Previous set of notes: Notes 2. Next set of notes: Notes 4.
[Warning: these notes have been substantially edited on Nov 9, 2021. Any references to theorem or exercise numbers before this date may now be inaccurate.]
We now come to perhaps the most central theorem in complex analysis (save possibly for the fundamental theorem of calculus), namely Cauchy’s theorem, which allows one to compute a large number of contour integrals even without knowing any explicit antiderivative of
. There are many forms and variants of Cauchy’s theorem. To give one such version, we need the basic topological notion of a homotopy:
Definition 1 (Homotopy) Let
be an open subset of
, and let
,
be two curves in
.
- (i) If
have the same initial point
and terminal point
, we say that
and
are homotopic with fixed endpoints in
if there exists a continuous map
such that
and
for all
, and such that
and
for all
.
- (ii) If
are closed (but possibly with different initial points), we say that
and
are homotopic as closed curves in
if there exists a continuous map
such that
and
for all
, and such that
for all
.
- (iii) If
and
are curves with the same initial point and same terminal point, we say that
and
are homotopic with fixed endpoints up to reparameterisation in
if there is a reparameterisation
of
which is homotopic with fixed endpoints in
to a reparameterisation
of
.
- (iv) If
and
are closed curves, we say that
and
are homotopic as closed curves up to reparameterisation in
if there is a reparameterisation
of
which is homotopic as closed curves in
to a reparameterisation
of
.
In the first two cases, the map
will be referred to as a homotopy from
to
, and we will also say that
can be continously deformed to
(either with fixed endpoints, or as closed curves).
Example 2 If
is a convex set, that is to say that
whenever
and
, then any two curves
from one point
to another
are homotopic, by using the homotopy
For a similar reason, in a convex open set
, any two closed curves will be homotopic to each other as closed curves.
Exercise 3 Let
be an open subset of
.
- (i) Prove that the property of being homotopic with fixed endpoints in
is an equivalence relation.
- (ii) Prove that the property of being homotopic as closed curves in
is an equivalence relation.
- (iii) If
,
are closed curves with the same initial point, show that
is homotopic to
as closed curves up to reparameterisation if and only if
is homotopic to
with fixed endpoints for some closed curve
with the same initial point as
or
up to reparameterisation.
- (iv) Define a point in
to be a curve
of the form
for some
and all
. Let
be a closed curve in
. Show that
is homotopic with fixed endpoints to a point in
if and only if
is homotopic as a closed curve to a point in
. (In either case, we will call
homotopic to a point, null-homotopic, or contractible to a point in
.)
- (v) If
are curves with the same initial point and the same terminal point, show that
is homotopic to
with fixed endpoints in
if and only if
is homotopic to a point in
.
- (vi) If
is connected, and
are any two curves in
, show that there exists a continuous map
such that
and
for all
. Thus the notion of homotopy becomes rather trivial if one does not fix the endpoints or require the curve to be closed.
- (vii) Show that if
is a reparameterisation of
, then
and
are homotopic with fixed endpoints in U.
- (viii) Prove that the property of being homotopic with fixed endpoints in
up to reparameterisation is an equivalence relation.
- (ix) Prove that the property of being homotopic as closed curves in
up to reparameterisation is an equivalence relation.
We can then phrase Cauchy’s theorem as an assertion that contour integration on holomorphic functions is a homotopy invariant. More precisely:
Theorem 4 (Cauchy’s theorem) Let
be an open subset of
, and let
be holomorphic.
- (i) If
and
are rectifiable curves that are homotopic in
with fixed endpoints up to reparameterisation, then
- (ii) If
and
are closed rectifiable curves that are homotopic in
as closed curves up to reparameterisation, then
This version of Cauchy’s theorem is particularly useful for applications, as it explicitly brings into play the powerful technique of contour shifting, which allows one to compute a contour integral by replacing the contour with a homotopic contour on which the integral is easier to either compute or integrate. This formulation of Cauchy’s theorem also highlights the close relationship between contour integrals and the algebraic topology of the complex plane (and open subsets thereof). Setting
to be a point, we obtain an important special case of Cauchy’s theorem (which is in fact equivalent to the full theorem):
Corollary 5 (Cauchy’s theorem, again) Let
be an open subset of
, and let
be holomorphic. Then for any closed rectifiable curve
in
that is contractible in
to a point, one has
.
Exercise 6 Show that Theorem 4 and Corollary 5 are logically equivalent.
An important feature to note about Cauchy’s theorem is the global nature of its hypothesis on . The conclusion of Cauchy’s theorem only involves the values of a function
on the images of the two curves
. However, in order for the hypotheses of Cauchy’s theorem to apply, the function
must be holomorphic not only on the images on
, but on an open set
that is large enough (and sufficiently free of “holes”) to support a homotopy between the two curves. This point can be emphasised through the following fundamental near-counterexample to Cauchy’s theorem:
Example 7 (Key example) Let
, and let
be the holomorphic function
. Let
be the closed unit circle contour
. Direct calculation shows that
As a consequence of this and Cauchy’s theorem, we conclude that the contour
is not contractible to a point in
; note that this does not contradict Example 2 because
is not convex. Thus we see that the lack of holomorphicity (or singularity) of
at the origin can be “blamed” for the non-vanishing of the integral of
on the closed contour
, even though this contour does not come anywhere near the origin. Thus we see that the global behaviour of
, not just the behaviour in the local neighbourhood of
, has an impact on the contour integral.
One can of course rewrite this example to involve non-closed contours instead of closed ones. For instance, if we letdenote the half-circle contours
and
, then
are both contours in
from
to
, but one has
whereas
In order for this to be consistent with Cauchy’s theorem, we conclude that
and
are not homotopic in
(even after reparameterisation).
In the specific case of functions of the form , or more generally
for some point
and some
that is holomorphic in some neighbourhood of
, we can quantify the precise failure of Cauchy’s theorem through the Cauchy integral formula, and through the concept of a winding number. These turn out to be extremely powerful tools for understanding both the nature of holomorphic functions and the topology of open subsets of the complex plane, as we shall see in this and later notes.
— 1. Proof of Cauchy’s theorem —
The underlying reason for the truth of Cauchy’s theorem can be explained in one sentence: complex differentiable functions behave locally like complex linear functions, which are conservative thanks to the fundamental theorem of calculus. More precisely, if is any complex linear function of
, then
has an antiderivative
, and hence
for any rectifiable closed curve in the complex plane.
Perhaps the slickest way to make this intuition rigorous is through the following special case of Cauchy’s theorem.
Theorem 8 (Goursat’s theorem) Let
be an open subset of
, and
be complex numbers such that the solid (and closed) triangle spanned by
(or more precisely, the convex hull of
) is contained in
. (We allow the triangle to degenerate in that we allow the
to be collinear, or even coincident.) Then for any holomorphic function
, one has
where
is the closed polygonal path that traverses the vertices
of the solid triangle in order.
Proof: Let us denote the triangular contour as
. It is convenient (though odd-looking at first sight) to prove this theorem by contradiction. That is to say, suppose for contradiction that we had
for some . We now run the following “divide and conquer” strategy. We let
,
,
be the midpoints of
. Then from the basic properties of contour integration (see Exercise 17 of Notes 2) we can split the triangular integral
as the sum of four integrals on smaller triangles, namely
(The reader is encouraged to draw a picture to visualise this decomposition.) By (2) and the triangle inequality (or, if one prefers, the pigeonhole principle), we must therefore have
where is one of the four triangular contours
,
,
, or
. Regardless of which of the four contours
is, observe that the triangular region enclosed by
is contained in that of
. Furthermore, the diameter of
is precisely half that of
, where the diameter
of a curve
is defined by the formula
similarly, the perimeter of
is precisely half that of
. If we iterate the above process, we can find a nested sequence
of triangular contours, each of which is contained in the previous one with half the diameter and perimeter, such that
for all . If we let
be any point enclosed by
, then from the decreasing diameters it is clear that the
are a Cauchy sequence and thus converge to some limit
, which is then contained in all of the closed triangles enclosed by any of the
.
