You are currently browsing the category archive for the ‘Mathematics’ category.

I’ve just uploaded to the arXiv my paper “Almost all Collatz orbits attain almost bounded values“, submitted to the proceedings of the Forum of Mathematics, Pi. In this paper I returned to the topic of the notorious Collatz conjecture (also known as the conjecture), which I previously discussed in this blog post. This conjecture can be phrased as follows. Let denote the positive integers (with the natural numbers), and let be the map defined by setting equal to when is odd and when is even. Let be the minimal element of the Collatz orbit . Then we have

Conjecture 1 (Collatz conjecture)One has for all .

Establishing the conjecture for all remains out of reach of current techniques (for instance, as discussed in the previous blog post, it is basically at least as difficult as Baker’s theorem, all known proofs of which are quite difficult). However, the situation is more promising if one is willing to settle for results which only hold for “most” in some sense. For instance, it is a result of Krasikov and Lagarias that

for all sufficiently large . In another direction, it was shown by Terras that for almost all (in the sense of natural density), one has . This was then improved by Allouche to for almost all and any fixed , and extended later by Korec to cover all . In this paper we obtain the following further improvement (at the cost of weakening natural density to logarithmic density):

Theorem 2Let be any function with . Then we have for almost all (in the sense of logarithmic density).

Thus for instance one has for almost all (in the sense of logarithmic density).

The difficulty here is one usually only expects to establish “local-in-time” results that control the evolution for times that only get as large as a small multiple of ; the aforementioned results of Terras, Allouche, and Korec, for instance, are of this time. However, to get all the way down to one needs something more like an “(almost) global-in-time” result, where the evolution remains under control for so long that the orbit has nearly reached the bounded state .

However, as observed by Bourgain in the context of nonlinear Schrödinger equations, one can iterate “almost sure local wellposedness” type results (which give local control for almost all initial data from a given distribution) into “almost sure (almost) global wellposedness” type results if one is fortunate enough to draw one’s data from an *invariant measure* for the dynamics. To illustrate the idea, let us take Korec’s aforementioned result that if one picks at random an integer from a large interval , then in most cases, the orbit of will eventually move into the interval . Similarly, if one picks an integer at random from , then in most cases, the orbit of will eventually move into . It is then tempting to concatenate the two statements and conclude that for most in , the orbit will eventually move . Unfortunately, this argument does not quite work, because by the time the orbit from a randomly drawn reaches , the distribution of the final value is unlikely to be close to being uniformly distributed on , and in particular could potentially concentrate almost entirely in the exceptional set of that do not make it into . The point here is the uniform measure on is not transported by Collatz dynamics to anything resembling the uniform measure on .

So, one now needs to locate a measure which has better invariance properties under the Collatz dynamics. It turns out to be technically convenient to work with a standard acceleration of the Collatz map known as the *Syracuse map* , defined on the odd numbers by setting , where is the largest power of that divides . (The advantage of using the Syracuse map over the Collatz map is that it performs precisely one multiplication of at each iteration step, which makes the map better behaved when performing “-adic” analysis.)

When viewed -adically, we soon see that iterations of the Syracuse map become somewhat irregular. Most obviously, is never divisible by . A little less obviously, is twice as likely to equal mod as it is to equal mod . This is because for a randomly chosen odd , the number of times that divides can be seen to have a geometric distribution of mean – it equals any given value with probability . Such a geometric random variable is twice as likely to be odd as to be even, which is what gives the above irregularity. There are similar irregularities modulo higher powers of . For instance, one can compute that for large random odd , will take the residue classes with probabilities

respectively. More generally, for any , will be distributed according to the law of a random variable on that we call a *Syracuse random variable*, and can be described explicitly as

where are iid copies of a geometric random variable of mean .

In view of this, any proposed “invariant” (or approximately invariant) measure (or family of measures) for the Syracuse dynamics should take this -adic irregularity of distribution into account. It turns out that one can use the Syracuse random variables to construct such a measure, but only if these random variables stabilise in the limit in a certain total variation sense. More precisely, in the paper we establish the estimate

for any and any . This type of stabilisation is plausible from entropy heuristics – the tuple of geometric random variables that generates has Shannon entropy , which is significantly larger than the total entropy of the uniform distribution on , so we expect a lot of “mixing” and “collision” to occur when converting the tuple to ; these heuristics can be supported by numerics (which I was able to work out up to about before running into memory and CPU issues), but it turns out to be surprisingly delicate to make this precise.

A first hint of how to proceed comes from the elementary number theory observation (easily proven by induction) that the rational numbers

are all distinct as vary over tuples in . Unfortunately, the process of reducing mod creates a lot of collisions (as must happen from the pigeonhole principle); however, by a simple “Lefschetz principle” type argument one can at least show that the reductions

are mostly distinct for “typical” (as drawn using the geometric distribution) as long as is a bit smaller than (basically because the rational number appearing in (3) then typically takes a form like with an integer between and ). This analysis of the component (3) of (1) is already enough to get quite a bit of spreading on (roughly speaking, when the argument is optimised, it shows that this random variable cannot concentrate in any subset of of density less than for some large absolute constant ). To get from this to a stabilisation property (2) we have to exploit the mixing effects of the remaining portion of (1) that does not come from (3). After some standard Fourier-analytic manipulations, matters then boil down to obtaining non-trivial decay of the characteristic function of , and more precisely in showing that

for any and any that is not divisible by .

If the random variable (1) was the sum of independent terms, one could express this characteristic function as something like a Riesz product, which would be straightforward to estimate well. Unfortunately, the terms in (1) are loosely coupled together, and so the characteristic factor does not immediately factor into a Riesz product. However, if one groups adjacent terms in (1) together, one can rewrite it (assuming is even for sake of discussion) as

where . The point here is that after conditioning on the to be fixed, the random variables remain independent (though the distribution of each depends on the value that we conditioned to), and so the above expression is a *conditional* sum of independent random variables. This lets one express the characeteristic function of (1) as an *averaged* Riesz product. One can use this to establish the bound (4) as long as one can show that the expression

is not close to an integer for a moderately large number (, to be precise) of indices . (Actually, for technical reasons we have to also restrict to those for which , but let us ignore this detail here.) To put it another way, if we let denote the set of pairs for which

we have to show that (with overwhelming probability) the random walk

(which we view as a two-dimensional renewal process) contains at least a few points lying outside of .

A little bit of elementary number theory and combinatorics allows one to describe the set as the union of “triangles” with a certain non-zero separation between them. If the triangles were all fairly small, then one expects the renewal process to visit at least one point outside of after passing through any given such triangle, and it then becomes relatively easy to then show that the renewal process usually has the required number of points outside of . The most difficult case is when the renewal process passes through a particularly large triangle in . However, it turns out that large triangles enjoy particularly good separation properties, and in particular afer passing through a large triangle one is likely to only encounter nothing but small triangles for a while. After making these heuristics more precise, one is finally able to get enough points on the renewal process outside of that one can finish the proof of (4), and thus Theorem 2.

In the fall quarter (starting Sep 27) I will be teaching a graduate course on analytic prime number theory. This will be similar to a graduate course I taught in 2015, and in particular will reuse several of the lecture notes from that course, though it will also incorporate some new material (and omit some material covered in the previous course, to compensate). I anticipate covering the following topics:

- Elementary multiplicative number theory
- Complex-analytic multiplicative number theory
- The entropy decrement argument
- Bounds for exponential sums
- Zero density theorems
- Halasz’s theorem and the Matomaki-Radziwill theorem
- The circle method
- (If time permits) Chowla’s conjecture and the Erdos discrepancy problem

Lecture notes for topics 3, 6, and 8 will be forthcoming.

William Banks, Kevin Ford, and I have just uploaded to the arXiv our paper “Large prime gaps and probabilistic models“. In this paper we introduce a random model to help understand the connection between two well known conjectures regarding the primes , the Cramér conjecture and the Hardy-Littlewood conjecture:

Conjecture 1 (Cramér conjecture)If is a large number, then the largest prime gap in is of size . (Granville refines this conjecture to , where . Here we use the asymptotic notation for , for , for , and for .)

Conjecture 2 (Hardy-Littlewood conjecture)If are fixed distinct integers, then the number of numbers with all prime is as , where the singular series is defined by the formula

(One can view these conjectures as modern versions of two of the classical Landau problems, namely Legendre’s conjecture and the twin prime conjecture respectively.)

