is *linearisable* (around ) if it is conjugate to in some neighbourhood of . Equivalently, is linearisable if there is a solution to the Schröder equation

for some defined and invertible in a neighbourhood of with , and all sufficiently close to . (The Schröder equation is normalised somewhat differently in the literature, but this form is equivalent to the usual form, at least when is non-zero.) Note that if solves the above equation, then so does for any non-zero , so we may normalise in addition to , which also ensures local invertibility from the inverse function theorem. (Note from winding number considerations that cannot be invertible near zero if vanishes.)

We have the following basic result of Koenigs:

Theorem 1 (Koenig’s linearisation theorem)Let be a holomorphic function defined near with and . If (attracting case) or (repelling case), then is linearisable near zero.

*Proof:* Observe that if solve (2), then solve (2) also (in a sufficiently small neighbourhood of zero). Thus we may reduce to the attractive case .

Let be a sufficiently small radius, and let denote the space of holomorphic functions on the complex disk with and . We can view the Schröder equation (2) as a fixed point equation

where is the partially defined function on that maps a function to the function defined by

assuming that is well-defined on the range of (this is why is only partially defined).

We can solve this equation by the fixed point iteration method, if is small enough. Namely, we start with being the identity map, and set , etc. We equip with the uniform metric . Observe that if , and is small enough, then takes values in , and are well-defined and lie in . Also, since is smooth and has derivative at , we have

if , and is sufficiently small depending on . This is not yet enough to establish the required contraction (thanks to Mario Bonk for pointing this out); but observe that the function is holomorphic on and bounded by on the boundary of this ball (or slightly within this boundary), so by the maximum principle we see that

on all of , and in particular

on . Putting all this together, we see that

since , we thus obtain a contraction on the ball if is small enough (and sufficiently small depending on ). From this (and the completeness of , which follows from Morera’s theorem) we see that the iteration converges (exponentially fast) to a limit which is a fixed point of , and thus solves Schröder’s equation, as required.

Koenig’s linearisation theorem leaves open the *indifferent case* when . In the *rationally indifferent* case when for some natural number , there is an obvious obstruction to linearisability, namely that (in particular, linearisation is not possible in this case when is a non-trivial rational function). An obstruction is also present in some *irrationally indifferent* cases (where but for any natural number ), if is sufficiently close to various roots of unity; the first result of this form is due to Cremer, and the optimal result of this type for quadratic maps was established by Yoccoz. In the other direction, we have the following result of Siegel:

Theorem 2 (Siegel’s linearisation theorem)Let be a holomorphic function defined near with and . If and one has the Diophantine condition for all natural numbers and some constant , then is linearisable at .

The Diophantine condition can be relaxed to a more general condition involving the rational exponents of the phase of ; this was worked out by Brjuno, with the condition matching the one later obtained by Yoccoz. Amusingly, while the set of Diophantine numbers (and hence the set of linearisable ) has full measure on the unit circle, the set of non-linearisable is generic (the complement of countably many nowhere dense sets) due to the above-mentioned work of Cremer, leading to a striking disparity between the measure-theoretic and category notions of “largeness”.

Siegel’s theorem does not seem to be provable using a fixed point iteration method. However, it can be established by modifying another basic method to solve equations, namely Newton’s method. Let us first review how this method works to solve the equation for some smooth function defined on an interval . We suppose we have some initial approximant to this equation, with small but not necessarily zero. To make the analysis more quantitative, let us suppose that the interval lies in for some , and we have the estimates

for some and and all (the factors of are present to make “dimensionless”).

Lemma 3Under the above hypotheses, we can find with such thatIn particular, setting , , and , we have , and

for all .

The crucial point here is that the new error is roughly the square of the previous error . This leads to extremely fast (double-exponential) improvement in the error upon iteration, which is more than enough to absorb the exponential losses coming from the factor.

*Proof:* If for some absolute constants then we may simply take , so we may assume that for some small and large . Using the Newton approximation we are led to the choice

for . From the hypotheses on and the smallness hypothesis on we certainly have . From Taylor’s theorem with remainder we have

and the claim follows.

We can iterate this procedure; starting with as above, we obtain a sequence of nested intervals with , and with evolving by the recursive equations and estimates

If is sufficiently small depending on , we see that converges rapidly to zero (indeed, we can inductively obtain a bound of the form for some large absolute constant if is small enough), and converges to a limit which then solves the equation by the continuity of .

As I recently learned from Zhiqiang Li, a similar scheme works to prove Siegel’s theorem, as can be found for instance in this text of Carleson and Gamelin. The key is the following analogue of Lemma 3.