In particular, lies in
and so
is differentiable at
. This implies, for any
, that there exists a
such that
whenever . We can rearrange this as
on . In particular, for
large enough, this bound holds on the image on
. In this case we can bound
by
, and hence by Exercise 17(v) of Notes 2,
From (1), the second integral vanishes. As each has half the diameter and perimeter of the previous, we thus have
But if one chooses small enough depending on
and
, we contradict (3).
Remark 9 This is a rare example of an argument in which a hypothesis of differentiability, rather than continuous differentiability, is used, because one can localise any failure of the conclusion all the way down to a single point. Another instance of such an argument is the standard proof of Rolle’s theorem.
Exercise 10 Find a proof of Goursat’s theorem that avoids explicit use of proof by contradiction. (Hint: use the fact that a solid triangle is compact, in the sense that every open cover has a finite subcover. For the purposes of this question, ignore the possibility that the proof of this latter fact might also use proof by contradiction.)
Goursat’s theorem only directly handles triangular contours, but as long as one works “locally”, or more precisely in a convex domain, we can quickly generalise:
Corollary 11 (Local Cauchy’s theorem for polygonal paths) Let
be a convex open subset of
, and let
be a holomorphic function. Then for any closed polygonal path
in
, we have
.
Proof: We induct on the number of vertices . The cases
are trivial, and the
case follows directly from Goursat’s theorem (using the convexity of
to ensure that the interior of the polygon lies in
). If
, we can split
The second integral on the right-hand side vanishes by Goursat’s theorem. The claim then follows from induction.
Exercise 12 By using the (real-variable) fundamental theorem of calculus and Fubini’s theorem in place of Goursat’s theorem, give an alternate proof of Corollary 11 in the case that
is a rectangle
and the derivative
of
is continuous. (One can also use Stokes’ theorem in place of the fundamental theorem of calculus and Fubini’s theorem.)
We can amplify Corollary 11 using the fundamental theorem of calculus again:
Corollary 13 (Local Cauchy’s theorem) Let
be a convex open subset of
, and let
be a holomorphic function. Then
has an antiderivative
. Also,
for any closed rectifiable curve
in
, and
whenever
are two rectifiable curves in
with the same initial point and same terminal point. In other words,
is conservative on
.
Proof: The first claim follows from Corollary 11 and the second fundamental theorem of calculus (Theorem 31 from Notes 2). The remaining claims then follow from the first fundamental theorem of calculus (Theorem 28 from Notes 2).
We can now prove Cauchy’s theorem in the form of Theorem 4.
Proof: We will just prove part (i), as part (ii) is similar (and in any event it follows from part (i)). Since reparameterisation does not affect the integral, we may assume without loss of generality that and
are homotopic with fixed endpoints, and not merely homotopic with fixed endpoints up to reparameterisation.
Let be a homotopy from
to
. Note that for any
and
,
lies in the open set
. From compactness, there must exist a radius
such that
for all
and
. Next, as
is continuous on a compact set, it is uniformly continuous. In particular, there exists
such that
whenever and
are such that
and
.
Now partition and
as
and
in such a way that
and
for all
and
. For each such
and
, let
denote the closed polygonal contour
(the reader is encouraged here to draw a picture of the situation; we are using polygonal contours here rather than the homotopy because we did not require any rectifiability properties on the homotopy). By construction, the diameter of this contour is at most
, so the contour is contained entirely in the disk
. This disk is convex and contained in
. Applying Corollary 11 or Corollary 13, we conclude that
for all and
. If we sum this over all
and
, and noting that the homotopy fixes the endpoints, we conclude after a lot of cancelling that
(again, the reader is encouraged to draw a picture to see this cancellation). However, from a further application of Corollary 13 we have
for , where
is the restriction of
to
, and similarly for
. Putting all this together we conclude that
as required.
One nice feature of Cauchy’s theorem is that it allows one to integrate holomorphic functions on curves that are not necessarily rectifiable. Indeed, if is a curve in
, then for a sufficiently fine partition
, the polygonal (and hence rectifiable) path
will be contained in
, and furthermore be homotopic to
with fixed endpoints. One can then define
when
is holomorphic in
and
is non-rectifiable by declaring
where is any rectifiable curve that is homotopic (with fixed endpoints) to
. This is a well defined definition thanks to the above discussion as well as Cauchy’s theorem; also observe that the exact open set
in which the homotopy lives is not relevant, since given any two open sets
containing the image of
one can find a rectifiable curve
which is homotopic to
with fixed endpoints in
, and hence in
and
separately. With this extended notion of the contour integral, one can then remove the hypothesis of rectifiability from many theorems involving integration of holomorphic functions. In particular, Cauchy’s theorem itself now holds for non-rectifiable curves. This reflects some duality in the integration concept
; if one assumes more regularity on the function
, one can get away with worse regularity on the curve
, and vice versa.
A special case of Cauchy’s theorem is worth recording explicitly. We say that an open set in the complex plane is simply connected if it is non-empty, connected, and if every closed curve in
is contractible in
to a point. For instance, from Example 2 we see that any convex non-empty open set is simply connected. From Theorem 4 we then have
Theorem 14 (Cauchy’s theorem, simply connected case) Let
be a simply connected subset of
, and let
be holomorphic. Then
for any closed curve in
. In particular (by Exercise 32 of Notes 2),
is conservative and has an antiderivative.
One can interpret Cauchy’s theorem through the lens of algebraic topology, and particularly through the machinery of homology and cohomology. We will not develop this perspective in depth in these notes, but the following exercise will give a brief glimpse of the connections to homology and cohomology.
Exercise 15 Let
be an open subset of
. Define a
-chain in
to be a formal linear combination
of points
(which we enclose in brackets to avoid confusion with the arithmetic operations on
, in particular
is not identified with
), where
is a natural number and the
are integers; these form an additive abelian group in the usual fashion. Similarly, define a
-chain in
to be a formal linear combination
of curves
in
, which (for very minor notational reasons) we will fix to have domain in the unit interval
. Finally, define a
-chain in
to be a formal linear combination
of
-simplices
, defined as continuous maps from the solid triangle
.
Given a-chain
in
, we define its boundary
to be the
-chain
and call
a
-cycle if
. Similarly, given a
-chain
, we define its boundary
to be the
-chain
where
is the curve on
that maps
to
, and similarly for
and
. If
is a
-cycle, and
is holomorphic, define the integral
by
If
lies outside of a
-cycle
, define the winding number
- (i) Show that if
is a
-chain in
, then
.
- (ii) Show that if
is a
-chain in
and
is holomorphic, then
.
- (iii) If
is a
-cycle in
, and
for all
, show that
. (Hint: first perturb
to be the union of line segments coming from a grid of some small sidelength
. Observe that the winding number
is constant whenever
ranges in the interior of one of the squares in this grid. Then find another
-cycle
coming from summing boundaries of such squares such that
for all
in the interior of grid squares. Then show that
and
.)
- (iv) If
is a
-cycle, and
has an antiderivative, show that
.
- (v) If
is a
-cycle,
for all
,
is holomorphic, and
is a point lying outside of any of the
, show that
Exercise 16 Let
be a subset of the complex plane which is star-shaped, which means that there exists
such that for any
, the line segment
is also contained in
. Show that every star-shaped set is simply connected.
— 2. Consequences of Cauchy’s theorem —
Now that we have Cauchy’s theorem, we use it to quickly give a large number of striking consequences. We begin with a special case of the Cauchy integral formula.
Theorem 17 (Cauchy integral formula, special case) Let
be an open subset of
, let
be holomorphic, and let
be a point in
. Let
be such that the closed disk
is contained in
. Let
be a closed curve in
that is homotopic (as a closed curve, and up to reparameterisation) in
to
in
. Then
Here we are already taking advantage of the ability to integrate holomorphic functions (such as , which is holomorphic on
) on curves
that are not necessarily rectifiable.