A well known connection between the Hardy-Littlewood conjecture and prime gaps was made by Gallagher. Among other things, Gallagher showed that if the Hardy-Littlewood conjecture was true, then the prime gaps with were asymptotically distributed according to an exponential distribution of mean , in the sense that

as for any fixed . Roughly speaking, the way this is established is by using the Hardy-Littlewood conjecture to control the mean values of for fixed , where ranges over the primes in . The relevance of these quantities arises from the Bonferroni inequalities (or “Brun pure sieve“), which can be formulated as the assertion that

when is even and

when is odd, for any natural number ; setting and taking means, one then gets upper and lower bounds for the probability that the interval is free of primes. The most difficult step is to control the mean values of the singular series as ranges over -tuples in a fixed interval such as .

Heuristically, if one extrapolates the asymptotic (1) to the regime , one is then led to Cramér’s conjecture, since the right-hand side of (1) falls below when is significantly larger than . However, this is not a rigorous derivation of Cramér’s conjecture from the Hardy-Littlewood conjecture, since Gallagher’s computations only establish (1) for *fixed* choices of , which is only enough to establish the far weaker bound , which was already known (see this previous paper for a discussion of the best known unconditional lower bounds on ). An inspection of the argument shows that if one wished to extend (1) to parameter choices that were allowed to grow with , then one would need as input a stronger version of the Hardy-Littlewood conjecture in which the length of the tuple , as well as the magnitudes of the shifts , were also allowed to grow with . Our initial objective in this project was then to quantify exactly what strengthening of the Hardy-Littlewood conjecture would be needed to rigorously imply Cramer’s conjecture. The precise results are technical, but roughly we show results of the following form:

Theorem 3 (Large gaps from Hardy-Littlewood, rough statement)

- If the Hardy-Littlewood conjecture is uniformly true for -tuples of length , and with shifts of size , with a power savings in the error term, then .
- If the Hardy-Littlewood conjecture is “true on average” for -tuples of length and shifts of size for all , with a power savings in the error term, then .

In particular, we can recover Cramer’s conjecture given a sufficiently powerful version of the Hardy-Littlewood conjecture “on the average”.

Our proof of this theorem proceeds more or less along the same lines as Gallagher’s calculation, but now with allowed to grow slowly with . Again, the main difficulty is to accurately estimate average values of the singular series . Here we found it useful to switch to a probabilistic interpretation of this series. For technical reasons it is convenient to work with a truncated, unnormalised version

of the singular series, for a suitable cutoff ; it turns out that when studying prime tuples of size , the most convenient cutoff is the “Pólya magic cutoff“, defined as the largest prime for which

(this is well defined for ); by Mertens’ theorem, we have . One can interpret probabilistically as

where is the randomly sifted set of integers formed by removing one residue class uniformly at random for each prime . The Hardy-Littlewood conjecture can be viewed as an assertion that the primes behave in some approximate statistical sense like the random sifted set , and one can prove the above theorem by using the Bonferroni inequalities both for the primes and for the random sifted set, and comparing the two (using an even for the sifted set and an odd for the primes in order to be able to combine the two together to get a useful bound).

The proof of Theorem 3 ended up not using any properties of the set of primes other than that this set obeyed some form of the Hardy-Littlewood conjectures; the theorem remains true (with suitable notational changes) if this set were replaced by any other set. In order to convince ourselves that our theorem was not vacuous due to our version of the Hardy-Littlewood conjecture being too strong to be true, we then started exploring the question of coming up with random models of which obeyed various versions of the Hardy-Littlewood and Cramér conjectures.

This line of inquiry was started by Cramér, who introduced what we now call the *Cramér random model* of the primes, in which each natural number is selected for membership in with an independent probability of . This model matches the primes well in some respects; for instance, it almost surely obeys the “Riemann hypothesis”

and Cramér also showed that the largest gap was almost surely . On the other hand, it does not obey the Hardy-Littlewood conjecture; more precisely, it obeys a simplified variant of that conjecture in which the singular series is absent.

Granville proposed a refinement to Cramér’s random model in which one first sieves out (in each dyadic interval ) all residue classes for for a certain threshold , and then places each surviving natural number in with an independent probability . One can verify that this model obeys the Hardy-Littlewood conjectures, and Granville showed that the largest gap in this model was almost surely , leading to his conjecture that this bound also was true for the primes. (Interestingly, this conjecture is not yet borne out by numerics; calculations of prime gaps up to , for instance, have shown that never exceeds in this range. This is not necessarily a conflict, however; Granville’s analysis relies on inspecting gaps in an extremely sparse region of natural numbers that are more devoid of primes than average, and this region is not well explored by existing numerics. See this previous blog post for more discussion of Granville’s argument.)

However, Granville’s model does not produce a power savings in the error term of the Hardy-Littlewood conjectures, mostly due to the need to truncate the singular series at the logarithmic cutoff . After some experimentation, we were able to produce a tractable random model for the primes which obeyed the Hardy-Littlewood conjectures with power savings, and which reproduced Granville’s gap prediction of (we also get an upper bound of for both models, though we expect the lower bound to be closer to the truth); to us, this strengthens the case for Granville’s version of Cramér’s conjecture. The model can be described as follows. We select one residue class uniformly at random for each prime , and as before we let be the sifted set of integers formed by deleting the residue classes with . We then set

with Pólya’s magic cutoff (this is the cutoff that gives a density consistent with the prime number theorem or the Riemann hypothesis). As stated above, we are able to show that almost surely one has

and that the Hardy-Littlewood conjectures hold with power savings for up to for any fixed and for shifts of size . This is unfortunately a tiny bit weaker than what Theorem 3 requires (which more or less corresponds to the endpoint ), although there is a variant of Theorem 3 that can use this input to produce a lower bound on gaps in the model (but it is weaker than the one in (3)). In fact we prove a more precise almost sure asymptotic formula for that involves the optimal bounds for the *linear sieve* (or *interval sieve*), in which one deletes one residue class modulo from an interval for all primes up to a given threshold. The lower bound in (3) relates to the case of deleting the residue classes from ; the upper bound comes from the delicate analysis of the linear sieve by Iwaniec. Improving on either of the two bounds looks to be quite a difficult problem.

The probabilistic analysis of is somewhat more complicated than of or as there is now non-trivial coupling between the events as varies, although moment methods such as the second moment method are still viable and allow one to verify the Hardy-Littlewood conjectures by a lengthy but fairly straightforward calculation. To analyse large gaps, one has to understand the statistical behaviour of a random linear sieve in which one starts with an interval and randomly deletes a residue class for each prime up to a given threshold. For very small this is handled by the deterministic theory of the linear sieve as discussed above. For medium sized , it turns out that there is good concentration of measure thanks to tools such as Bennett’s inequality or Azuma’s inequality, as one can view the sieving process as a martingale or (approximately) as a sum of independent random variables. For larger primes , in which only a small number of survivors are expected to be sieved out by each residue class, a direct combinatorial calculation of all possible outcomes (involving the random graph that connects interval elements to primes if falls in the random residue class ) turns out to give the best results.

I’ve just uploaded to the arXiv my paper “Quantitative bounds for critically bounded solutions to the Navier-Stokes equations“, submitted to the proceedings of the Linde Hall Inaugural Math Symposium. (I unfortunately had to cancel my physical attendance at this symposium for personal reasons, but was still able to contribute to the proceedings.) In recent years I have been interested in working towards establishing the existence of classical solutions for the Navier-Stokes equations

that blow up in finite time, but this time for a change I took a look at the other side of the theory, namely the conditional regularity results for this equation. There are several such results that assert that if a certain norm of the solution stays bounded (or grows at a controlled rate), then the solution stays regular; taken in the contrapositive, they assert that if a solution blows up at a certain finite time , then certain norms of the solution must also go to infinity. Here are some examples (not an exhaustive list) of such blowup criteria:

- (Leray blowup criterion, 1934) If blows up at a finite time , and , then for an absolute constant .
- (Prodi–Serrin–Ladyzhenskaya blowup criterion, 1959-1967) If blows up at a finite time , and , then , where .
- (Beale-Kato-Majda blowup criterion, 1984) If blows up at a finite time , then , where is the vorticity.
- (Kato blowup criterion, 1984) If blows up at a finite time , then for some absolute constant .
- (Escauriaza-Seregin-Sverak blowup criterion, 2003) If blows up at a finite time , then .
- (Seregin blowup criterion, 2012) If blows up at a finite time , then .
- (Phuc blowup criterion, 2015) If blows up at a finite time , then for any .
- (Gallagher-Koch-Planchon blowup criterion, 2016) If blows up at a finite time , then for any .
- (Albritton blowup criterion, 2016) If blows up at a finite time , then for any .

