You are currently browsing the tag archive for the ‘Xuancheng Shao’ tag.
Kaisa Matomäki, Xuancheng Shao, Joni Teräväinen, and myself have just uploaded to the arXiv our preprint “Higher uniformity of arithmetic functions in short intervals I. All intervals“. This paper investigates the higher order (Gowers) uniformity of standard arithmetic functions in analytic number theory (and specifically, the Möbius function , the von Mangoldt function
, and the generalised divisor functions
) in short intervals
, where
is large and
lies in the range
for a fixed constant
(that one would like to be as small as possible). If we let
denote one of the functions
, then there is extensive literature on the estimation of short sums
Traditionally, asymptotics for such sums are expressed in terms of a “main term” of some arithmetic nature, plus an error term that is estimated in magnitude. For instance, a sum such as would be approximated in terms of a main term that vanished (or is negligible) if
is “minor arc”, but would be expressible in terms of something like a Ramanujan sum if
was “major arc”, together with an error term. We found it convenient to cancel off such main terms by subtracting an approximant
from each of the arithmetic functions
and then getting upper bounds on remainder correlations such as
- For the Möbius function
, we simply set
, as per the Möbius pseudorandomness conjecture. (One could choose a more sophisticated approximant in the presence of a Siegel zero, as I did with Joni in this recent paper, but we do not do so here.)
- For the von Mangoldt function
, we eventually went with the Cramér-Granville approximant
, where
and
.
- For the divisor functions
, we used a somewhat complicated-looking approximant
for some explicit polynomials
, chosen so that
and
have almost exactly the same sums along arithmetic progressions (see the paper for details).
The objective is then to obtain bounds on sums such as (1) that improve upon the “trivial bound” that one can get with the triangle inequality and standard number theory bounds such as the Brun-Titchmarsh inequality. For and
, the Siegel-Walfisz theorem suggests that it is reasonable to expect error terms that have “strongly logarithmic savings” in the sense that they gain a factor of
over the trivial bound for any
; for
, the Dirichlet hyperbola method suggests instead that one has “power savings” in that one should gain a factor of
over the trivial bound for some
. In the case of the Möbius function
, there is an additional trick (introduced by Matomäki and Teräväinen) that allows one to lower the exponent
somewhat at the cost of only obtaining “weakly logarithmic savings” of shape
for some small
.
Our main estimates on sums of the form (1) work in the following ranges:
- For
, one can obtain strongly logarithmic savings on (1) for
, and power savings for
.
- For
, one can obtain weakly logarithmic savings for
.
- For
, one can obtain power savings for
.
- For
, one can obtain power savings for
.
Conjecturally, one should be able to obtain power savings in all cases, and lower down to zero, but the ranges of exponents and savings given here seem to be the limit of current methods unless one assumes additional hypotheses, such as GRH. The
result for correlation against Fourier phases
was established previously by Zhan, and the
result for such phases and
was established previously by by Matomäki and Teräväinen.
By combining these results with tools from additive combinatorics, one can obtain a number of applications:
- Direct insertion of our bounds in the recent work of Kanigowski, Lemanczyk, and Radziwill on the prime number theorem on dynamical systems that are analytic skew products gives some improvements in the exponents there.
- We can obtain a “short interval” version of a multiple ergodic theorem along primes established by Frantzikinakis-Host-Kra and Wooley-Ziegler, in which we average over intervals of the form
rather than
.
- We can obtain a “short interval” version of the “linear equations in primes” asymptotics obtained by Ben Green, Tamar Ziegler, and myself in this sequence of papers, where the variables in these equations lie in short intervals
rather than long intervals such as
.
We now briefly discuss some of the ingredients of proof of our main results. The first step is standard, using combinatorial decompositions (based on the Heath-Brown identity and (for the result) the Ramaré identity) to decompose
into more tractable sums of the following types:
- Type
sums, which are basically of the form
for some weights
of controlled size and some cutoff
that is not too large;
- Type
sums, which are basically of the form
for some weights
,
of controlled size and some cutoffs
that are not too close to
or to
;
- Type
sums, which are basically of the form
for some weights
of controlled size and some cutoff
that is not too large.