Note the remarkable feature here that the value of at some point other than that on
is completely determined by the value of
on the curve
, which is a strong manifestation of the “rigid” or “global” nature of holomorphic functions. Such a formula is certainly not available in the real case (Cauchy’s theorem is technically true on the real line, but there is no analogue of the circular contours
available in that setting).
Proof: Observe that for any , the circles
and
are homotopic (as closed curves) in
, and hence in
. Since the function
is holomorphic on
, we conclude from Cauchy’s theorem that
As is complex differentiable at
, there exists a finite
such that
for all in
, and all sufficiently small
. The length of this circle is of course
. Applying Exercise 17(v) of Notes 2 we have
On the other hand, from explicit computation (cf. Example 7) we have
putting all this together, we see that
Sending to zero, we obtain the claim.
Note the same argument would give
if were homotopic to the curve
:
rather than
, for some integer
. In particular, if
were homotopic to a point in
, then the right-hand side would vanish.
Remark 18 For various explicit examples of closed contours
, it is also possible to prove the Cauchy integral formula by applying Cauchy’s theorem to various “keyhole contours”. We will not pursue this approach here, but see for instance Chapter 2 of Stein-Shakarchi.
Exercise 19 (Mean value property and Poisson kernel) Let
be an open subset of
, and let
be a closed disk contained in
.
- (i) If
is holomorphic, show that
Use this to give an alternate proof of Exercise 26 from Notes 1.
- (ii) If
is harmonic, show that
Use this to give an alternate proof of Theorem 25 from Notes 1.
- (iii) If
is harmonic, show that
for any
, where the Poisson kernel
is defined by the formula
(Hint: it simplifies the calculations somewhat if one reduces to the case
,
, and
for some
. Then compute the integral
in two different ways, where
is holomorphic with real part
.)
The first important consequence of the Cauchy integral formula is the analyticity of holomorphic functions:
Corollary 20 (Holomorphic functions are analytic) Let
be an open subset of
, let
be holomorphic, and let
be a point in
. Let
be such that the closed disk
is contained in
. For each natural number
, let
denote the complex number
Then the power series
has radius of convergence at least
, and converges to
inside the disk.
Proof: By continuity, there exists a finite such that
for all
on the circle
, which of course has length
. From Exercise 17(v) of Notes 2 we conclude that
From this and Proposition 7 of Notes 1, we see that the radius of convergence of is indeed at least
.
Next, for any , the circle
is homotopic (as a closed curve) in
(and hence in
to
to
small enough that
lies in
. Applying the Cauchy integral formula, we conclude that
On the other hand, from the geometric series formula (Exercise 12 of Notes 1) one has
for all , and thus
If we could interchange the sum and integral, we would conclude from (4) that
which would give the claim. To justify the interchange, we will use the Weierstrass -test (the dominated convergence theorem would also work here). We have the pointwise bound
by the geometric series formula and the hypothesis , the sum
is finite, and so the
-test applies and we are done.
Remark 21 A function
on an open set
is said to be complex analytic on
if, for every
, there is a power series
with a positive radius of convergence that converges to
on some neighbourhood of
. Combining the above corollary with Theorem 15 of Notes 1, we see that
is holomorphic on
if and only if
is complex analytic on
; thus the terms “complex differentiable”, “holomorphic”, and “complex analytic” may be used interchangeably. This can be contrasted with real variable case: there is a completely parallel notion of a real analytic function
(i.e., a function such that, for every point
in the domain, can be expanded as a convergent power series around that point in some neighbourhood of that point), and real analytic functions are automatically smooth and differentiable, but the converse is quite false.
Recalling (see Remark 21 of Notes 1) that power series are infinitely differentiable (in both the real and complex senses) inside their disk of convergence, and working locally in various small disks in , we conclude
Corollary 22 Let
be an open subset of
, and let
be a holomorphic function. Then
is also holomorphic, and
is smooth (i.e. infinitely differentiable in the real sense).
In view of this corollary, we may now drop hypotheses of continuous first or second differentiability from several of the theorems in Notes 1, such as Exercise 26 from that set of notes.
Combining Corollary 22 with Proposition 28 of Notes 1 (with replaced by various rectangles in
), we obtain a form of elliptic regularity:
Corollary 23 (Elliptic regularity) Let
be an open subset of
, and let
be a harmonic function. Then
is smooth.
In fact one can even omit the hypothesis of continuous twice differentiability in the definition of harmonicity if one works with the notion of weak harmonicity, but this is a topic for a PDE or distribution theory course and will not be pursued further here.
Another immediate consequence of Corollary 20 is a version of the factor theorem:
Corollary 24 (Factor theorem for analytic functions) Let
be an open subset of
, and let
be a point in
. Let
be a complex analytic function that vanishes at
. Then there exists a unique complex analytic function
such that
for all
.
Proof: For , we can simply define
, and this is clearly the unique choice here. For
equal to or near
, we can expand
as a Taylor series
(noting that the constant term vanishes since
) and then set
. One can check that these two definitions of
agree on their common domain; on gluing the two definitions together, one obtains a function
is complex differentiable (and hence analytic) on all of
with the desired factorisation. Uniqueness at
then follows from uniqueness at
and continuity.
Yet another consequence is the important property of analytic continuation:
Corollary 25 (Analytic continuation) Let
be a connected non-empty open subset of
, and let
,
be complex analytic functions. If
and
agree on some non-empty open subset of
, then they in fact agree on all of
.
Proof: Let denote the set of all points
in
where
and
agree to all orders, that is to say that
for all . By hypothesis,
is non-empty; by the continuity of the
,
is closed; and from analyticity and Taylor expansion (Exercise 17 of Notes 1)
is open. As
is connected,
must therefore be all of
, and the claim follows. (This is an example of the continuity method in action.)
There is also a variant of the above corollary:
Corollary 26 (Non-trivial analytic functions have isolated zeroes) Let
be a connected non-empty open subset of
, and let
be a holomorphic function which vanishes at some point
but is not identically zero. Then there exists a disk
in
on which
does not vanish except at
; in other words, all the zeroes of
are isolated points.
Proof: If all the derivatives of
at
vanish, then by Taylor expansion
vanishes in some open neighbourhood of
, and then by Corollary 25
vanishes everywhere, a contradiction. Thus at least one of the
is non-zero. If
is the first natural number for which
, then by iterating the factor theorem (Corollary 24) we see that
for some analytic function
which is non-vanishing at
. By continuity,
is also non-vanishing in some disk
in
, and the claim follows.
One particular consequence of the above corollary is that if two entire functions agree on the real line (or even on an infinite bounded subset of the complex plane), then they must agree everywhere, since otherwise
would have a non-isolated zero, contradicting Corollary 26. This strengthens Corollary 25, and helps explain why real-variable identities such as
automatically extend to their complex counterparts
. Another consequence is that if an entire function
is real-valued on the real axis, then one has the identity
for all complex , because this identity already holds on the real line, and both sides are complex analytic. Thus for instance
Next, if we combine Corollary 20 with Exercise 17 of Notes 1, as well as Cauchy’s theorem, we obtain
Theorem 27 (Higher order Cauchy integral formula, special case) Let
be an open subset of
, let
be holomorphic, and let
be a point in
. Let
be such that the closed disk
is contained in
. Let
be a closed curve in
that is homotopic (as a closed curve, up to reparameterisation) in
to
in
. Then for any natural number
, the
derivative
of
at
is given by the formula
Exercise 28 Give an alternate proof of Theorem 27 by rigorously differentiating the Cauchy integral formula with respect to the
parameter.
Combining Theorem 27 with Exercise 17(v) of Notes 2, we obtain a more quantitative form of Corollary 22, which asserts not only that the higher derivatives of a holomorphic function exist, but also places a bound on them:
Corollary 29 (Cauchy inequalities) Let
be an open subset of
, let
be holomorphic, and let
be a point in
. Let
be such that the closed disk
is contained in
. Suppose that there is an
such that
on the circle
. Then for any natural number
, we have
Note that the case of this corollary is compatible with the maximum principle (Exercise 26 of Notes 1).