Lemma 4Let be a complex number with and for all natural numbers . Let , and let be a holomorphic function with , , andfor all and some . Let , and set . Then there exists an injective holomorphic function and a holomorphic function such that

and

for all and some .

*Proof:* By scaling we may normalise . If for some constants , then we can simply take to be the identity and , so we may assume that for some small and large .

To motivate the choice of , we write and , with and viewed as small. We would like to have , which expands as

As and are both small, we can heuristically approximate up to quadratic errors (compare with the Newton approximation ), and arrive at the equation

This equation can be solved by Taylor series; the function vanishes to second order at the origin and thus has a Taylor expansion

and then has a Taylor expansion

We take this as our definition of , define , and then define implicitly via (4).

Let us now justify that this choice works. By (3) and the generalised Cauchy integral formula, we have for all ; by the Diophantine assumption on , we thus have . In particular, converges on , and on the disk (say) we have the bounds

In particular, as is so small, we see that maps injectively to and to , and the inverse maps to . From (3) we see that maps to , and so if we set to be the function , then is a holomorphic function obeying (4). Expanding (4) in terms of and as before, and also writing , we have

for , which by (5) simplifies to

From (6), the fundamental theorem of calculus, and the smallness of we have

and thus

From (3) and the Cauchy integral formula we have on (say) , and so from (6) and the fundamental theorem of calculus we conclude that

on , and the claim follows.

If we set , , and to be sufficiently small, then (since vanishes to second order at the origin), the hypotheses of this lemma will be obeyed for some sufficiently small . Iterating the lemma (and halving repeatedly), we can then find sequences , injective holomorphic functions and holomorphic functions such that one has the recursive identities and estimates

for all and . By construction, decreases to a positive radius that is a constant multiple of , while (for small enough) converges double-exponentially to zero, so in particular converges uniformly to on . Also, is close enough to the identity, the compositions are uniformly convergent on with and . From this we have

on , and on taking limits using Morera’s theorem we obtain a holomorphic function defined near with , , and

obtaining the required linearisation.

Remark 5The idea of using a Newton-type method to obtain error terms that decay double-exponentially, and can therefore absorb exponential losses in the iteration, also occurs in KAM theory and in Nash-Moser iteration, presumably due to Siegel’s influence on Moser. (I discuss Nash-Moser iteration in this note that I wrote back in 2006.)

In Notes 2, the Riemann zeta function (and more generally, the Dirichlet -functions ) were extended meromorphically into the region in and to the right of the critical strip. This is a sufficient amount of meromorphic continuation for many applications in analytic number theory, such as establishing the prime number theorem and its variants. The zeroes of the zeta function in the critical strip are known as the *non-trivial zeroes* of , and thanks to the truncated explicit formulae developed in Notes 2, they control the asymptotic distribution of the primes (up to small errors).

The function obeys the trivial functional equation

for all in its domain of definition. Indeed, as is real-valued when is real, the function vanishes on the real line and is also meromorphic, and hence vanishes everywhere. Similarly one has the functional equation

From these equations we see that the zeroes of the zeta function are symmetric across the real axis, and the zeroes of are the reflection of the zeroes of across this axis.

It is a remarkable fact that these functions obey an additional, and more non-trivial, functional equation, this time establishing a symmetry across the *critical line* rather than the real axis. One consequence of this symmetry is that the zeta function and -functions may be extended meromorphically to the entire complex plane. For the zeta function, the functional equation was discovered by Riemann, and reads as follows:

Theorem 1 (Functional equation for the Riemann zeta function)The Riemann zeta function extends meromorphically to the entire complex plane, with a simple pole at and no other poles. Furthermore, one has the functional equation

for all complex other than , where is the function

Here , are the complex-analytic extensions of the classical trigionometric functions , and is the Gamma function, whose definition and properties we review below the fold.

The functional equation can be placed in a more symmetric form as follows:

Corollary 2 (Functional equation for the Riemann xi function)The Riemann xi function

is analytic on the entire complex plane (after removing all removable singularities), and obeys the functional equations

In particular, the zeroes of consist precisely of the non-trivial zeroes of , and are symmetric about both the real axis and the critical line. Also, is real-valued on the critical line and on the real axis.

Corollary 2 is an easy consequence of Theorem 1 together with the duplication theorem for the Gamma function, and the fact that has no zeroes to the right of the critical strip, and is left as an exercise to the reader (Exercise 19). The functional equation in Theorem 1 has many proofs, but most of them are related in on way or another to the Poisson summation formula

(Theorem 34 from Supplement 2, at least in the case when is twice continuously differentiable and compactly supported), which can be viewed as a Fourier-analytic link between the coarse-scale distribution of the integers and the fine-scale distribution of the integers. Indeed, there is a quick heuristic proof of the functional equation that comes from formally applying the Poisson summation formula to the function , and noting that the functions and are formally Fourier transforms of each other, up to some Gamma function factors, as well as some trigonometric factors arising from the distinction between the real line and the half-line. Such a heuristic proof can indeed be made rigorous, and we do so below the fold, while also providing Riemann’s two classical proofs of the functional equation.