The precise ranges of the cutoffs depend on the choice of
; our methods fail once these cutoffs pass a certain threshold, and this is the reason for the exponents
being what they are in our main results.
The Type sums involving nilsequences can be treated by methods similar to those in this previous paper of Ben Green and myself; the main innovations are in the treatment of the Type
and Type
sums.
For the Type sums, one can split into the “abelian” case in which (after some Fourier decomposition) the nilsequence
is basically of the form
, and the “non-abelian” case in which
is non-abelian and
exhibits non-trivial oscillation in a central direction. In the abelian case we can adapt arguments of Matomaki and Shao, which uses Cauchy-Schwarz and the equidistribution properties of polynomials to obtain good bounds unless
is “major arc” in the sense that it resembles (or “pretends to be”)
for some Dirichlet character
and some frequency
, but in this case one can use classical multiplicative methods to control the correlation. It turns out that the non-abelian case can be treated similarly. After applying Cauchy-Schwarz, one ends up analyzing the equidistribution of the four-variable polynomial sequence
For the type sum, a model sum to study is
In a sequel to this paper (currently in preparation), we will obtain analogous results for almost all intervals with
in the range
, in which we will be able to lower
all the way to
.
Kaisa Matomäki, Maksym Radziwill, Xuancheng Shao, Joni Teräväinen, and myself have just uploaded to the arXiv our preprint “Singmaster’s conjecture in the interior of Pascal’s triangle“. This paper leverages the theory of exponential sums over primes to make progress on a well known conjecture of Singmaster which asserts that any natural number larger than appears at most a bounded number of times in Pascal’s triangle. That is to say, for any integer
, there are at most
solutions to the equation
Our main result settles this conjecture in the “interior” region of the triangle:
Theorem 1 (Singmaster’s conjecture in the interior of the triangle) Ifand
is sufficiently large depending on
, there are at most two solutions to (1) in the region
and hence at most four in the region
Also, there is at most one solution in the region
To verify Singmaster’s conjecture in full, it thus suffices in view of this result to verify the conjecture in the boundary region
(or equivalentlyThe upper bound of two here for the number of solutions in the region (2) is best possible, due to the infinite family of solutions to the equation
coming from
The appearance of the quantity in Theorem 1 may be familiar to readers that are acquainted with Vinogradov’s bounds on exponential sums, which ends up being the main new ingredient in our arguments. In principle this threshold could be lowered if we had stronger bounds on exponential sums.
To try to control solutions to (1) we use a combination of “Archimedean” and “non-Archimedean” approaches. In the “Archimedean” approach (following earlier work of Kane on this problem) we view primarily as real numbers rather than integers, and express (1) in terms of the Gamma function as
Proposition 2 Let, and suppose
is sufficiently large depending on
. If
is a solution to (1) in the left half
of Pascal’s triangle, then there is at most one other solution
to this equation in the left half with
Again, the example of (4) shows that a cluster of two solutions is certainly possible; the convexity argument only kicks in once one has a cluster of three or more solutions.
To finish the proof of Theorem 1, one has to show that any two solutions to (1) in the region of interest must be close enough for the above proposition to apply. Here we switch to the “non-Archimedean” approach, in which we look at the
-adic valuations
of the binomial coefficients, defined as the number of times a prime
divides
. From the fundamental theorem of arithmetic, a collision
A key idea in our approach is to view this condition (6) statistically, for instance by viewing as a prime drawn randomly from an interval such as
for some suitably chosen scale parameter
, so that the two sides of (6) now become random variables. It then becomes advantageous to compare correlations between these two random variables and some additional test random variable. For instance, if
and
are far apart from each other, then one would expect the left-hand side of (6) to have a higher correlation with the fractional part
, since this term shows up in the summation on the left-hand side but not the right. Similarly if
and
are far apart from each other (although there are some annoying cases one has to treat separately when there is some “unexpected commensurability”, for instance if
is a rational multiple of
where the rational has bounded numerator and denominator). In order to execute this strategy, it turns out (after some standard Fourier expansion) that one needs to get good control on exponential sums such as
A modification of the arguments also gives similar results for the equation
where
Theorem 3 Ifand
is sufficiently large depending on
, there are at most two solutions to (7) in the region
Again the upper bound of two is best possible, thanks to identities such as
Recent Comments