The right-hand side of (5) has a denominator that improves when
gets large. In particular we have the remarkable theorem of Liouville:
Theorem 30 (Liouville’s theorem) Let
be an entire function that is bounded. Then
is constant.
Proof: By hypothesis, there is a finite such that
for all
. Applying the Cauchy inequalities with
and any disk
, we conclude that
for any and
. Sending
to infinity, we conclude that
vanishes identically. The claim then follows from the fundamental theorem of calculus.
This theorem displays a strong “rigidity” property for entire functions; if such a function is even vaguely close to being constant (by being bounded), then it almost magically “snaps into place” and actually is forced to be a constant! This is in stark contrast to the real case, in which there are functions such as that are differentiable (and even smooth and analytic) on the real line and bounded, but definitely not constant. Note that the complex analogue
of the sine function is not a counterexample to Liouville’s theorem, since
becomes quite unbounded away from the real axis (Exercise 16 of Notes 0). This also fits well with the intuition of harmonic functions (and hence also holomorphic functions) being “balanced” in that any convexity in one direction has to be balanced by concavity in the orthogonal direction, and vice versa (as discussed before Theorem 25 of Notes 1): any attempt to create an entire function that is bounded and oscillating in one direction will naturally force that function to become unbounded in the orthogonal direction.
Exercise 31 Let
be an entire function which is of polynomial growth in the sense that there exists a finite quantity
and some exponent
such that
for all
. Show that
is, in fact, a polynomial.
Now we can prove the fundamental theorem of algebra discussed back in Notes 0.
Theorem 32 (Fundamental theorem of algebra) Let
be a polynomial of degree
for some
with
non-zero. Then there exist complex numbers
such that
Proof: This is trivial for , so suppose inductively that
and the claim has already been proven for
. Suppose first that the equation
has no roots in the complex plane, then the function
is entire. Also, this function goes to zero as
, and so is bounded on the exterior of any sufficiently large disk; as it is also continuous, it is bounded on any disk and is thus bounded everywhere. By Liouville’s theorem,
is constant, which implies that
is constant, which is absurd (for instance, the
derivative of
is the non-zero function
). Hence
has at least one root
. By the factor theorem (which works in any field, including the complex numbers) we can then write
for some polynomial
, which by the long division algorithm (or by comparing coefficients) must take the form
for some complex numbers . The claim then follows from the induction hypothesis.
The following exercises show that can be alternatively defined as an algebraic closure of the reals
(together with a designated square root
of
), and that extending
using a different irreducible polynomial than
would still give a field isomorphic to the complex numbers, thus supporting the notion that the complex numbers are not an arbitrary extension of the reals, but rather a quite natural and canonical one.
Exercise 33 Let
be a field containing
which is a finite extension of
, in the sense that
is a finite-dimensional vector space over
. Show that
is isomorphic (as a field) to either
or
. (Hint: if
is some element of
not in
, show that
for some irreducible polynomial
with real coefficients but no real roots. Use this to set up an isomorphism between the field
generated by
and
with
. If there is an element
of
not in this field
, show that there
for some irreducible polynomial
with coefficients in
and no roots in
, and contradict the fundamental theorem of algebra.)
Exercise 34 A field
is said to be algebraically closed if the conclusion of Theorem 32 with
replaced by
. Show that any algebraically closed field
containing
, contains a subfield that is isomorphic to
(and which contains
as a subfield, isomorphic to the copy of
inside
). Thus, up to isomorphism,
is the unique algebraic closure of
, that is to say a minimal algebraically closed field containing
.
Another nice consequence of the Cauchy integral formula is a converse to Cauchy’s theorem known as Morera’s theorem.
Theorem 35 (Morera’s theorem) Let
be an open subset of
, and let
be a continuous function. Suppose that
is conservative in the sense that
for any closed polygonal path in
. Then
is holomorphic on
.
Proof: By working locally with small disks in we may assume that
is a disk (and in particular connected). By Exercise 32 of Notes 2,
has an antiderivative
. By definition,
is complex differentiable at every point of
(with derivative
), so by Corollary 22,
is smooth, which implies in particular that
is holomorphic on
as claimed.
The power of Morera’s theorem comes from the fact that there are no differentiability requirements in the hypotheses on , and yet the conclusion is that
is differentiable (and hence smooth, by Corollary 22); it can be viewed as another manifestation of “elliptic regularity”. Here is one basic application of Morera’s theorem:
Theorem 36 (Uniform limit of holomorphic functions is holomorphic) Let
be an open subset of
, and let
be a sequence of holomorphic functions that converge uniformly on compact sets to a limit
. Then
is also holomorphic. Furthermore, for any natural number
, the derivatives
also converge uniformly on compact sets to
. (In particular,
converges pointwise to
on
.)
Proof: Again we may work locally and assume that is a disk (and in partiular is convex and simply connected). The
are continuous, hence their locally uniform limit
is also continuous. From Corollary 11 (or Corollary 14), we have
on any closed polygonal path in
, hence on taking locally uniform limits we also have
for such paths. The holomorphicity of
then follows from Morera’s theorem. The uniform convergence of
to
on compact sets
follows from applying Theorem 27 to circular contours
for
and
small enough that these contours lie in
(note from compactness that one can take
independent of
).
Actually, one can weaken the uniform nature of the convergence in Theorem 36 substantially; even the weak limit of holomorphic functions in the space of locally integrable functions on will remain harmonic. However, we will not need these weaker versions of this theorem here.
Exercise 37 (Riemann’s theorem on removable singularities) Let
be an open subset of
, let
be a point in
, and let
be a holomorphic function on
which is bounded near
, in the sense that it is bounded on some punctured disk
contained in
. Show that
has a removable singularity at
, in the sense that
is the restriction to
of a holomorphic function
on
. (Hint: show that
is conservative near
, find an antiderivative, extend it to
, and use Morera’s theorem to show that this extension is holomorphic. Alternatively, one can also proceed by some version of the Cauchy integral formula.)
Exercise 38 (Integrals of holomorphic functions) Let
be an open subset of
, and let
be a continuous function such that, for each
, the function
is holomorphic on
. Show that the function
is also holomorphic on
. (Hint: work locally and use Cauchy’s theorem, Morera’s theorem, and Fubini’s theorem.)
Exercise 39 (Schwarz reflection principle) Let
be an open subset of
that is symmetric around the real axis, that is to say
whenever
. Let
be a continuous function on the set
that is holomorphic in the open subset
.
- (i) Suppose that
be continuous on
that is holomorphic in the open subset
. Suppose further that
and
agree on
. Show that
and
are both restrictions of a single holomorphic function
.
- (ii) Suppose instead that
is real-valued on
(i.e.,
whenever
. Show that
is the restriction of a holomorphic function
, which obeys the additional property
for all
.
Informally, part (ii) of this theorem asserts that one can always reflect the domain of holomorphicity of a function across a line segment on the boundary of that domain, so long as the function is continuous up to that boundary and becomes real-valued in the limit. This is the most common form of the Schwarz reflection principle.
The following two Venn diagrams (or more precisely, Euler diagrams) summarise the relationships between different types of regularity amongst continuous functions over both the reals and the complexes. The first diagram
describes the class of continuous functions on some interval in the real line; such functions are automatically conservative, but not necessarily differentiable, while differentiable functions are not necessarily smooth, and smooth functions are not necessarily analytic. On the other hand, when considering the class of continuous functions on an open subset
of
, the picture is different:
Now, very few continuous functions are conservative, and only slightly more functions are complex differentiable (and for simply connected domains , these two classes in fact coincide). Whereas in the real case, differentiable functions were considerably less regular than analytic functions, in the complex case the two classes in fact coincide.
— 3. Winding number —
One defect of the current formulation of the Cauchy integral formula (see Theorem 17 and the ensuing discussion) is that the curve involved has to be homotopic (as a closed curve, up to reparameterisation) to a circular arc
, or at least to a curve of the form
,
for some integer
. We now investigate what happens when this hypothesis is removed. A key notion is that of a winding number.