My current paper is most closely related to the Escauriaza-Seregin-Sverak blowup criterion, which was the first to show a critical (i.e., scale-invariant, or dimensionless) spatial norm, namely , had to become large. This result now has many proofs; for instance, many of the subsequent blowup criterion results imply the Escauriaza-Seregin-Sverak one as a special case, and there are also additional proofs by Gallagher-Koch-Planchon (building on ideas of Kenig-Koch), and by Dong-Du. However, all of these proofs rely on some form of a compactness argument: given a finite time blowup, one extracts some suitable family of rescaled solutions that converges in some weak sense to a limiting solution that has some additional good properties (such as almost periodicity modulo symmetries), which one can then rule out using additional qualitative tools, such as unique continuation and backwards uniqueness theorems for parabolic heat equations. In particular, all known proofs use some version of the backwards uniqueness theorem of Escauriaza, Seregin, and Sverak. Because of this reliance on compactness, the existing proofs of the Escauriaza-Seregin-Sverak blowup criterion are qualitative, in that they do not provide any quantitative information on how fast the norm will go to infinity (along a subsequence of times).

On the other hand, it is a general principle that qualitative arguments established using compactness methods ought to have quantitative analogues that replace the use of compactness by more complicated substitutes that give effective bounds; see for instance these previous blog posts for more discussion. I therefore was interested in trying to obtain a quantitative version of this blowup criterion that gave reasonably good effective bounds (in particular, my objective was to avoid truly enormous bounds such as tower-exponential or Ackermann function bounds, which often arise if one “naively” tries to make a compactness argument effective). In particular, I obtained the following triple-exponential quantitative regularity bounds:

Theorem 1If is a classical solution to Navier-Stokes on with

and

for and .

As a corollary, one can now improve the Escauriaza-Seregin-Sverak blowup criterion to

for some absolute constant , which to my knowledge is the first (*very* slightly) supercritical blowup criterion for Navier-Stokes in the literature.

The proof uses many of the same quantitative inputs as previous arguments, most notably the Carleman inequalities used to establish unique continuation and backwards uniqueness theorems for backwards heat equations, but also some additional techniques that make the quantitative bounds more efficient. The proof focuses initially on points of concentration of the solution, which we define as points where there is a frequency for which one has the bound

for a large absolute constant , where is a Littlewood-Paley projection to frequencies . (This can be compared with the upper bound of for the quantity on the left-hand side that follows from (1).) The factor of normalises the left-hand side of (2) to be dimensionless (i.e., critical). The main task is to show that the dimensionless quantity cannot get too large; in particular, we end up establishing a bound of the form

from which the above theorem ends up following from a routine adaptation of the local well-posedness and regularity theory for Navier-Stokes.

The strategy is to show that any concentration such as (2) when is large must force a significant component of the norm of to also show up at many other locations than , which eventually contradicts (1) if one can produce enough such regions of non-trivial norm. (This can be viewed as a quantitative variant of the “rigidity” theorems in some of the previous proofs of the Escauriaza-Seregin-Sverak theorem that rule out solutions that exhibit too much “compactness” or “almost periodicity” in the topology.) The chain of causality that leads from a concentration (2) at to significant norm at other regions of the time slice is somewhat involved (though simpler than the much more convoluted schemes I initially envisaged for this argument):

- Firstly, by using Duhamel’s formula, one can show that a concentration (2) can only occur (with large) if there was also a preceding concentration
at some slightly previous point in spacetime, with also close to (more precisely, we have , , and ). This can be viewed as a sort of contrapositive of a “local regularity theorem”, such as the ones established by Caffarelli, Kohn, and Nirenberg. A key point here is that the lower bound in the conclusion (3) is precisely the same as the lower bound in (2), so that this backwards propagation of concentration can be iterated.

- Iterating the previous step, one can find a sequence of concentration points
with the propagating backwards in time; by using estimates ultimately resulting from the dissipative term in the energy identity, one can extract such a sequence in which the increase geometrically with time, the are comparable (up to polynomial factors in ) to the natural frequency scale , and one has . Using the “epochs of regularity” theory that ultimately dates back to Leray, and tweaking the slightly, one can also place the times in intervals (of length comparable to a small multiple of ) in which the solution is quite regular (in particular, enjoy good bounds on ).

- The concentration (4) can be used to establish a lower bound for the norm of the vorticity near . As is well known, the vorticity obeys the vorticity equation
In the epoch of regularity , the coefficients of this equation obey good bounds, allowing the machinery of Carleman estimates to come into play. Using a Carleman estimate that is used to establish unique continuation results for backwards heat equations, one can propagate this lower bound to also give lower bounds on the vorticity (and its first derivative) in annuli of the form for various radii , although the lower bounds decay at a gaussian rate with .

- Meanwhile, using an energy pigeonholing argument of Bourgain (which, in this Navier-Stokes context, is actually an enstrophy pigeonholing argument), one can locate some annuli where (a slightly normalised form of) the entrosphy is small at time ; using a version of the localised enstrophy estimates from a previous paper of mine, one can then propagate this sort of control forward in time, obtaining an “annulus of regularity” of the form in which one has good estimates; in particular, one has type bounds on in this cylindrical annulus.
- By intersecting the previous epoch of regularity with the above annulus of regularity, we have some lower bounds on the norm of the vorticity (and its first derivative) in the annulus of regularity. Using a Carleman estimate first introduced by Escauriaza, Seregin, and Sverak, as well as a second application of the Carleman estimate used previously, one can then propagate this lower bound back up to time , establishing a lower bound for the vorticity on the spatial annulus . By some basic Littlewood-Paley theory one can parlay this lower bound to a lower bound on the norm of the velocity ; crucially, this lower bound is uniform in .
- If is very large (triple exponential in !), one can then find enough scales with disjoint annuli that the total lower bound on the norm of provided by the above arguments is inconsistent with (1), thus establishing the claim.

The chain of causality is summarised in the following image:

It seems natural to conjecture that similar triply logarithmic improvements can be made to several of the other blowup criteria listed above, but I have not attempted to pursue this question. It seems difficult to improve the triple logarithmic factor using only the techniques here; the Bourgain pigeonholing argument inevitably costs one exponential, the Carleman inequalities cost a second, and the stacking of scales at the end to contradict the upper bound costs the third.

Peter Denton, Stephen Parke, Xining Zhang, and I have just uploaded to the arXiv the short unpublished note “Eigenvectors from eigenvalues“. This note gives two proofs of a general eigenvector identity observed recently by Denton, Parke and Zhang in the course of some quantum mechanical calculations. The identity is as follows:

Theorem 1Let be an Hermitian matrix, with eigenvalues . Let be a unit eigenvector corresponding to the eigenvalue , and let be the component of . Thenwhere is the Hermitian matrix formed by deleting the row and column from .

For instance, if we have

for some real number , -dimensional vector , and Hermitian matrix , then we have

assuming that the denominator is non-zero.

Once one is aware of the identity, it is not so difficult to prove it; we give two proofs, each about half a page long, one of which is based on a variant of the Cauchy-Binet formula, and the other based on properties of the adjugate matrix. But perhaps it is surprising that such a formula exists at all; one does not normally expect to learn much information about eigenvectors purely from knowledge of eigenvalues. In the random matrix theory literature, for instance in this paper of Erdos, Schlein, and Yau, or this later paper of Van Vu and myself, a related identity has been used, namely

but it is not immediately obvious that one can derive the former identity from the latter. (I do so below the fold; we ended up not putting this proof in the note as it was longer than the two other proofs we found. I also give two other proofs below the fold, one from a more geometric perspective and one proceeding via Cramer’s rule.) It was certainly something of a surprise to me that there is no explicit appearance of the components of in the formula (1) (though they do indirectly appear through their effect on the eigenvalues ; for instance from taking traces one sees that ).