From the functional equation (and the poles of the Gamma function), one can see that has *trivial zeroes* at the negative even integers , in addition to the non-trivial zeroes in the critical strip. More generally, the following table summarises the zeroes and poles of the various special functions appearing in the functional equation, after they have been meromorphically extended to the entire complex plane, and with zeroes classified as “non-trivial” or “trivial” depending on whether they lie in the critical strip or not. (Exponential functions such as or have no zeroes or poles, and will be ignored in this table; the zeroes and poles of rational functions such as are self-evident and will also not be displayed here.)

Function | Non-trivial zeroes | Trivial zeroes | Poles |

Yes | |||

Yes | |||

No | Even integers | No | |

No | Odd integers | No | |

No | Integers | No | |

No | No | ||

No | No | ||

No | No | ||

No | No | ||

Yes | No | No |

Among other things, this table indicates that the Gamma and trigonometric factors in the functional equation are tied to the trivial zeroes and poles of zeta, but have no direct bearing on the distribution of the non-trivial zeroes, which is the most important feature of the zeta function for the purposes of analytic number theory, beyond the fact that they are symmetric about the real axis and critical line. In particular, the Riemann hypothesis is not going to be resolved just from further analysis of the Gamma function!

The zeta function computes the “global” sum , with ranging all the way from to infinity. However, by some Fourier-analytic (or complex-analytic) manipulation, it is possible to use the zeta function to also control more “localised” sums, such as for some and some smooth compactly supported function . It turns out that the functional equation (3) for the zeta function localises to this context, giving an *approximate functional equation* which roughly speaking takes the form

whenever and ; see Theorem 38 below for a precise formulation of this equation. Unsurprisingly, this form of the functional equation is also very closely related to the Poisson summation formula (8), indeed it is essentially a special case of that formula (or more precisely, of the van der Corput -process). This useful identity relates long smoothed sums of to short smoothed sums of (or vice versa), and can thus be used to shorten exponential sums involving terms such as , which is useful when obtaining some of the more advanced estimates on the Riemann zeta function.

We will give two other basic uses of the functional equation. The first is to get a good count (as opposed to merely an upper bound) on the density of zeroes in the critical strip, establishing the Riemann-von Mangoldt formula that the number of zeroes of imaginary part between and is for large . The other is to obtain untruncated versions of the explicit formula from Notes 2, giving a remarkable exact formula for sums involving the von Mangoldt function in terms of zeroes of the Riemann zeta function. These results are not strictly necessary for most of the material in the rest of the course, but certainly help to clarify the nature of the Riemann zeta function and its relation to the primes.

In view of the material in previous notes, it should not be surprising that there are analogues of all of the above theory for Dirichlet -functions . We will restrict attention to primitive characters , since the -function for imprimitive characters merely differs from the -function of the associated primitive factor by a finite Euler product; indeed, if for some principal whose modulus is coprime to that of , then

(cf. equation (45) of Notes 2).

The main new feature is that the Poisson summation formula needs to be “twisted” by a Dirichlet character , and this boils down to the problem of understanding the finite (additive) Fourier transform of a Dirichlet character. This is achieved by the classical theory of Gauss sums, which we review below the fold. There is one new wrinkle; the value of plays a role in the functional equation. More precisely, we have

Theorem 3 (Functional equation for -functions)Let be a primitive character of modulus with . Then extends to an entire function on the complex plane, withor equivalently

for all , where is equal to in the even case and in the odd case , and

where is the Gauss sum

and , with the convention that the -periodic function is also (by abuse of notation) applied to in the cyclic group .

From this functional equation and (2) we see that, as with the Riemann zeta function, the non-trivial zeroes of (defined as the zeroes within the critical strip are symmetric around the critical line (and, if is real, are also symmetric around the real axis). In addition, acquires trivial zeroes at the negative even integers and at zero if , and at the negative odd integers if . For imprimitive , we see from (9) that also acquires some additional trivial zeroes on the left edge of the critical strip.

There is also a symmetric version of this equation, analogous to Corollary 2:

Corollary 4Let be as above, and setthen is entire with .

For further detail on the functional equation and its implications, I recommend the classic text of Titchmarsh or the text of Davenport.

## Recent Comments