Tamar Ziegler and I have just uploaded to the arXiv our paper “The inverse conjecture for the Gowers norm over finite fields in low characteristic“, submitted to Annals of Combinatorics. This paper completes another case of the inverse conjecture for the Gowers norm, this time for vector spaces over a fixed finite field of prime order; with Vitaly Bergelson, we had previously established this claim when the characteristic of the field was large, so the main new result here is the extension to the low characteristic case. (The case of a cyclic group or interval was established by Ben Green and ourselves in another recent paper. For an arbitrary abelian (or nilpotent) group, a general but less explicit description of the obstructions to Gowers uniformity was recently obtained by Szegedy; the latter result recovers the high-characteristic case of our result (as was done in a subsequent paper of Szegedy), as well as our results with Green, but it is not immediately evident whether Szegedy’s description of the obstructions matches up with the one predicted by the inverse conjecture in low characteristic.)

The statement of the main theorem is as follows. Given a finite-dimensional vector space and a function , and an integer , one can define the Gowers uniformity norm by the formula

where . If is bounded in magnitude by , it is easy to see that is bounded by also, with equality if and only if for some *non-classical polynomial* of degree at most , where , and a non-classical polynomial of degree at most is a function whose “derivatives” vanish in the sense that

for all , where . Our result generalises this to the case when the uniformity norm is not equal to , but is still bounded away from zero:

Theorem 1 (Inverse conjecture)Let be bounded by with for some . Then there exists a non-classical polynomial of degree at most such that , where is a positive quantity depending only on the indicated parameters.

This theorem is trivial for , and follows easily from Fourier analysis for . The case was done in odd characteristic by Ben Green and myself, and in even characteristic by Samorodnitsky. In two papers, one with Vitaly Bergelson, we established this theorem in the “high characteristic” case when the characteristic of was greater than (in which case there is essentially no distinction between non-classical polynomials and their classical counterparts, as discussed previously on this blog). The need to deal with genuinely non-classical polynomials is the main new difficulty in this paper that was not dealt with in previous literature.

In our previous paper with Bergelson, a “weak” version of the above theorem was proven, in which the polynomial in the conclusion had bounded degree , rather than being of degree at most . In the current paper, we use this weak inverse theorem to reduce the inverse conjecture to a statement purely about polynomials:

Theorem 2 (Inverse conjecture for polynomials)Let , and let be a non-classical polynomial of degree at most such that . Then hasbounded rankin the sense that is a function of polynomials of degree at most .

This type of inverse theorem was first introduced by Bogdanov and Viola. The deduction of Theorem 1 from Theorem 2 and the weak inverse Gowers conjecture is fairly standard, so the main difficulty is to show Theorem 2.

The quantity of a polynomial of degree at most was denoted the *analytic rank* of by Gowers and Wolf. They observed that the analytic rank of was closely related to the rank of , defined as the least number of degree polynomials needed to express . For instance, in the quadratic case the two ranks are identical (in odd characteristic, at least). For general , it was easy to see that bounded rank implied bounded analytic rank; Theorem 2 is the converse statement.

We tried a number of ways to show that bounded analytic rank implied bounded rank, in particular spending a lot of time on ergodic-theoretic approaches, but eventually we settled on a “brute force” approach that relies on classifying those polynomials of bounded analytic rank as precisely as possible. The argument splits up into establishing three separate facts:

- (Classical case) If a
*classical*polynomial has bounded analytic rank, then it has bounded rank. - (Multiplication by ) If a non-classical polynomial (of degree at most ) has bounded analytic rank, then (which can be shown to have degree at most ) also has bounded analytic rank.
- (Division by ) If is a non-clsasical polynomial of degree of bounded rank, then there is a non-classical polynomial of degree at most of bounded rank such that .

The multiplication by and division by facts allow one to easily extend the classical case of the theorem to the non-classical case of the theorem, basically because classical polynomials are the kernel of the multiplication-by- homomorphism. Indeed, if is a non-classical polynomial of bounded analytic rank of the right degree, then the multiplication by claim tells us that also has bounded analytic rank, which by an induction hypothesis implies that has bounded rank. Applying the division by claim, we find a bounded rank polynomial such that , thus differs from by a classical polynomial, which necessarily has bounded analytic rank, hence bounded rank by the classical claim, and the claim follows.

Of the three claims, the multiplication-by- claim is the easiest to prove using known results; after a bit of Fourier analysis, it turns out to follow more or less immediately from the multidimensional Szemerédi theorem over finite fields of Bergelson, Leibman, and McCutcheon (one can also use the density Hales-Jewett theorem here if one desires).

The next easiest claim is the classical case. Here, the idea is to analyse a degree classical polynomial via its derivative , defined by the formula

for any (the RHS is independent of as has degree ). This is a multilinear form, and if has bounded analytic rank, this form is biased (in the sense that the mean of is large). Applying a general equidistribution theorem of Kaufman and Lovett (based on this earlier paper of Green and myself) this implies that is a function of a bounded number of multilinear forms of lower degree. Using some “regularity lemma” theory to clean up these forms so that they have good equidistribution properties, it is possible to understand exactly how the original multilinear form depends on these lower degree forms; indeed, the description one eventually obtains is so explicit that one can write down by inspection another bounded rank polynomial such that is equal to . Thus differs from the bounded rank polynomial by a lower degree error, which is automatically of bounded rank also, and the claim follows.

The trickiest thing to establish is the division by claim. The polynomial is some function of lower degree polynomials . Ideally, one would like to find a function of the same polynomials with , such that has the correct degree; however, we have counterexamples that show that this is not always possible. (These counterexamples are the main obstruction to making the ergodic theory approach work: in ergodic theory, one is only allowed to work with “measurable” functions, which are roughly analogous in this context to functions of the indicated polynomials and their shifts.) To get around this we have to first apply a regularity lemma to place in a suitably equidistributed form (although the fact that may be non-classical leads to a rather messy and technical description of this equidistribution), and then we have to *extend* each to a higher degree polynomial with . There is a crucial “exact roots” property of polynomials that allows one to do this, with having degree exactly higher than . It turns out that it is possible to find a function of these extended polynomials that have the right degree and which solves the required equation ; this is established by classifying completely all functions of the equidistributed polynomials or that are of a given degree.

## 2 comments

Comments feed for this article

13 January, 2011 at 11:26 am

Balazs SzegedyCongratulations to this nice result!

In my approach (that you refer to) certain algebraic structures called “nilspaces” play the crucial role. A few days ago I obtained a structure theorem for general nilspaces which I hope will remove some of the “less explicit” nature that you mention.

21 May, 2013 at 4:30 pm

Multiple recurrence and convergence results associated to $F_{p}^{omega}$-actions | What's new[…] of the structural theory of Host and Kra was worked out by Vitaly, Tamar, and myself in these previous papers (treating the high characteristic and low characteristic cases respectively). In the finite field […]