One can get some feeling of the identity (1) by considering some special cases. Suppose for instance that is a diagonal matrix with all distinct entries. The upper left entry of is one of the eigenvalues of . If it is equal to , then the eigenvalues of are the other eigenvalues of , and now the left and right-hand sides of (1) are equal to . At the other extreme, if is equal to a different eigenvalue of , then now appears as an eigenvalue of , and both sides of (1) now vanish. More generally, if we order the eigenvalues and , then the Cauchy interlacing inequalities tell us that

for , and

for , so that the right-hand side of (1) lies between and , which is of course consistent with (1) as is a unit vector. Thus the identity relates the coefficient sizes of an eigenvector with the extent to which the Cauchy interlacing inequalities are sharp.

I have just uploaded to the arXiv my paper “Sharp bounds for multilinear curved Kakeya, restriction and oscillatory integral estimates away from the endpoint“, submitted to Mathematika. In this paper I return (after more than a decade’s absence) to one of my first research interests, namely the Kakeya and restriction family of conjectures. The starting point is the following “multilinear Kakeya estimate” first established in the non-endpoint case by Bennett, Carbery, and myself, and then in the endpoint case by Guth (with further proofs and extensions by Bourgain-Guth and Carbery-Valdimarsson:

Theorem 1 (Multilinear Kakeya estimate)Let be a radius. For each , let denote a finite family of infinite tubes in of radius . Assume the following axiom:

- (i) (Transversality) whenever is oriented in the direction of a unit vector for , we have
for some , where we use the usual Euclidean norm on the wedge product .

where are the usual Lebesgue norms with respect to Lebesgue measure, denotes the indicator function of , and denotes the cardinality of .

The original proof of this proceeded using a heat flow monotonicity method, which in my previous post I reinterpreted using a “virtual integration” concept on a fractional Cartesian product space. It turns out that this machinery is somewhat flexible, and can be used to establish some other estimates of this type. The first result of this paper is to extend the above theorem to the curved setting, in which one localises to a ball of radius (and sets to be small), but allows the tubes to be curved in a fashion. If one runs the heat flow monotonicity argument, one now picks up some additional error terms arising from the curvature, but as the spatial scale approaches zero, the tubes become increasingly linear, and as such the error terms end up being an integrable multiple of the main term, at which point one can conclude by Gronwall’s inequality (actually for technical reasons we use a bootstrap argument instead of Gronwall). A key point in this approach is that one obtains optimal bounds (not losing factors of or ), so long as one stays away from the endpoint case (which does not seem to be easily treatable by the heat flow methods). Previously, the paper of Bennett, Carbery, and myself was able to use an induction on scale argument to obtain a curved multilinear Kakeya estimate losing a factor of (after optimising the argument); later arguments of Bourgain-Guth and Carbery-Valdimarsson, based on algebraic topology methods, could also obtain a curved multilinear Kakeya estimate without such losses, but only in the algebraic case when the tubes were neighbourhoods of algebraic curves of bounded degree.

Perhaps more interestingly, we are also able to extend the heat flow monotonicity method to apply directly to the multilinear restriction problem, giving the following global multilinear restriction estimate:

Theorem 2 (Multilinear restriction theorem)Let be an exponent, and let be a parameter. Let be a sufficiently large natural number, depending only on . For , let be an open subset of , and let be a smooth function obeying the following axioms:for any , , extended by zero outside of , and denotes the extension operator

Local versions of such estimate, in which is replaced with for some , and one accepts a loss of the form , were already established by Bennett, Carbery, and myself using an induction on scale argument. In a later paper of Bourgain-Guth these losses were removed by “epsilon removal lemmas” to recover Theorme 2, but only in the case when all the hypersurfaces involved had curvatures bounded away from zero.

There are two main new ingredients in the proof of Theorem 2. The first is to replace the usual induction on scales scheme to establish multilinear restriction by a “ball inflation” induction on scales scheme that more closely resembles the proof of decoupling theorems. In particular, we actually prove the more general family of estimates

where denotes the local energies

(actually for technical reasons it is more convenient to use a smoother weight than the strict cutoff to the disk ). With logarithmic losses, it is not difficult to establish this estimate by an upward induction on . To avoid such losses we use the heat flow monotonicity method. Here we run into the issue that the extension operators are complex-valued rather than non-negative, and thus would not be expected to obey many good montonicity properties. However, the local energies can be expressed in terms of the magnitude squared of what is essentially the Gabor transform of , and these are non-negative; furthermore, the dispersion relation associated to the extension operators implies that these Gabor transforms propagate along tubes, so that the situation becomes quite similar (up to several additional lower order error terms) to that in the multilinear Kakeya problem. (This can be viewed as a continuous version of the usual wave packet decomposition method used to relate restriction and Kakeya problems, which when combined with the heat flow monotonicity method allows for one to use a continuous version of induction on scales methods that do not concede any logarithmic factors.)

Finally, one can combine the curved multilinear Kakeya result with the multilinear restriction result to obtain estimates for multilinear oscillatory integrals away from the endpoint. Again, this sort of implication was already established in the previous paper of Bennett, Carbery, and myself, but the arguments there had some epsilon losses in the exponents; here we were able to run the argument more carefully and avoid these losses.

Earlier this month, Hao Huang (who, incidentally, was a graduate student here at UCLA) gave a remarkably short proof of a long-standing problem in theoretical computer science known as the sensitivity conjecture. See for instance this blog post of Gil Kalai for further discussion and links to many other online discussions of this result. One formulation of the theorem proved is as follows. Define the -dimensional hypercube graph to be the graph with vertex set , and with every vertex joined to the vertices , where is the standard basis of .

Theorem 1 (Lower bound on maximum degree of induced subgraphs of hypercube)Let be a set of at least vertices in . Then there is a vertex in that is adjacent (in ) to at least other vertices in .

The bound (or more precisely, ) is completely sharp, as shown by Chung, Furedi, Graham, and Seymour; we describe this example below the fold. When combined with earlier reductions of Gotsman-Linial and Nisan-Szegedy; we give these below the fold also.

Let be the adjacency matrix of (where we index the rows and columns directly by the vertices in , rather than selecting some enumeration ), thus when for some , and otherwise. The above theorem then asserts that if is a set of at least vertices, then the minor of has a row (or column) that contains at least non-zero entries.

The key step to prove this theorem is the construction of rather curious variant of the adjacency matrix :

Proposition 2There exists a matrix which is entrywise dominated by in the sense that

Assuming this proposition, the proof of Theorem 1 can now be quickly concluded. If we view as a linear operator on the -dimensional space of functions of , then by hypothesis this space has a -dimensional subspace on which acts by multiplication by . If is a set of at least vertices in , then the space of functions on has codimension at most in , and hence intersects non-trivially. Thus the minor of also has as an eigenvalue (this can also be derived from the Cauchy interlacing inequalities), and in particular this minor has operator norm at least . By Schur’s test, this implies that one of the rows or columns of this matrix has absolute values summing to at least , giving the claim.

Remark 3The argument actually gives a strengthening of Theorem 1: there exists a vertex of with the property that for every natural number , there are at least paths of length in the restriction of to that start from . Indeed, if we let be an eigenfunction of on , and let be a vertex in that maximises the value of , then for any we have that the component of is equal to ; on the other hand, by the triangle inequality, this component is at most times the number of length paths in starting from , giving the claim.

This argument can be viewed as an instance of a more general “interlacing method” to try to control the behaviour of a graph on all large subsets by first generating a matrix on with very good spectral properties, which are then partially inherited by the minor of by interlacing inequalities. In previous literature using this method (see e.g., this survey of Haemers, or this paper of Wilson), either the original adjacency matrix , or some non-negatively weighted version of that matrix, was used as the controlling matrix ; the novelty here is the use of signed controlling matrices. It will be interesting to see what further variants and applications of this method emerge in the near future. (Thanks to Anurag Bishoi in the comments for these references.)

The “magic” step in the above argument is constructing . In Huang’s paper, is constructed recursively in the dimension in a rather simple but mysterious fashion. Very recently, Roman Karasev gave an interpretation of this matrix in terms of the exterior algebra on . In this post I would like to give an alternate interpretation in terms of the operation of *twisted convolution*, which originated in the theory of the Heisenberg group in quantum mechanics.

Firstly note that the original adjacency matrix , when viewed as a linear operator on , is a convolution operator

where

is the counting measure on the standard basis , and denotes the ordinary convolution operation

As is well known, this operation is commutative and associative. Thus for instance the square of the adjacency operator is also a convolution operator

where the convolution kernel is moderately complicated:

The factor in this expansion comes from combining the two terms and , which both evaluate to .