Definition 40 (Winding number) Let
be a closed curve, and let
be a complex number that is not in the image of
. The winding number
of
around
is defined by the integral
Here we again take advantage of the ability to integrate holomorphic functions on curves that are not necessarily rectifiable. Clearly the winding number is unchanged if we replace by any equivalent curve, and if one replaces the curve
with its reversal
, then the winding number is similarly negated. In some texts, the winding number is also referred to as the index or degree.
From the Cauchy integral formula we see that
when is homotopic in
(as a closed curve, up to reparameterisation) to a circle
, and more generally that
if is homotopic in
(as a closed curve, up to reparameterisation) to a curve of the form
,
. Thus we see, intuitively at least, that
measures the number of times
winds counterclockwise about
, which explains the term “winding number”.
We can now state a more general form of the Cauchy integral formula:
Theorem 41 (General Cauchy integral formula) Let
be a simply connected subset of
, let
be a closed curve in
, and let
be holomorphic. Then for any
that lies in
but not in the image of
, we have
Proof: By Corollary 24 (or Exercise 37), we have for some holomorphic function
. Hence by Theorem 14 we have
The claim then follows from (6).
Exercise 42 (Higher order general Cauchy integral formula) With
as in the above theorem, show that
for every natural number
. (Hint: instead of approximating
by
, use a partial Taylor expansion of
. Many of the terms that arise can be handled using the fundamental theorem of calculus. Alternatively, one can use differentiation under the integral sign and Lemma 46 below.)
To use Theorem 41, it becomes of interest to obtain more properties on the winding number. From Cauchy’s theorem we have
Lemma 43 (Homotopy invariance) Let
, and let
be two closed curves in
that are homotopic as closed curves up to reparameterisation in
. Then
.
The following specific corollary of this lemma will be useful for us.
Corollary 44 (Rouche’s theorem for winding number) Let
be a closed curve, and let
lie outside of the image of
. Let
be a closed curve such that
for all
. Then
.
Proof: The map defined by
is a homotopy from
to
; by (7) and the triangle inequality, it avoids
. The claim then follows from Lemma 43.
Corollary 44 can be used to compute the winding number near infinity as follows. Given a curve and a point
, define the distance
and the diameter
Corollary 45 (Vanishing near infinity) Let
be a closed curve. Then
whenever
is such that
.
Proof: Apply Corollary 44 with equal to
and
equal to any point in the image of
.
Corollary 44 also gives local constancy of the winding number:
Lemma 46 (Local constancy in
) Let
be a closed curve. Then
is locally constant. That is to say, if
does not lie in the image of
, then there exists a disk
outside of the image of
such that
for all
.
Proof: From Corollary 44, we see that if is small enough and
, then
where is the translation of
by
. But by a translation change of variables we see that
and the claim follows.
Exercise 47 Give an alternate proof of Lemma 46 based on differentiation under the integral sign and using the fact that
has an antiderivative away from
.
As confirmation of the interpretation of as a winding number, we can now establish integrality:
Lemma 48 (Integrality) Let
be a closed curve, and let
lie outside of the image of
. Then
is an integer.
Proof: By Corollary 44 we may assume without loss of generality that is a closed polygonal path. By partitioning a polygon into triangles (and using Lemma 46 to move
slightly out of the way of any new edges formed by this partition) it suffices to verify this for triangular
. But this follows from the Cauchy integral formula (if
is in the interior of the triangle) or Cauchy’s theorem (if
is in the exterior).
Exercise 49 Give another proof of Lemma 48 by restricting again to closed polygonal paths
, and showing that the function
is constant on
by establishing that it is continuous and has vanishing derivative at all but finitely many points. (Note that
exists for all but finitely many
, so the integral here can be well defined.)
We now come to a fundamental and well known theorem about simple closed curves, namely the Jordan curve theorem.
Theorem 50 (Jordan curve theorem) Let
be a non-trivial simple closed curve. Then there is an orientation
such that the complex plane
is partitioned into the boundary region
, the exterior region
Furthermore:
- (i) The exterior region is connected and unbounded.
- (ii) The interior region is connected, non-empty and bounded.
- (iii) If
is any open set that contains
and its interior, then
is contractible to a point in
.
- (iv) The boundary of both the interior region and the exterior region is equal to the image of
.
This theorem is relatively easy to prove for “nice” curves, such as polygons, but is surprisingly delicate to prove in general. Some idea of the subtlety involved can be seen by considering pathological examples such as the lakes of Wada, which are three disjoint open connected subsets of which all happen to have exactly the same boundary! This does not contradict the Jordan curve theorem, because the boundary set in this example is not given by a simple closed curve. However it does indicate that one has to carefully use the hypothesis of being a simple closed curve in order to prove Theorem 50. Another indication of the difficulty of the theorem is its global nature; the claim does not hold if one replaces the complex plane
by other surfaces such as the torus, the projective plane, or the Klein bottle, so the global topological structure of the complex plane must come into play at some point. For the sake of completeness, we give a proof of this theorem in an appendix to these notes.
If the quantity in the above theorem is equal to
, we say that the simple closed curve
has an anticlockwise orientation; if instead
we say that
has a clockwise orientation. Thus for instance,
has an anticlockwise orientation, while its reversal
has the clockwise orientation.
Exercise 51 Let
,
be non-trivial simple closed curves.
- (i) If
have disjoint image, show that
either lies entirely in the interior of
, or in the exterior.
- (ii) If
avoids the exterior of
, show that the interior of
is contained in the interior of
, and the exterior of
contains the exterior of
.
- (iii) If
avoids the interior of
, and
avoids the interior of
, and the two curves have disjoint images, show that the interior of
is contained in the exterior of
, and the exterior of
contains the interior of
.
(This is all visually “obvious” as soon as one draws a picture, but the challenge is to provide a rigorous proof. One should of course use the Jordan curve theorem extensively to do so.)
Exercise 52 Let
be a non-trivial simple closed curve. Show that the interior of
is simply connected. (Hint: first show that any simple closed polygonal path in
is contractible to a point in the interior; then extend this to closed polygonal paths that are not necessarily simple by an induction on the number of edges in the path; then handle general closed curves.)
Remark 53 There is a refinement of the Jordan curve theorem known as the Jordan-Schoenflies theorem, that asserts that for non-trivial simple closed curve
there is a homeomorphism
that maps
to the unit circle
, the interior of
to the unit disk
, and the exterior to the exterior region
. The proof of this improved version of the Jordan curve theorem will have to wait until we have the Riemann mapping theorem (as well as a refinement of this theorem due to Carathéodory). The Jordan-Schoenflies theorem may seem self-evident, but it is worth pointing out that the analogous result in three dimensions fails without additional regularity assumptions on the boundary surface, thanks to the counterexample of the Alexander horned sphere.
From the Jordan curve theorem we have yet another form of the Cauchy theorem and Cauchy integral formula:
Theorem 54 (Cauchy’s theorem and Cauchy integral formula for simple curves) Let
be a simple closed curve, and let
be an open set containing
and its interior. Let
be a holomorphic function.
- (i) (Cauchy’s theorem) One has
.
- (ii) (Cauchy integral formula) If
lies outside of the image of
, then the expression
vanishes if
lies in the exterior of
, equals
if
lies in the interior of
and
is oriented anti-clockwise, and equals
if
lies in the interior of
and
is oriented clockwise.
Exercise 55 Let
be a polynomial with complex coefficients
and
. For any
, let
denote the closed contour
.
- (i) Show that if
is sufficiently large, then
.
- (ii) Show that if
does not vanish on the closed disk
, then
.
- (iii) Use these facts to give an alternate proof of the fundamental theorem of algebra that does not invoke Liouville’s theorem.
In the case when the closed curve is a contour (which includes of course the case of closed polygonal paths), one can describe the interior and exterior regions, as well as the winding number, more explicitly.
