Asgar Jamneshan, Or Shalom, and myself have just uploaded to the arXiv our preprints “A Host–Kra -system of order 5 that is not Abramov of order 5, and non-measurability of the inverse theorem for the norm” and “The structure of totally disconnected Host–Kra–Ziegler factors, and the inverse theorem for the Gowers uniformity norms on finite abelian groups of bounded torsion“. These two papers are both concerned with advancing the inverse theory for the Gowers norms and Gowers-Host-Kra seminorms; the first paper provides a counterexample in this theory (in particular disproving a conjecture of Bergelson, Ziegler and myself), and the second paper gives new positive results in the case when the underlying group is bounded torsion, or the ergodic system is totally disconnected. I discuss the two papers more below the fold.

** — 1. System of order which is not Abramov of order — **

I gave a talk on this paper recently at the IAS; the slides for that talk are available here.

This project can be motivated by the inverse conjecture for the Gowers norm in finite fields, which is now a theorem:

Theorem 1 (Inverse conjecture for the Gowers norm in finite fields)Let be a prime and . Suppose that is a one-bounded function with a lower bound on the Gowers uniformity norm. Then there exists a (non-classical) polynomial of degree at most such that .

This is now known for all (see this paper of Ziegler and myself for the first proof of the general case, and this paper of Milicevic for the most recent developments concerning quantitative bounds), although initial results focused on either small values of , or the “high characteristic” case when is large compared to . One approach to this theorem proceeds via ergodic theory. Indeed it was observed in this previous paper of Ziegler and myself that for a given choice of and , the above theorem follows from the following ergodic analogue:

Conjecture 2 (Inverse conjecture for the Gowers-Host-Kra semi-norm in finite fields)Let be a prime and . Suppose that with an ergodic -system with positive Gowers-Host-Kra seminorm (see for instance this previous post for a definition). Then there exists a measurable polynomial of degree at most such that has a non-zero inner product with . (In the language of ergodic theory: every -system of order is an Abramov system of order .)

The implication proceeds by a correspondence principle analogous to the Furstenberg correspondence principle developed in that paper (see also this paper of Towsner for a closely related principle, and this paper of Jamneshan and I for a refinement). In a paper with Bergelson and Ziegler, we were able to establish Conjecture 2 in the “high characteristic” case , thus also proving Theorem 1 in this regime, and conjectured that Conjecture 2 was in fact true for all . This was recently verified in the slightly larger range by Candela, Gonzalez-Sanchez, and Szegedy.

Even though Theorem 1 is now known in full generality by other methods, there are still combinatorial reasons for investigating Conjecture 2. One of these is that the implication of Theorem 1 from Corollary 2 in fact gives additional control on the polynomial produced by Theorem 1, namely that it is some sense “measurable in the sigma-algebra generated by ” (basically because the ergodic theory polynomial produced by Conjecture 2 is also measurable in , as opposed to merely being measurable in an extension of ). What this means in the finitary setting of is a bit tricky to write down precisely (since the naive sigma-algebra generated by the translates of will mostly likely be the discrete sigma-algebra), but roughly speaking it means that can be approximated to arbitrary accuracy by functions of boundedly many (random) translates of . This can be interpreted in a complexity theory sense by stating that Theorem 1 can be made “algorithmic” in a “probabilistic bounded time oracle” or “local list decoding” sense which we will not make precise here.

The main result of this paper is

Theorem 3Conjecture 2 fails for . In fact the “measurable inverse theorem” alluded to above also fails in this case.

Informally, this means that for large , we can find -bounded “pseudo-quintic” functions with large norm, which then must necessarily correlate with at least one quintic by Theorem 1, but such that none of these quintics can be approximated to high accuracy by functions of (random) shifts of . Roughly speaking, this means that the inverse theorem cannot be made locally algorithmic (though it is still possible that a Goldreich-Levin type result of polynomial time algorithmic inverse theory is still possible, as is already known for for ; see this recent paper of Kim, Li and Tidor for further discussion).

The way we arrived at this theorem was by (morally) reducing matters to understanding a certain “finite nilspace cohomology problem”. In the end it boiled down to locating a certain function from a -element set to a two-element set which was a “strongly -homogeneous cocycle” but not a “coboundary” (these terms are defined precisely in the paper). This strongly -homogeneous cocycle can be expressed in terms of a simpler function that takes values on a -element space . The task of locating turned out to be one that was within the range of our (somewhat rudimentary) SAGE computation abilities (mostly involving computing the Smith normal form of some reasonably large integer matrices), but the counterexample functions this produced were initially somewhat opaque to us. After cleaning up these functions by hand (by subtracting off various “coboundaries”), we eventually found versions of these functions which were nice enough that we could verify all the claims needed in a purely human-readable fashion, without any further computer assistance. As a consequence, we can now describe the pseudo-quintic explicitly, though it is safe to say we would not have been able to come up with this example without the initial computer search, and we don’t currently have a broader conceptual understanding of which could potentially generate such counterexamples. The function takes the form