More generally, given any bilinear form , one can define the *twisted convolution*

of two functions . This operation is no longer commutative (unless is symmetric). However, it remains associative; indeed, one can easily compute that

In particular, if we define the twisted convolution operator

then the square is also a twisted convolution operator

and the twisted convolution kernel can be computed as

For general bilinear forms , this twisted convolution is just as messy as is. But if we take the specific bilinear form

then for and for , and the above twisted convolution simplifies to

and now is very simple:

Thus the only eigenvalues of are and . The matrix is entrywise dominated by in the sense of (1), and in particular has trace zero; thus the and eigenvalues must occur with equal multiplicity, so in particular the eigenvalue occurs with multiplicity since the matrix has dimensions . This establishes Proposition 2.

Remark 4Twisted convolution is actually just a component of ordinary convolution, but not on the original group ; instead it relates to convolution on a Heisenberg group extension of this group. More specifically, define the Heisenberg group to be the set of pairs with group lawand inverse operation

(one can dispense with the negative signs here if desired, since we are in characteristic two). Convolution on is defined in the usual manner: one has

for any . Now if is a function on the original group , we can define the lift by the formula

and then by chasing all the definitions one soon verifies that

for any , thus relating twisted convolution to Heisenberg group convolution .

Remark 5With the twisting by the specific bilinear form given by (2), convolution by and now anticommute rather than commute. This makes the twisted convolution algebra isomorphic to a Clifford algebra (the real or complex algebra generated by formal generators subject to the relations for ) rather than the commutative algebra more familiar to abelian Fourier analysis. This connection to Clifford algebra (also observed independently by Tom Mrowka and by Daniel Matthews) may be linked to the exterior algebra interpretation of the argument in the recent preprint of Karasev mentioned above.

Remark 6One could replace the form (2) in this argument by any other bilinear form that obeyed the relations and for . However, this additional level of generality does not add much; any such will differ from by an antisymmetric form (so that for all , which in characteristic two implied that for all ), and such forms can always be decomposed as , where . As such, the matrices and are conjugate, with the conjugation operator being the diagonal matrix with entries at each vertex .

Remark 7(Added later) This remark combines the two previous remarks. One can view any of the matrices in Remark 6 as components of a single canonical matrix that is still of dimensions , but takes values in the Clifford algebra from Remark 5; with this “universal algebra” perspective, one no longer needs to make any arbitrary choices of form . More precisely, let denote the vector space of functions from the hypercube to the Clifford algebra; as a real vector space, this is a dimensional space, isomorphic to the direct sum of copies of , as the Clifford algebra is itself dimensional. One can then define a canonical Clifford adjacency operator on this space bywhere are the generators of . This operator can either be identified with a Clifford-valued matrix or as a real-valued matrix. In either case one still has the key algebraic relations and , ensuring that when viewed as a real matrix, half of the eigenvalues are equal to and half equal to . One can then use this matrix in place of any of the to establish Theorem 1 (noting that Schur’s test continues to work for Clifford-valued matrices because of the norm structure on ).

To relate to the real matrices , first observe that each point in the hypercube can be associated with a one-dimensional real subspace (i.e., a line) in the Clifford algebra by the formula

for any (note that this definition is well-defined even if the are out of order or contain repetitions). This can be viewed as a discrete line bundle over the hypercube. Since for any , we see that the -dimensional real linear subspace of of sections of this bundle, that is to say the space of functions such that for all , is an invariant subspace of . (Indeed, using the left-action of the Clifford algebra on , which commutes with , one can naturally identify with , with the left action of acting purely on the first factor and acting purely on the second factor.) Any trivialisation of this line bundle lets us interpret the restriction of to as a real matrix. In particular, given one of the bilinear forms from Remark 6, we can identify with by identifying any real function with the lift defined by

whenever . A somewhat tedious computation using the properties of then eventually gives the intertwining identity

and so is conjugate to .

Let be some domain (such as the real numbers). For any natural number , let denote the space of symmetric real-valued functions on variables , thus

for any permutation . For instance, for any natural numbers , the elementary symmetric polynomials

will be an element of . With the pointwise product operation, becomes a commutative real algebra. We include the case , in which case consists solely of the real constants.

Given two natural numbers , one can “lift” a symmetric function of variables to a symmetric function of variables by the formula

where ranges over all injections from to (the latter formula making it clearer that is symmetric). Thus for instance

and

Also we have

With these conventions, we see that vanishes for , and is equal to if . We also have the transitivity

if .

The lifting map is a linear map from to , but it is not a ring homomorphism. For instance, when , one has

In general, one has the identity

for all natural numbers and , , where range over all injections , with . Combinatorially, the identity (2) follows from the fact that given any injections and with total image of cardinality , one has , and furthermore there exist precisely triples of injections , , such that and .

Example 1When , one haswhich is just a restatement of the identity

Note that the coefficients appearing in (2) do not depend on the final number of variables . We may therefore abstract the role of from the law (2) by introducing the real algebra of formal sums

where for each , is an element of (with only finitely many of the being non-zero), and with the formal symbol being formally linear, thus

and

for and scalars , and with multiplication given by the analogue

of (2). Thus for instance, in this algebra we have

and

Informally, is an abstraction (or “inverse limit”) of the concept of a symmetric function of an unspecified number of variables, which are formed by summing terms that each involve only a bounded number of these variables at a time. One can check (somewhat tediously) that is indeed a commutative real algebra, with a unit . (I do not know if this algebra has previously been studied in the literature; it is somewhat analogous to the abstract algebra of finite linear combinations of Schur polynomials, with multiplication given by a Littlewood-Richardson rule. )

For natural numbers , there is an obvious specialisation map from to , defined by the formula

Thus, for instance, maps to and to . From (2) and (3) we see that this map is an algebra homomorphism, even though the maps and are not homomorphisms. By inspecting the component of we see that the homomorphism is in fact surjective.

Now suppose that we have a measure on the space , which then induces a product measure on every product space . To avoid degeneracies we will assume that the integral is strictly positive. Assuming suitable measurability and integrability hypotheses, a function can then be integrated against this product measure to produce a number

In the event that arises as a lift of another function , then from Fubini’s theorem we obtain the formula

is an element of the formal algebra , then

Note that by hypothesis, only finitely many terms on the right-hand side are non-zero.

Now for a key observation: whereas the left-hand side of (6) only makes sense when is a natural number, the right-hand side is meaningful when takes a fractional value (or even when it takes negative or complex values!), interpreting the binomial coefficient as a polynomial in . As such, this suggests a way to introduce a “virtual” concept of a symmetric function on a fractional power space for such values of , and even to integrate such functions against product measures , even if the fractional power does not exist in the usual set-theoretic sense (and similarly does not exist in the usual measure-theoretic sense). More precisely, for arbitrary real or complex , we now *define* to be the space of abstract objects

with and (and now interpreted as formal symbols, with the structure of a commutative real algebra inherited from , thus

In particular, the multiplication law (2) continues to hold for such values of , thanks to (3). Given any measure on , we formally define a measure on with regards to which we can integrate elements of by the formula (6) (providing one has sufficient measurability and integrability to make sense of this formula), thus providing a sort of “fractional dimensional integral” for symmetric functions. Thus, for instance, with this formalism the identities (4), (5) now hold for fractional values of , even though the formal space no longer makes sense as a set, and the formal measure no longer makes sense as a measure. (The formalism here is somewhat reminiscent of the technique of dimensional regularisation employed in the physical literature in order to assign values to otherwise divergent integrals. See also this post for an unrelated abstraction of the integration concept involving integration over supercommutative variables (and in particular over fermionic variables).)

Example 2Suppose is a probability measure on , and is a random variable; on any power , we let be the usual independent copies of on , thus for . Then for any real or complex , the formal integralcan be evaluated by first using the identity

(cf. (1)) and then using (6) and the probability measure hypothesis to conclude that

For a natural number, this identity has the probabilistic interpretation

whenever are jointly independent copies of , which reflects the well known fact that the sum has expectation and variance . One can thus view (7) as an abstract generalisation of (8) to the case when is fractional, negative, or even complex, despite the fact that there is no sensible way in this case to talk about independent copies of in the standard framework of probability theory.