Exercise 56 (Local structure of interior and exterior) Let
be a simple closed contour formed by concatenating smooth curves
together. Let
be an interior point of one of these curves
, thus
for some
. Set
for some
and
. Recall from Exercise 25 of Notes 2 that for sufficiently small
, the set
can be expressed as a graph of the form
for some interval
and some continuously differentiable function
with
. Show that if
is oriented anticlockwise, and
is sufficiently small then the interior of
contains all points in
of the form
for some
and
, and the exterior of
contains all points in
of the form
for some
and
. Similarly if
oriented clockwise, with the conditions
and
swapped.
Exercise 57 (Alexander numbering rule) Let
be a closed contour formed by concatenating smooth curves
together. Let
be a contour formed by concatenating smooth curves
, with initial point
and terminal point
. Assume that there are only finitely many points
where the images of
and of
intersect. Furthermore, assume at each of the points
,
, that one has a “smooth simple transverse intersection” in the sense that the following axioms are obeyed:
- (i)
lies in the interior of one of the smooth curves
that make up
, thus
for some
.
- (ii)
lies in the interior of one of the smooth curves
that make up
, thus
for some
.
- (iii)
is only traversed once by
, thus there do not exist
in
such that
. Similarly,
is only traversed once by
.
- (iv) The derivatives
and
are linearly independent over
. In other words, we either have a crossing from the right in which
for some
and
, or else we have a crossing from the left in which
for some
and
.
Show that
is equal to the total number of crossings from the left, minus the total number of crossings from the right.
Exercise 58 Let
be a non-empty connected open subset of
. Show that
is simply connected if and only if every holomorphic function on
is conservative.
Exercise 59 Let
be a simply connected subset of
, and let
be a harmonic function. Show that
has a harmonic conjugate
, which is unique up to additive constants.
Exercise 60 Let
be a harmonic function that is everywhere non-negative. Show that
is constant. (Hint: combine
with its harmonic conjugate and the complex exponential to create a bounded entire function.)
— 4. Appendix: proof of the Jordan curve theorem (optional) —
We now prove the Jordan curve theorem.
We first verify the claim in the easy (and visually intuitive) case that is a non-trivial simple closed polygonal curve. Removing the polygon
from
leaves an open set, which we may decompose into connected components as per Exercise 35 of Notes 2. On each of these components, the winding number
is constant. Since each component has a non-empty boundary that is contained in
, this constant value of
must also be attained arbitrarily close to
.
Now, a routine application of the Cauchy integral formula (see Exercise 64) shows that as crosses one of the edges of the polygon
, the winding number
is shifted by either
or
. Hence at each point
on
, the winding number will take two values
in a sufficiently small neighbourhood of
(excluding
). By a continuity argument, the integer
is independent of
. On the other hand, from Corollary 45 the winding number must be able to attain the value of zero. Thus we have
for some
. Dividing a small neighbourhood of
(excluding
itself) into the regions where the winding numbers are
or
, a further continuity argument shows that each of these regions lie in a single connected component. Thus there are only two connected components, one where the winding number is zero and one where the winding number is
. From (45) the latter component is bounded, hence the former is unbounded. This gives claims (i), (ii) of the Jordan curve theorem. Also, from construction we see that every point
in
is adherent to both the interior and exterior, giving (iv).
Now we establish claim (iii). We induct on the number of edges in
. The cases
can be handled by direct calculation, so suppose that
and the claim has been proven for all smaller values of
. We may remove any edges of zero length from the polygon. If the interior of the polygon is convex, then the claim follows from Example 2, so we may assume that the interior is non-convex. We now invoke the following geometric fact:
Exercise 61 Let
be a simple closed polygonal path with all edges of positive length. Suppose that all interior angles of
(that is, the angle that two adjacent edges make in the interior of the polygon) are less than or equal to
. Show that the interior of
is convex. (Hint: first eliminate all angles that are exactly
. It suffices to show that the interior is star-shaped around every interior point
. To show this, first show that the set of interior points connected to
by a line segment in the interior is a connected component of the interior.)
From this exercise we see that there are two adjacent edges whose interior angle exceeds
. If one extends
in the interior until it meets the polygon again, we see that this extended edge
will divide the polygon into two subpolygons
, each of which can be verified to have fewer than
edges. Let
be the orientations of
. Then For any point
near an interior point of the edge
but not actually on
,
is equal to
,
takes values in
, and
takes values in
, with the latter two winding number switching as
crosses
. Since
, we conclude that
, and this equation then also shows that the interiors of
are contained in
. By induction hypothesis,
and
are contractible to a point in
. Using Exercise 3 we conclude that
is contractible to a point in
also.
Now we handle the significantly more difficult case when is just a non-trivial simple closed curve. As one may expect, the strategy will be to approximate this curve by a polygonal path, but some care has to be taken when performing a limit, in order to prevent the interior region from collapsing into nothingness, or becoming disconnected, in the limit.
We begin with a variant of Corollary 44 in which the curve is only required to have image close to the image of
, rather than be close to
in a pointwise (and uniform) sense. For any curve
and any
, let
denote the
-neighbourhood of
.
Proposition 62 Let
be a non-trivial simple closed curve, and let
. Suppose that
is sufficiently small depending on
and
. Let
be a closed curve (not necessarily simple) whose image lies in
. Then
is homotopic (as a closed curve, up to reparameterisation) to
in
, where
is defined as the concatenation of
copies of
if
is positive, the trivial curve at the initial point of
if
is zero, and the concatenation of
copies of
if
is negative. In particular, from Lemma 43 one has
for all
.
Proof: After reparameterisation, we can take to have domain on the unit interval
, and then by periodic extension we can view
as a continuous
-periodic function on
.
As is compact,
is uniformly continuous on
, and hence also on
. In particular, there exists
such that
whenever are such that
.
Fix this . Observe that the function
is continuous and nowhere vanishing on the region
. Thus, if
is small enough depending on
, we have the lower bound
whenever are such that
. Using the
-periodicity of
, we conclude that if
are such that
the there must be an integer such that
Note that this integer is uniquely determined by
and
.
Let be the domain of
. By the uniform continuity of
, we can find a partition
of
such that
for all and
. Since the image of
lies in
, we can find, for each
, a real number
such that
Since is closed, we may arrange matters so that
From the triangle inequality and (12), (13) we have
Using (11), we conclude that for each , there is an integer
such that
As is
-periodic, we have the freedom to shift each of the
by an arbitrary integer, and by doing this for
in turn, we may assume without loss of generality that all the
vanish, thus
for all . In particular, from (10) we have
whenever . Also, as
is simple, we have from (14) that
for some integer . (Note that by enforcing (15), we no longer have the freedom to individually move
or
by an integer, so we cannot assume without loss of generality that
vanishes.)
For , let
denote the curve
from to
; similarly let
denote the curve
from to
. Observe from (16), (12), (13) that for each
, the images of
and
both lie in
, which will lie in
if
is small enough. We can thus form a homotopy
from
to
by defining
for all and
. Thus
and
are homotopic as closed curves in
. But by Exercise 3,
is homotopic up to reparameterisation as closed curves to
in
, and
is similarly homotopic up to reparameterisation as closed curves to
in
, and the claim follows.
Returning to the general case of the Jordan curve theorem, we need to ensure that there is at least one point outside of
in which
is non-zero. This is actually rather tricky; we will achieve this by a parity argument (loosely inspired by a nonstandard version of this argument from this paper of Kanovei and Reeken). Clearly,
contains at least two points; by an appropriate rotation, translation, and dilation we may assume that
contains the points
and
, with
being both the initial point and the terminal point. Then we can decompose
, where
is a curve from
to
, and
is a curve from
to
.
Observe from the simplicity of that
whenever
and
are such that
Thus, by compactness, there exists such that one has the lower bound
separating from
whenever
,
are such that (17) holds.
Next, for any natural number , we may approximate
by a polygonal closed path
with
for all . Although it is not particularly necessary, we can ensure that
and
. By perturbing the edges of the polygonal path
slightly, we may assume that none of the vertices of
lie on the real axis, and that none of the self-crossings of
(if any exist) lie on the real axis; thus, whenever
crosses the real axis, it does so at an interior point of an edge, with no other edge of
passing through that point. Note that we do not assert that the curve
is simple; with some more effort one could “prune”
by deleting short loops to make it simple, but this turns out to be unnecessary for the parity argument we give below.