where is a randomly chosen (classical) quadratic polynomial, is a randomly chosen (non-classical) cubic polynomial, and is a randomly chosen (non-classical) quintic polynomial. This function correlates with and has a large norm, but this quintic is “non-measurable” in the sense that it cannot be recovered from and its shifts. The quadratic polynomial turns out to be measurable, as is the double of the cubic , but in order to recover one needs to apply a “square root” to the quadratic to recover a candidate for the cubic which can then be used to reconstruct .

** — 2. Structure of totally disconnected systems — **

Despite the above negative result, in our other paper we are able to get a weak version of Conjecture 2, that also extends to actions of bounded-torsion abelian groups:

Theorem 4 (Weak inverse conjecture for the Gowers-Host-Kra semi-norm in bounded torsion groups)Let be a bounded-torsion abelian group and . Suppose that with an ergodic -system with positive Gowers-Host-Kra seminorm . Then, after lifting to a torsion-free group , there exists a measurable polynomial of degree at most defined on anextensionof which has a non-zero inner product with .

Combining this with the correspondence principle and some additional tools, we obtain a weak version of Theorem 1 that also extends to bounded-torsion groups:

Theorem 5 (Inverse conjecture for the Gowers norm in bounded torsion groups)Let be a finite abelian -torsion group for some and . Suppose that is a one-bounded function with . Then there exists a (non-classical) polynomial of degree at most such that .

The degree produced by our arguments is polynomial in , but we conjecture that it should just be .

The way Theorem 4 (and hence Theorem 5) is proven is as follows. The now-standard machinery of Host and Kra (as discussed for instance in their book) allows us to reduce to a system of order , which is a certain tower of extensions of compact abelian structure groups by various cocycles . In the -torsion case, standard theory allows us to show that these structure groups are also -torsion, hence totally disconnected. So it would now suffice to understand the action of torsion-free groups on totally disconnected systems . For the purposes of proving Theorem 4 we have the freedom to extend as we please, and we take advantage of this freedom by “extending by radicals”, in the sense that whenever we locate a polynomial in the system, we adjoin to it roots of that polynomial (i.e., solutions to ) that are polynomials of the *same* degree as ; this is usually not possible to do in the original system , but can always be done in a suitable extension, analogously to how roots do not always exist in a given field, but can always be located in some extension of that field. After applying this process countably many times it turns out that we can arrive at a system which is -divisible in the sense that polynomials of any degree have roots of any order that are of the same degree. In other words, the group of polynomials of any fixed degree is a divisible abelian group, and thus injective in the category of such groups. This makes a lot of short exact sequences that show up in the theory split automatically, and greatly simplifies the cohomological issues one encounters in the theory, to the point where all the cocycles mentioned previously can now be “straightened” into polynomials of the expected degree (or, in the language of ergodic theory, this extension is a Weyl system of order , and hence also Abramov of order ). This is sufficient to establish Theorem 4. To get Theorem 5, we ran into a technical obstacle arising from the fact that the remainder map is not a polynomial mod if is not itself a prime power. To resolve this, we established ergodic theory analogues of the Sylow decomposition of abelian -torsion groups into -groups , as well as the Schur-Zassenhaus theorem. Roughly speaking, the upshot of these theorems is that any ergodic -system , with -torsion, can be split as the “direct sum” of ergodic -systems for primes dividing , where is the subgroup of consisting of those elements whose order is a power of . This allows us to reduce to the case when is a prime power without too much difficulty.

In fact, the above analysis gives stronger structural classifications of totally disconnected systems (in which the acting group is torsion-free). Weyl systems can also be interpreted as translational systems , where is a nilpotent Polish group and is a closed cocompact subgroup, with the action being given by left-translation by various elements of . Perhaps the most famous examples of such translational systems are nilmanifolds, but in this setting where the acting group is not finitely generated, it turns out to be necessary to consider more general translational systems, in which need not be a Lie group (or even locally compact), and not discrete. Our previous results then describe totally disconnected systems as *factors* of such translational systems. One natural candidate for such factors are the *double coset systems* formed by quotienting out by the action of another closed group that is normalized by the action of . We were able to show that all totally disconnected systems with torsion-free acting group had this double coset structure. This turned out to be surprisingly subtle at a technical level, for at least two reasons. Firstly, after locating the closed group (which in general is Polish, but not compact or even locally compact), it was not immediately obvious that was itself a Polish space (this amounts to the orbits of a closed set still being closed), and also not obvious that this double coset space had a good nilspace structure (in particular that the factor map from to is a nilspace fibration). This latter issue we were able to resolve with a tool kindly shared to us in a forthcoming work by Candela, Gonzales-Sanchez, and Szegedy, who observed that the nilspace fibration property was available if the quotient groups obeyed an algebraic “groupable” axiom which we were able to verify in this case (they also have counterexamples showing that the nilspace structure can break down without this axiom). There was however one further rather annoying complication. In order to fully obtain the identification of our system with a double coset system, we needed the equivalence

## 11 comments

Comments feed for this article

10 March, 2023 at 8:49 am

AnonymousThe title seems to have some Latex issuses.