In this particular case, the quantity (7) is non-negative for every nonnegative , which looks plausible given the form of the left-hand side. Unfortunately, this sort of non-negativity does not always hold; for instance, if has mean zero, one can check that

and the right-hand side can become negative for . This is a shame, because otherwise one could hope to start endowing with some sort of commutative von Neumann algebra type structure (or the abstract probability structure discussed in this previous post) and then interpret it as a genuine measure space rather than as a virtual one. (This failure of positivity is related to the fact that the characteristic function of a random variable, when raised to the power, need not be a characteristic function of any random variable once is no longer a natural number: “fractional convolution” does not preserve positivity!) However, one vestige of positivity remains: if is non-negative, then so is

One can wonder what the point is to all of this abstract formalism and how it relates to the rest of mathematics. For me, this formalism originated implicitly in an old paper I wrote with Jon Bennett and Tony Carbery on the multilinear restriction and Kakeya conjectures, though we did not have a good language for working with it at the time, instead working first with the case of natural number exponents and appealing to a general extrapolation theorem to then obtain various identities in the fractional case. The connection between these fractional dimensional integrals and more traditional integrals ultimately arises from the simple identity

(where the right-hand side should be viewed as the fractional dimensional integral of the unit against ). As such, one can manipulate powers of ordinary integrals using the machinery of fractional dimensional integrals. A key lemma in this regard is

Lemma 3 (Differentiation formula)Suppose that a positive measure on depends on some parameter and varies by the formula

for some function . Let be any real or complex number. Then, assuming sufficient smoothness and integrability of all quantities involved, we have

for all that are independent of . If we allow to now depend on also, then we have the more general total derivative formula

again assuming sufficient amounts of smoothness and regularity.

*Proof:* We just prove (10), as (11) then follows by same argument used to prove the usual product rule. By linearity it suffices to verify this identity in the case for some symmetric function for a natural number . By (6), the left-hand side of (10) is then

Differentiating under the integral sign using (9) we have

and similarly

where are the standard copies of on :

By the product rule, we can thus expand (12) as

where we have suppressed the dependence on for brevity. Since , we can write this expression using (6) as

where is the symmetric function

But from (2) one has

and the claim follows.

Remark 4It is also instructive to prove this lemma in the special case when is a natural number, in which case the fractional dimensional integral can be interpreted as a classical integral. In this case, the identity (10) is immediate from applying the product rule to (9) to conclude thatOne could in fact derive (10) for arbitrary real or complex from the case when is a natural number by an extrapolation argument; see the appendix of my paper with Bennett and Carbery for details.

Let us give a simple PDE application of this lemma as illustration:

Proposition 5 (Heat flow monotonicity)Let be a solution to the heat equation with initial data a rapidly decreasing finite non-negative Radon measure, or more explicitlyfor al . Then for any , the quantity

is monotone non-decreasing in for , constant for , and monotone non-increasing for .

*Proof:* By a limiting argument we may assume that is absolutely continuous, with Radon-Nikodym derivative a test function; this is more than enough regularity to justify the arguments below.

For any , let denote the Radon measure

Then the quantity can be written as a fractional dimensional integral

Observe that

and thus by Lemma 3 and the product rule

where we use for the variable of integration in the factor space of .

To simplify this expression we will take advantage of integration by parts in the variable. Specifically, in any direction , we have

and hence by Lemma 3

Multiplying by and integrating by parts, we see that

where we use the Einstein summation convention in . Similarly, if is any reasonable function depending only on , we have

and hence on integration by parts

We conclude that

and thus by (13)

The choice of that then achieves the most cancellation turns out to be (this cancels the terms that are linear or quadratic in the ), so that . Repeating the calculations establishing (7), one has

and

where is the random variable drawn from with the normalised probability measure . Since , one thus has

This expression is clearly non-negative for , equal to zero for , and positive for , giving the claim. (One could simplify here as if desired, though it is not strictly necessary to do so for the proof.)

Remark 6As with Remark 4, one can also establish the identity (14) first for natural numbers by direct computation avoiding the theory of fractional dimensional integrals, and then extrapolate to the case of more general values of . This particular identity is also simple enough that it can be directly established by integration by parts without much difficulty, even for fractional values of .

A more complicated version of this argument establishes the non-endpoint multilinear Kakeya inequality (without any logarithmic loss in a scale parameter ); this was established in my previous paper with Jon Bennett and Tony Carbery, but using the “natural number first” approach rather than using the current formalism of fractional dimensional integration. However, the arguments can be translated into this formalism without much difficulty; we do so below the fold. (To simplify the exposition slightly we will not address issues of establishing enough regularity and integrability to justify all the manipulations, though in practice this can be done by standard limiting arguments.)

The following situation is very common in modern harmonic analysis: one has a large scale parameter (sometimes written as in the literature for some small scale parameter , or as for some large radius ), which ranges over some unbounded subset of (e.g. all sufficiently large real numbers , or all powers of two), and one has some positive quantity depending on that is known to be of *polynomial size* in the sense that

for all in the range and some constant , and one wishes to obtain a *subpolynomial upper bound* for , by which we mean an upper bound of the form

for all and all in the range, where can depend on but is independent of . In many applications, this bound is nearly tight in the sense that one can easily establish a matching lower bound

in which case the property of having a subpolynomial upper bound is equivalent to that of being *subpolynomial size* in the sense that

for all and all in the range. It would naturally be of interest to tighten these bounds further, for instance to show that is polylogarithmic or even bounded in size, but a subpolynomial bound is already sufficient for many applications.

Let us give some illustrative examples of this type of problem:

Example 1 (Kakeya conjecture)Here ranges over all of . Let be a fixed dimension. For each , we pick a maximal -separated set of directions . We let be the smallest constant for which one has the Kakeya inequalitywhere is a -tube oriented in the direction . The Kakeya maximal function conjecture is then equivalent to the assertion that has a subpolynomial upper bound (or equivalently, is of subpolynomial size). Currently this is only known in dimension .

Example 2 (Restriction conjecture for the sphere)Here ranges over all of . Let be a fixed dimension. We let be the smallest constant for which one has the restriction inequalityfor all bounded measurable functions on the unit sphere equipped with surface measure , where is the ball of radius centred at the origin. The restriction conjecture of Stein for the sphere is then equivalent to the assertion that has a subpolynomial upper bound (or equivalently, is of subpolynomial size). Currently this is only known in dimension .

Example 3 (Multilinear Kakeya inequality)Again ranges over all of . Let be a fixed dimension, and let be compact subsets of the sphere which aretransversein the sense that there is a uniform lower bound for the wedge product of directions for (equivalently, there is no hyperplane through the origin that intersects all of the ). For each , we let be the smallest constant for which one has the multilinear Kakeya inequalitywhere for each , is a collection of infinite tubes in of radius oriented in a direction in , which are separated in the sense that for any two tubes in , either the directions of differ by an angle of at least , or are disjoint; and is our notation for the geometric mean

The multilinear Kakeya inequality of Bennett, Carbery, and myself establishes that is of subpolynomial size; a later argument of Guth improves this further by showing that is bounded (and in fact comparable to ).

Example 4 (Multilinear restriction theorem)Once again ranges over all of . Let be a fixed dimension, and let be compact subsets of the sphere which aretransverseas in the previous example. For each , we let be the smallest constant for which one has the multilinear restriction inequalityfor all bounded measurable functions on for . Then the multilinear restriction theorem of Bennett, Carbery, and myself establishes that is of subpolynomial size; it is known to be bounded for (as can be easily verified from Plancherel’s theorem), but it remains open whether it is bounded for any .

Example 5 (Decoupling for the paraboloid)now ranges over the square numbers. Let , and subdivide the unit cube into cubes of sidelength . For any , define the extension operatorsand

for and . We also introduce the weight function

For any , let be the smallest constant for which one has the decoupling inequality

The decoupling theorem of Bourgain and Demeter asserts that is of subpolynomial size for all in the optimal range .

Example 6 (Decoupling for the moment curve)now ranges over the natural numbers. Let , and subdivide into intervals of length . For any , define the extension operatorsand more generally

for . For any , let be the smallest constant for which one has the decoupling inequality

It was shown by Bourgain, Demeter, and Guth that is of subpolynomial size for all in the optimal range , which among other things implies the Vinogradov main conjecture (as discussed in this previous post).