Let be the points on the real axis where
crosses. By Exercise 64 below, the winding number
changes by
or
as
crosses each of the
; by Lemma 46, this winding number is constant otherwise, and by Corollary 45 it vanishes near infinity. Thus
is even, and the winding number is odd between
and
for any odd
.
Next, observe that each point belongs to exactly one of the polygonal paths
or
. Since each of these curves starts on one side of the real axis and ends up on the other, they must both cross the real axis an odd number of times. On the other hand, the crossing points
can be grouped into pairs
with
odd. We conclude that there must exist an odd
such that one of the
lies in
and the other lies in
.
Fix such a . For sake of discussion let suppose that
lies in
and
lies in
. From (19) we have
and from (18) we have
for any . By the intermediate value theorem, we can thus (for
large enough) find
such that
and thus
or equivalently
We arrive at the same conclusion in the opposite case when lies in
and
lies in
.
By Corollary 45 (and (19)), the are bounded in
. By the Bolzano-Weierstrass theorem, we can thus extract a subsequence of the
that converges to some limit
. By continuity we then have
in particular does not lie in
. By construction of
, we know that
is odd for all
; using Lemma 46 and Lemma 44 we conclude that
is also odd. Thus we have found at least one point where the winding number is non-zero.
Now we can finish the proof of the Jordan curve theorem. Let be a non-trivial simple closed curve. By the preceding discussion, we can find a point
outside of
where the winding number
is non-zero. Let
be a sufficiently small parameter, and let
be sufficiently small depending on
. By compactness, one can cover the region
by a finite number of (solid) squares
of sidelength
and sides parallel to the real and imaginary axes; by perturbation we may assume that no edge of one square is collinear to an edge of any other square. These squares all lie in
, and in particular will not contain
if
is small enough; their union can easily be seen to be connected. The boundaries of these squares divide the complex plane into a finite number of polygonal regions (one of whom is unbounded). One of these regions, call it
, contains the point
. This region cannot contain any interior point of a square
, since otherwise
would be trapped inside a square of sidelength
and hence not contain
. In particular,
avoids
. The region
cannot be unbounded, since one could then continuously move
to infinity without ever meeting
, contradicting Lemma 46, Corollary 45, and the non-vanishing nature of
. The boundary of
consists of one or more disjoint closed polygonal paths, whose edges consist of horizontal and vertical line segments. Actually, the boundary must consist of just one closed path, since otherwise the union of the squares
would be disconnected, a contradiction. Let
denote the path that bounds
(traversed in either of the two possible directions). This path must be simple, because a crossing can only be formed by an edge of one square
crossing an edge of another square
at a point that is not on the corner of either of the two squares; as
avoids both
and
, it can thus only occupy one quadrant of a neighbourhood of this crossing and so cannot bound all four edges of the crossing.
Applying the Jordan curve theorem to the polygonal path , we conclude that there is
such that
on
, and
for all
outside of
and
. On the other hand, by Proposition 62 there is an integer
such that
is homotopic (as closed curves, up to reparameterisation) in
to
, so in particular
for all . Applying this to
, we conclude that
is either
or
. If we write
(where
, a priori, may depend on
), then
, and we have
for . Thus
takes only two values outside of
. Sending
, we conclude that
is in fact independent of
, and
takes only the two values
outside of
.
We now define the interior and exterior regions by (9), (8), then we have partitioned into the interior, exterior, and
. From Lemma 46 the interior and exterior are open, and from Lemma 45 the interior is bounded, and hence the exterior is unbounded. The point
lies in the interior, so the interior is non-empty. The only remaining task to show is that the interior and exterior are connected. Suppose for instance that
lie in the interior region. Then for
small enough,
lie outside of
. From (20), (21) we conclude that
lie in
. As
is connected, we can thus join
to
by a path in
. As the region
avoids
, we see from Lemma 46 that the winding number
stays constant on this path, and so the path remains in the interior region (9). This establishes the connectedness of the interior region; the connectedness of the exterior is proven similarly. This gives (i), (ii).
Now we show (iii). Let be a small parameter. As before, we can find a simple polygonal path
whose interior
lies in the interior of
, and such that
is homotopic to
in
, and hence in
if
is small enough, for some
. From the previous discussion we see that
is contractible to a point in
, and so
is also. The claim then follows (after reversing the contour
if necessary).
Finally, we show (iv). We need the following variant of the Jordan curve theorem.
Exercise 63 (Jordan arc theorem) Let
be a simple non-closed curve. Show that the complement of
in
is connected. (Hint: first establish a variant of Proposition 62 for non-closed curves, in which
is now set to zero. Then adapt the proof of the Jordan curve theorem.)
We now show that every point in the image of
is a boundary point of the interior; the argument for the exterior is similar. If
was not a boundary point of the interior, then one could remove a small neighborhood of
from the image of the curve
and still disconnect the interior from the exterior. In particular (after shifting the starting and ending points of
if necessary) we could find an arc in
which disconnects the interior from the exterior; but this contradicts the Jordan arc theorem. This gives (iv), and completes the proof of the general case of the Jordan curve theorem.
Exercise 64 Let
be a non-trivial simple closed polygonal curve, and let
be a point in the interior of an edge
of
(i.e.,
is not one of the two vertices of
). Let
be two points sufficiently close to
that lie on opposite sides of
. Without using the Jordan curve theorem, show that
. (Hint: replace
by a “local” closed contour that is quite short, and a “global” closed contour which avoids the line segment connecting
and
. Then use the Cauchy integral formula.)
Exercise 65 Let
be a bounded connected non-empty open subset of
. Show that
is simply connected if and only if the complement
is connected. (Hint: suppose that there is a point
in
that is separated from infinity by
. Show that there is some compact subset
of
that also separates
from infinity. Then cover
by small squares as in the proof of the Jordan curve theorem to locate a simple closed polygonal path in
that separates
from infinity.)
115 comments
Comments feed for this article
29 October, 2020 at 6:03 am
theorem 15
In proof of theorem 15, the last sentence says “if \gamma” were homotopic to a point in U\{z_0} the right hand side would vanish”. By being homotopic to a point – does it mean that one of the end points is that point? Secondly,does it vanish because it is not holomorphic in U\{z_0}?
29 October, 2020 at 7:37 am
Ben Johnsrude
Here ‘homotopic’ refers to homotopies of closed curves, so the endpoints are allowed to shift as well – that point is allowed to be any point in
, whether it is on the initial curve or not. The statement about vanishing is just saying that, when you integrate a continuous function around a small curve, the integral is small, so as the curve shrinks to a point the value of the integral shrinks to 0. By the assumption of holomorphicity, the value of the integral doesn’t change as the curve shrinks, so we conclude that it was 0 all along. – Ben
29 October, 2020 at 7:02 am
corollary 23
In Proof of corollary 23, analytic continuation, we have “By hypothesis, {V} is non-empty; by the continuity of the {f^{(n)}}, {V} is closed;”. Why is V closed,if {f^{(n)}} is continuous?
29 October, 2020 at 7:41 am
Ben Johnsrude
29 October, 2020 at 8:02 am
Anonymous
May be an alternative to Ben’s comment:
Suppose
and
. By the continuity of
and
, (and the definition of
), one has
for all
. So
.
On the other hand, since
is first countable,
if and only there exists a sequence
that converges to
. The above argument shows that the closure
is contained in
.
10 November, 2020 at 6:39 pm
Anonymous
In Exercise 53(i), one can look at the leading term
and use the Rouche’s theorem. How does one deal with 53(ii)?
11 November, 2020 at 7:58 am
Ben Johnsrude
If one pulls back the defining integral for
by the map P, we obtain a path integral of a holomorphic function, possibly with singularities in the bounded domain. What sort of singularities appear in this case?