[Title simplified to make it more human readable – T.]12 March, 2023 at 10:50 am

Chasing integersStructurally is there a difference between Group algebra and non-classical polynomials when the range is a group? Are there other objects besides groups which serve the purpose?

13 March, 2023 at 9:16 pm

AnonymousAs an IT professional from Hyderabad, let me tell you that Python is the cat’s whiskers when it comes to programming languages, even if it might seem like a bit of a “mixed bag” compared to algebraic geometry. Let me explain:

Firstly, Python is a “jugaadu” and dynamic programming language that’s easier than “roti-sabzi”. It’s used for all sorts of “kaam,” from web development to machine learning, which makes it a real all-rounder. Algebraic geometry, on the other hand, is more like a “theoretical khichdi” of mathematics, which makes it less “practical” and applicable to real-world programming needs.

Secondly, Python has a large and “joshila” community of developers who are constantly “jugaad-ing” to improve and develop it. This dedicated community has created a bunch of libraries and tools that make Python one of the most “powerful” and popular programming languages on the planet. In contrast, algebraic geometry has a smaller group of “math-keeda” who focus more on theoretical research.

Thirdly, Python’s object-oriented programming capabilities make it the “topper” when it comes to organizing code efficiently, which is especially important for complex applications. This level of “modularity” is not possible with algebraic geometry, which is more like a “fisla hua aam” when it comes to practical coding applications.

Lastly, Python’s syntax is as easy as “a-b-c,” which is a real advantage over algebraic geometry’s more “mushkil” and theoretical nature. This simplicity makes Python more accessible to developers of all levels, including “naye-naye” ones.

In summary, as an IT professional from Hyderabad, I’m here to tell you that Python is the “pukka” choice when it comes to programming languages, even if it might seem like a bit of a “chakravyuh” compared to algebraic geometry. Its “jugaadu” nature, “joshila” community, and ease of use make it the “boss” for developers all around the world.

14 March, 2023 at 12:05 am

fart in a jarfartnajar fartnajar fartnajar

14 March, 2023 at 12:39 am

algAlgebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.

The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. In these plane algebraic curves, a point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the curve and relations between the curves given by different equations.

Algebraic geometry occupies a central place in modern mathematics and has multiple conceptual connections with such diverse fields as complex analysis, topology and number theory. Initially a study of systems of polynomial equations in several variables, the subject of algebraic geometry starts where equation solving leaves off, and it becomes even more important to understand the intrinsic properties of the totality of solutions of a system of equations than to find a specific solution; this leads into some of the deepest areas in all of mathematics, both conceptually and in terms of technique.

14 March, 2023 at 1:05 am

algLa géométrie algébrique est un domaine des mathématiques qui, historiquement, s’est d’abord intéressé à des objets géométriques (courbes, surfaces…) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation

x^2+y^2=1). La simplicité de cette définition fait qu’elle embrasse un grand nombre d’objets et qu’elle permet de développer une théorie riche. Les besoins théoriques ont contraint les mathématiciens à introduire des objets plus généraux dont l’étude a eu des applications bien au-delà de la simple géométrie algébrique ; en théorie des nombres par exemple, cela a conduit à une preuve du grand théorème de Fermat.

Cette branche des mathématiques n’a désormais plus grand-chose à voir avec la géométrie analytique dont elle est en partie issue.

18 March, 2023 at 9:44 pm

ArmanPROF why no publishing new posts???

19 March, 2023 at 3:50 am

AnonymousYeah, Pro Tao is the busiest man in the world. You should take much time to know why . Two very important days left in his career

19 March, 2023 at 10:54 am

afarty farty fart fart

20 March, 2023 at 11:27 am

afart attack

21 March, 2023 at 10:33 am

ttA Host–Kra F^omega_2-system of order 5 that is not Abramov of order 5, and non-measurability of the inverse theorem for the U^6(F^n_2) norm; The structure of totally disconnected Host–Kra–Ziegler factors, and the inverse theorem for the U^k Gowers uniformity norms on finite abelian groups of bounded torsion