It is convenient to use asymptotic notation to express these estimates. We write , , or to denote the inequality for some constant independent of the scale parameter , and write for . We write to denote a bound of the form where as along the given range of . We then write for , and for . Then the statement that is of polynomial size can be written as

while the statement that has a subpolynomial upper bound can be written as

and similarly the statement that is of subpolynomial size is simply

Many modern approaches to bounding quantities like in harmonic analysis rely on some sort of *induction on scales* approach in which is bounded using quantities such as for some exponents . For instance, suppose one is somehow able to establish the inequality

for all , and suppose that is also known to be of polynomial size. Then this implies that has a subpolynomial upper bound. Indeed, one can iterate this inequality to show that

for any fixed ; using the polynomial size hypothesis one thus has

for some constant independent of . As can be arbitrarily large, we conclude that for any , and hence is of subpolynomial size. (This sort of iteration is used for instance in my paper with Bennett and Carbery to derive the multilinear restriction theorem from the multilinear Kakeya theorem.)

Exercise 7If is of polynomial size, and obeys the inequalityfor any fixed , where the implied constant in the notation is independent of , show that has a subpolynomial upper bound. This type of inequality is used to equate various linear estimates in harmonic analysis with their multilinear counterparts; see for instance this paper of myself, Vargas, and Vega for an early example of this method.

In more recent years, more sophisticated induction on scales arguments have emerged in which one or more auxiliary quantities besides also come into play. Here is one example, this time being an abstraction of a short proof of the multilinear Kakeya inequality due to Guth. Let be the quantity in Example 3. We define similarly to for any , except that we now also require that the diameter of each set is at most . One can then observe the following estimates:

- (Triangle inequality) For any , we have
- (Multiplicativity) For any , one has
- (Loomis-Whitney inequality) We have

These inequalities now imply that has a subpolynomial upper bound, as we now demonstrate. Let be a large natural number (independent of ) to be chosen later. From many iterations of (6) we have

and hence by (7) (with replaced by ) and (5)

where the implied constant in the exponent does not depend on . As can be arbitrarily large, the claim follows. We remark that a nearly identical scheme lets one deduce decoupling estimates for the three-dimensional cone from that of the two-dimensional paraboloid; see the final section of this paper of Bourgain and Demeter.

Now we give a slightly more sophisticated example, abstracted from the proof of decoupling of the paraboloid by Bourgain and Demeter, as described in this study guide after specialising the dimension to and the exponent to the endpoint (the argument is also more or less summarised in this previous post). (In the cited papers, the argument was phrased only for the non-endpoint case , but it has been observed independently by many experts that the argument extends with only minor modifications to the endpoint .) Here we have a quantity that we wish to show is of subpolynomial size. For any and , one can define an auxiliary quantity . The precise definitions of and are given in the study guide (where they are called and respectively, setting and ) but will not be of importance to us for this discussion. Suffice to say that the following estimates are known:

- (Crude upper bound for ) is of polynomial size: .
- (Bilinear reduction, using parabolic rescaling) For any , one has
- (Crude upper bound for ) For any one has
- (Application of multilinear Kakeya and decoupling) If are sufficiently small (e.g. both less than ), then

In all of these bounds the implied constant exponents such as or are independent of and , although the implied constants in the notation can depend on both and . Here we gloss over an annoying technicality in that quantities such as , , or might not be an integer (and might not divide evenly into ), which is needed for the application to decoupling theorems; this can be resolved by restricting the scales involved to powers of two and restricting the values of to certain rational values, which introduces some complications to the later arguments below which we shall simply ignore as they do not significantly affect the numerology.

It turns out that these estimates imply that is of subpolynomial size. We give the argument as follows. As is known to be of polynomial size, we have some for which we have the bound

for all . We can pick to be the minimal exponent for which this bound is attained: thus

We will call this the *upper exponent* of . We need to show that . We assume for contradiction that . Let be a sufficiently small quantity depending on to be chosen later. From (10) we then have

for any sufficiently small . A routine iteration then gives

for any that is independent of , if is sufficiently small depending on . A key point here is that the implied constant in the exponent is uniform in (the constant comes from summing a convergent geometric series). We now use the crude bound (9) followed by (11) and conclude that

Applying (8) we then have

If we choose sufficiently large depending on (which was assumed to be positive), then the negative term will dominate the term. If we then pick sufficiently small depending on , then finally sufficiently small depending on all previous quantities, we will obtain for some strictly less than , contradicting the definition of . Thus cannot be positive, and hence has a subpolynomial upper bound as required.

Exercise 8Show that one still obtains a subpolynomial upper bound if the estimate (10) is replaced withfor some constant , so long as we also improve (9) to

(This variant of the argument lets one handle the non-endpoint cases of the decoupling theorem for the paraboloid.)

To establish decoupling estimates for the moment curve, restricting to the endpoint case for sake of discussion, an even more sophisticated induction on scales argument was deployed by Bourgain, Demeter, and Guth. The proof is discussed in this previous blog post, but let us just describe an abstract version of the induction on scales argument. To bound the quantity , some auxiliary quantities are introduced for various exponents and and , with the following bounds:

- (Crude upper bound for ) is of polynomial size: .
- (Multilinear reduction, using non-isotropic rescaling) For any and , one has
- (Crude upper bound for ) For any and one has
- (Hölder) For and one has
- (Rescaled decoupling hypothesis) For , one has
- (Lower dimensional decoupling) If and , then
- (Multilinear Kakeya) If and , then

It is now substantially less obvious that these estimates can be combined to demonstrate that is of subpolynomial size; nevertheless this can be done. A somewhat complicated arrangement of the argument (involving some rather unmotivated choices of expressions to induct over) appears in my previous blog post; I give an alternate proof later in this post.

These examples indicate a general strategy to establish that some quantity is of subpolynomial size, by

- (i) Introducing some family of related auxiliary quantities, often parameterised by several further parameters;
- (ii) establishing as many bounds between these quantities and the original quantity as possible; and then
- (iii) appealing to some sort of “induction on scales” to conclude.

The first two steps (i), (ii) depend very much on the harmonic analysis nature of the quantities and the related auxiliary quantities, and the estimates in (ii) will typically be proven from various harmonic analysis inputs such as Hölder’s inequality, rescaling arguments, decoupling estimates, or Kakeya type estimates. The final step (iii) requires no knowledge of where these quantities come from in harmonic analysis, but the iterations involved can become extremely complicated.

In this post I would like to observe that one can clean up and made more systematic this final step (iii) by passing to upper exponents (12) to eliminate the role of the parameter (and also “tropicalising” all the estimates), and then taking similar limit superiors to eliminate some other less important parameters, until one is left with a simple linear programming problem (which, among other things, could be amenable to computer-assisted proving techniques). This method is analogous to that of passing to a simpler asymptotic limit object in many other areas of mathematics (for instance using the Furstenberg correspondence principle to pass from a combinatorial problem to an ergodic theory problem, as discussed in this previous post). We use the limit superior exclusively in this post, but many of the arguments here would also apply with one of the other generalised limit functionals discussed in this previous post, such as ultrafilter limits.

For instance, if is the upper exponent of a quantity of polynomial size obeying (4), then a comparison of the upper exponent of both sides of (4) one arrives at the scalar inequality

from which it is immediate that , giving the required subpolynomial upper bound. Notice how the passage to upper exponents converts the estimate to a simpler inequality .

Exercise 9Repeat Exercise 7 using this method.

Similarly, given the quantities obeying the axioms (5), (6), (7), and assuming that is of polynomial size (which is easily verified for the application at hand), we see that for any real numbers , the quantity is also of polynomial size and hence has some upper exponent ; meanwhile itself has some upper exponent . By reparameterising we have the homogeneity

for any . Also, comparing the upper exponents of both sides of the axioms (5), (6), (7) we arrive at the inequalities

For any natural number , the third inequality combined with homogeneity gives , which when combined with the second inequality gives , which on combination with the first estimate gives . Sending to infinity we obtain as required.

Now suppose that , obey the axioms (8), (9), (10). For any fixed , the quantity is of polynomial size (thanks to (9) and the polynomial size of ), and hence has some upper exponent ; similarly has some upper exponent . (Actually, strictly speaking our axioms only give an upper bound on so we have to temporarily admit the possibility that , though this will soon be eliminated anyway.) Taking upper exponents of all the axioms we then conclude that

for all and .