11 November, 2020 at 10:45 am
Anonymous
In the EX:15 on removable singularity how I can go using the given hint: show that {f} is conservative near {z_0}, find an antiderivative, extend it to {U}, and use Morera’s theorem to show that this extension is holomorphic.
1. Whether f is coneservative near z_0 means that f is conservative in D(z_0, r) \ z_0 ?
2. If the above is correct then how can I prove that integral of f over a simple closed polygonal curve winds around z_0 is 0 ?
3. And how to extended the anti derivative on hole U ?
To use morera’s theorem at first we have to show that f is continuous on U and then over any triangule in U the integral of f is 0
So, can you explain something more how to use the hypothesis so that morera’s theorem can be used.
11 November, 2020 at 11:15 am
Ben Johnsrude
1 – Yep!
2 – The important tools here will be homotopy invariance, the possibility of homotoping a curve to have very small length, and the boundedness of
3 – Boundedness of
translates to vanishing oscillation of the antiderivative
– try and show that two distinct sequences
limiting to the puncture
satisfy 
To apply Morera’s theorem, I might suggest breaking an arbitrary triangle into smaller triangles on which the Cauchy integral theorem applies, at least approximately – remember,
is already holomorphic on all of $\latex U\setminus\{z_0\}$!
– Ben
12 November, 2020 at 7:49 am
Anonymous
Hello Ben,
Boundedness of f makes F lipschitz on D(z_0, r) \ z_0 ??
To prove this we can follow the proof of 2nd FT of calculus.
If we have two curve joining z_1 and z_2 (with respect to a fixed point ) then /F(z_1) – F(z_2)/ bounded by M(a bound of f on punctured disk) times /z_1- z_2/.
But if the line segment joining z_1 and z_2 contains z_0 then we can’t apply triangle ineq there. So, then we go z_1 to z_2 along the same line but going avoiding z_0 by a small semi circle of radius epsilon. Then applying triangle ineq and taking epsilon as small as possible we prove our claim.(Am I correct ??)
Now we can defn F(z_0) as limit of F(z_n) as n goes to infinity for the sequence (z_n) approaches to z_0 unambiguously.
This makes F continuous on D(z_0, r) and by applying morera’s theorem then we have F is holomorphic hence f is also holomorphic.
12 November, 2020 at 9:58 am
Ben Johnsrude
That’s pretty much it! One has to be careful to check that being Lipschitz is sufficient to conclude that we do extend continuously to
, but this fact is true.
One also has to apply Morera’s theorem correctly to conclude that
is holomorphic, since we can’t assume that all integrals over closed contours are
(since we don’t yet know that
is holomorphic) but a standard exercise in “pushing the problem to
” will produce the desired result.
24 November, 2020 at 8:32 pm
anonymous
In the statement of Corollary 24, I think you missed mentioning that
is holomorphic on 
[Corrected, thanks – T.]
24 November, 2020 at 9:30 pm
folkertt
I recommend that that be a standing assumption in such a section. It does not always need to be repeated: it is a waste of space and bits. But if this is intended to be a section that can be used forever and ever as a reference and in particular in the context of automated proofs, then maybe it should stay. However, the past indicates (say the King James Bible or the US constitution) that then maybe there should also be mechanisms to update and modernize the Urtext. I personally can not sleep without Newton’s Principia by my side, in Latin (edition 1 on the iPhone).
25 November, 2020 at 8:16 am
Anonymous
This information is very important !
30 November, 2020 at 5:17 pm
Anonymous
Let
be a non-empty open subset of
and
a simple closed curve whose image is contained in
. If
is holomorphic in the interior region of
and continuous up to the boundary region
, does one still have
?
In general, how bad can possibly
behave on the boundary region given that it is holomorphic in the interior region of a simple closed curve?
4 December, 2020 at 12:38 pm
Terence Tao
For a nice enough curve (E.g., a contour) there is no difficulty since
is locally uniformly continuous and one can approximate the curve by curves in the interior region in which Cauchy’s theorem already applies. If one has a non-rectifiable curve then it is not even obvious that the integral is even going to exist. There is a middle ground of curves that are rectifiable but not contours for which the answer may depend on some subtle regularity properties of the domain enclosed (one may for instance need the domain to be something like a chord-arc domain). I am not familiar enough with these sorts of low-regularity domains to say for sure though.
30 November, 2020 at 8:16 pm
Anonymous
Typo at the end of the proof of Cauchy theorem?
…where
… restriction of
…
[Corrected, thanks -T.]
2 December, 2020 at 7:25 am
Anonymous
With the same hypotheses in Corollary 21, is it true that
is also real analytic?
[Yes; this follows for instance from the Poisson kernel representation, or from viewing harmonic functions locally as real parts of holomorphic functions. -T]
2 December, 2020 at 8:36 am
Ben Johnsrude
Yep! This follows by taking the real part of the power series expansions for
, with
a local harmonic conjugates. – Ben
2 December, 2020 at 6:57 pm
Anonymous
Typo in the proof of Morera’s theorem?
… so by Corollary 20,
Seems more accurate to say that
… so by Corollary 20,
is holomorphic , which implies in particular that
is holomorphic on
as claimed.
[Corrected, thanks – T.]
3 December, 2020 at 5:01 pm
adityaguharoy
I think there is a small typo in the statement of Lemma 41 (Homotopy invariance).
.
The last line should read
[This seems to be what is actually written in the text – T.]
5 December, 2020 at 8:18 am
adityaguharoy
Sorry my bad. I meant Corollary 42 (Rouche’s theorem).
8 December, 2020 at 9:57 am
a hardy iota guy
I think adityaguharoy referred to Corollary 42 which is namely Rouche’s theorem.
23 December, 2020 at 5:54 pm
246B, Notes 1: Zeroes, poles, and factorisation of meromorphic functions | What's new
[…] is the real part of . The claim now follows by applying the mean value property (Exercise 17 of 246A Notes 3) to […]
2 February, 2021 at 7:03 pm
246B, Notes 3: Elliptic functions and modular forms | What's new
[…] function on the punctured disk. By the Riemann singularity removal theorem (Exercise 35 of 246A Notes 3) extends to be holomorphic on all of , and thus has a Taylor expansion for some coefficients […]
12 February, 2021 at 11:27 pm
Contour shifting | Aditya Guha Roy's weblog
[…] on complex analysis; for a broader discussion on Cauchy’s theorem and its consequences refer to this blogpost by prof. Terence […]
16 February, 2021 at 3:13 am
Rex
This post seems to be missing the tag math.CV
[Corrected, thanks – T.]
12 June, 2021 at 6:48 am
Anonymous
Correction in Exercise 3 (iv) – I think we need the hypothesis that U is connected because a closed curve cannot be homotopic to a point in another component as we demand the range of the deformation to be connected.
[The point is permitted to depend on
– T.]
27 September, 2021 at 9:02 am
246A, Notes 2: complex integration | What's new
[…] Previous set of notes: Notes 1. Next set of notes: Notes 3. […]
1 November, 2021 at 12:16 am
Matt Kowalski
It seems like there’s an error with the box containing exercise 37. The box does not stop at the end of the exercise and instead continues down to contain the remainder of the post.
Also, I’m loving these notes.
[Fixed, thanks – T.]
4 November, 2021 at 1:57 pm
Siddharth M
In Exercise 47 I think the ds term should be inside the bracket on the numerator of the expression
[Corrected, thanks – T.]
22 January, 2022 at 12:35 am
Teorema de la curva de Jordan, prueba del profesor Tao - TopRespuestas
[…] Math 246A, Notes 3: Cauchy’s theorem and its consequences […]
30 April, 2022 at 8:18 am
J
How different is a closed curve from a 1-cycle in Exercise 15? Are they essentially the same but defined in two different languages?
30 April, 2022 at 9:45 am
Anonymous
1-cycle is a closed curve. But closed curve doesn’t have to be a 1-cycle.
1 May, 2022 at 11:13 am
Terence Tao
A 1-cycle can be decomposed as a (formal) integer linear combination of closed curves (which need not intersect each other). For instance, the sum of two disjoint oriented circles would be a 1-cycle, but not a closed curve.