Assume for contradiction that , then , and so the statement (20) simplifies to

At this point we can eliminate the role of and simplify the system by taking a second limit superior. If we write

then on taking limit superiors of the previous inequalities we conclude that

for all ; in particular . We take advantage of this by taking a further limit superior (or “upper derivative”) in the limit to eliminate the role of and simplify the system further. If we define

so that is the best constant for which as , then is finite, and by inserting this “Taylor expansion” into the right-hand side of (21) and conclude that

This leads to a contradiction when , and hence as desired.

Exercise 10Redo Exercise 8 using this method.

The same strategy now clarifies how to proceed with the more complicated system of quantities obeying the axioms (13)–(19) with of polynomial size. Let be the exponent of . From (14) we see that for fixed , each is also of polynomial size (at least in upper bound) and so has some exponent (which for now we can permit to be ). Taking upper exponents of all the various axioms we can now eliminate and arrive at the simpler axioms

for all , , and , with the lower dimensional decoupling inequality

for and , and the multilinear Kakeya inequality

for and .

As before, if we assume for sake of contradiction that then the first inequality simplifies to

We can then again eliminate the role of by taking a second limit superior as , introducing

and thus getting the simplified axiom system

for and , and

for and .

In view of the latter two estimates it is natural to restrict attention to the quantities for . By the axioms (22), these quantities are of the form . We can then eliminate the role of by taking another limit superior

The axioms now simplify to

It turns out that the inequality (27) is strongest when , thus

From the last two inequalities (28), (29) we see that a special role is likely to be played by the exponents

for and

for . From the convexity (25) and a brief calculation we have

for , hence from (28) we have

Similarly, from (25) and a brief calculation we have

for ; the same bound holds for if we drop the term with the factor, thanks to (24). Thus from (29) we have

for , again with the understanding that we omit the first term on the right-hand side when . Finally, (26) gives

Let us write out the system of equations we have obtained in full:

We can then eliminate the variables one by one. Inserting (33) into (32) we obtain

which simplifies to

Inserting this into (34) gives

which when combined with (35) gives

which simplifies to

Iterating this we get

for all and

for all . In particular

which on insertion into (36), (37) gives

which is absurd if . Thus and so must be of subpolynomial growth.

Remark 11(This observation is essentially due to Heath-Brown.) If we let denote the column vector with entries (arranged in whatever order one pleases), then the above system of inequalities (32)–(36) (using (37) to handle the appearance of in (36)) readsfor some explicit square matrix with non-negative coefficients, where the inequality denotes pointwise domination, and is an explicit vector with non-positive coefficients that reflects the effect of (37). It is possible to show (using (24), (26)) that all the coefficients of are negative (assuming the counterfactual situation of course). Then we can iterate this to obtain

for any natural number . This would lead to an immediate contradiction if the Perron-Frobenius eigenvalue of exceeds because would now grow exponentially; this is typically the situation for “non-endpoint” applications such as proving decoupling inequalities away from the endpoint. In the endpoint situation discussed above, the Perron-Frobenius eigenvalue is , with having a non-trivial projection to this eigenspace, so the sum now grows at least linearly, which still gives the required contradiction for any . So it is important to gather “enough” inequalities so that the relevant matrix has a Perron-Frobenius eigenvalue greater than or equal to (and in the latter case one needs non-trivial injection of an induction hypothesis into an eigenspace corresponding to an eigenvalue ). More specifically, if is the spectral radius of and is a left Perron-Frobenius eigenvector, that is to say a non-negative vector, not identically zero, such that , then by taking inner products of (38) with we obtain

If this leads to a contradiction since is negative and is non-positive. When one still gets a contradiction as long as is strictly negative.

Remark 12(This calculation is essentially due to Guo and Zorin-Kranich.) Here is a concrete application of the Perron-Frobenius strategy outlined above to the system of inequalities (32)–(37). Consider the weighted sumI had secretly calculated the weights , as coming from the left Perron-Frobenius eigenvector of the matrix described in the previous remark, but for this calculation the precise provenance of the weights is not relevant. Applying the inequalities (31), (30) we see that is bounded by

(with the convention that the term is absent); this simplifies after some calculation to the bound

and this and (37) then leads to the required contradiction.

Exercise 13

- (i) Extend the above analysis to also cover the non-endpoint case . (One will need to establish the claim for .)
- (ii) Modify the argument to deal with the remaining cases by dropping some of the steps.

I recently came across this question on MathOverflow asking if there are any polynomials of two variables with rational coefficients, such that the map is a bijection. The answer to this question is almost surely “no”, but it is remarkable how hard this problem resists any attempt at rigorous proof. (MathOverflow users with enough privileges to see deleted answers will find that there are no fewer than seventeen deleted attempts at a proof in response to this question!)

On the other hand, the one surviving response to the question does point out this paper of Poonen which shows that assuming a powerful conjecture in Diophantine geometry known as the Bombieri-Lang conjecture (discussed in this previous post), it is at least possible to exhibit polynomials which are injective.

I believe that it should be possible to also rule out the existence of bijective polynomials if one assumes the Bombieri-Lang conjecture, and have sketched out a strategy to do so, but filling in the gaps requires a fair bit more algebraic geometry than I am capable of. So as a sort of experiment, I would like to see if a rigorous implication of this form (similarly to the rigorous implication of the Erdos-Ulam conjecture from the Bombieri-Lang conjecture in my previous post) can be crowdsourced, in the spirit of the polymath projects (though I feel that this particular problem should be significantly quicker to resolve than a typical such project).

Here is how I imagine a Bombieri-Lang-powered resolution of this question should proceed (modulo a large number of unjustified and somewhat vague steps that I believe to be true but have not established rigorously). Suppose for contradiction that we have a bijective polynomial . Then for any polynomial of one variable, the surface

has infinitely many rational points; indeed, every rational lifts to exactly one rational point in . I believe that for “typical” this surface should be irreducible. One can now split into two cases:

- (a) The rational points in are Zariski dense in .
- (b) The rational points in are not Zariski dense in .

Consider case (b) first. By definition, this case asserts that the rational points in are contained in a finite number of algebraic curves. By Faltings’ theorem (a special case of the Bombieri-Lang conjecture), any curve of genus two or higher only contains a finite number of rational points. So all but finitely many of the rational points in are contained in a finite union of genus zero and genus one curves. I think all genus zero curves are birational to a line, and all the genus one curves are birational to an elliptic curve (though I don’t have an immediate reference for this). These curves all can have an infinity of rational points, but very few of them should have “enough” rational points that their projection to the third coordinate is “large”. In particular, I believe

- (i) If is birational to an elliptic curve, then the number of elements of of height at most should grow at most polylogarithmically in (i.e., be of order .
- (ii) If is birational to a line but not of the form for some rational , then then the number of elements of of height at most should grow slower than (in fact I think it can only grow like ).

I do not have proofs of these results (though I think something similar to (i) can be found in Knapp’s book, and (ii) should basically follow by using a rational parameterisation of with nonlinear). Assuming these assertions, this would mean that there is a curve of the form that captures a “positive fraction” of the rational points of , as measured by restricting the height of the third coordinate to lie below a large threshold , computing density, and sending to infinity (taking a limit superior). I believe this forces an identity of the form

for all . Such identities are certainly possible for some choices of (e.g. for arbitrary polynomials of one variable) but I believe that the only way that such identities hold for a “positive fraction” of (as measured using height as before) is if there is in fact a rational identity of the form

for some rational functions with rational coefficients (in which case we would have and ). But such an identity would contradict the hypothesis that is bijective, since one can take a rational point outside of the curve , and set , in which case we have violating the injective nature of . Thus, modulo a lot of steps that have not been fully justified, we have ruled out the scenario in which case (b) holds for a “positive fraction” of .

This leaves the scenario in which case (a) holds for a “positive fraction” of . Assuming the Bombieri-Lang conjecture, this implies that for such , any resolution of singularities of fails to be of general type. I would imagine that this places some very strong constraints on , since I would expect the equation to describe a surface of general type for “generic” choices of (after resolving singularities). However, I do not have a good set of techniques for detecting whether a given surface is of general type or not. Presumably one should proceed by viewing the surface as a fibre product of the simpler surface and the curve over the line . In any event, I believe the way to handle (a) is to show that the failure of general type of implies some strong algebraic constraint between and (something in the spirit of (1), perhaps), and then use this constraint to rule out the bijectivity of by some further *ad hoc* method.

## Recent Comments